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1. Susceptibility tensor and symmetries.

Consider a two–dimensional medium with D4- symmetry. There is a set of
symmetry operations, which leave the unit cell invariant:

E: Identity operation
R+ : Rotation by π/2
R− : Rotation by -π/2
R: Rotation by π
Mx : Mirror image around the x-axis
My : Mirror image around the y-axis
D1 : Mirror image around the diagonal D1

D2 : Mirror image around the diagonals D2

Abbildung 1: D4-symmetry

A sequence of symmetry operations (e.g, two) is defined as the concatenation
or product of the corresponding (two) operators. For example MxR+ =D2.
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(a) Construct the multiplication table for the D4-symmetry group:

E R+ R− R Mx My D1 D2

E
R+

R−
R
Mx

My

D1

D2

Tabelle 1: multiplication table for symmetry group D4

(b) The dielectric tensor of a general two-dimensional medium without sym-
metry has the form

ε =

(
ε11 ε12
ε21 ε22

)
Show that for a medium with D4−symmetry the dielectric tensor is iso-
tropic

ε =

(
ε 0
0 ε

)
.
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2. Coupled oscillator model for the susceptibility.

Abbildung 2: Scheme for the anharmonic coupling between ion and electron.

Throughout this problem we want to develop a classical model for a nonlinear
optical material, which exhibits optical phonons in the THz frequency range
(which spans approximately from 100GHz to 30THz). As a phonon describes
the collective motion of the ions, we will try to add the motion of an ion to
our classical Lorentz model derived in the previous lecture, where we only
considered the electronic motion. As we will later see, including the ions in
the process will lead to interesting insights important for THz generation. To
start with, we will first derive the linear response of such sort of system in the
following.

Let’s assume the ion and electron are each bound in a harmonic potential
each with linear restoring forces and their individual resonance frequencies
ωi and we in that potential. Furthermore their motion is damped by a force
linearly dependent on their velocities accounted for by γi = 2ωi

Qi
and γe = 2ωe

Qe
.

The nonlinearity we introduce to the system this time via an anharmonic
coupling β(xi − xe)

2 between the ion and electron. This can be pictured as
the first correction term to a purely quadratic potential and simulates hard-
core repulsion between the ion and the electron. This way we arrive at a set
of equations describing the motion of the system of ion and electron in the
material under the influence of an external field E(t):
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ẍi + ω2
i xi + γiẋi −

β

mi

(xi − xe)
2 =

qiE(t)

mi

(1)

ẍe + ω2
exe + γeẋe +

β

me

(xi − xe)
2 =

qeE(t)

me

(2)

Equation (1) describes the motion of the ion in external electric field E(t),
where qi, mi and ωi denote the charge, mass and resonance frequency of the
ion. Equation (2) describes the motion of the electron with the parameters
inserted for the electron respectively; β is the coupling constant accounting
for the strenght of the anharmonic coupling between ionic and electronic mo-
tion. For starters we will only consider a monochromatic driving field such as
E(t) = E0e

i(ωt) + c.c..

a) Derive a general frequency-dependent expression for the linear susceptibility

χ(1)(ω) = χ
(1)
i (ω) + χ

(1)
e (ω) of the material due to the ionic χ

(1)
i and electronic

χ
(1)
e contribution. Use a perturbative ansatz replacing the external field E(t)

by εE(t) and assuming the solution can be expanded into a power series such
as x(t) = εx(1) + ε2x(2) + ε3x(3) + ... for both ionic and electronic motion.
Remember the relation between the excursion of a charge x(n) relates to the
induced polarization field as P (n) = ε0χ

(n)En = qNx(n), which relates x(n) and
χ(n), with q representing the charge and N the number density.

You should arrive at:

χ(1)
e (ω) =

Nee
2

meε0(ω2
e − ω2 + iγeω)

(3)

χ
(1)
i (ω) =

Niq
2
i

miε0(ω2
i − ω2 + iγiω)

(4)

b) Plot the refractive index n(ω) (ñ2 = 1 + χ(1), ñ= n + iκ) and the ab-
sorption coefficient α(ω) (α = 4πκ

λ
) as a function of frequency over the range

from 0 to 1500 THz. Add to the same sketch the contributions arising solely
from the ionic and the electronic contribution respectively. Which contributi-
on is important for which frequency range? How do the resonances influence
absorption and refractive index? Discuss your findings!

For the plot, let’s assume the phonon resonance frequency is at fi = 2THz
with quality factor Qi = 10. In addition, the atoms in each unit cell of the
material show electronic transitions at UV-frequencies fe = 1500THz with a
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a quality factor of Qe = 1000. Values for the other needed physical constants
are given in table 2.

c) Now give an expression for the linear susceptibility of the material at THz
and optical frequencies when driving it far off from the resonance frequencies
in the THz (ω � ωi) and optical domain (ωi � ω � ωe and ωe � ω).

Quantity ion electron
resonance frequency ωi = 2π · 2THz ωe = 2π · 1500THz
quality factor Qi = 10 Qe = 1000
charge qe = e = −1.6 · 10−19C qi = 1.6 · 10−19C
density ≈ a · b · c Ni = 1028m−3 Ne = 1028m−3

mass mi = 1.67 · 10−27kg me = 9.11 · 10−31kg
vacuum permittivity ε0 8.85 · 10−12F ·m−1

coupling constant β 109kg ·m−1 · s−2

Tabelle 2: Table of important physical constants needed for the computation in b).
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