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Chapter 10: Interactions of light and matter

10.1 Two-level systems

1D model for E, V(x) (7, 1) = cgt) by () + ce(t) 1e(7)
two-level system

o Hy ve(7) = Eete(7)
—L / E. H 4 1,y(7) Eg ty(T)

-d/2 P d/2 X

time evolution from Schrodinger equation
jﬁ,a—i@(_ﬁf) = H, U (7, 1)
Jh{cg(f} ﬁf"g(_ﬂ + Ce(t) V(7)) = (Eg Cg{t) L'g(i’_j + E. ce(t) ve(T))
by multiplication of this equation from the left with the complex conjugate
ground-state or excited-state wavefunctions, integration over r, and using

the orthogonality relations for the energy eigenstates, we obtain two
separate equations for the time dependence of the coefficients



e = —]jw.C., withw, = FE, /h,

Cg = —Jjwycy, with w, = E, /h.
This procedure is equivalent to projecting the Schrodinger equation onto

the energy eigenstates.

time-dependent solution of the Schrodinger equation of the free atom
III(;_' f) - L?Q(D}E_juﬂr E“g(_'ﬂ + CE{D)E_er'r Le("—]

How does the atomic dynamics change in the presence of an external
electromagnetic (EM) field and environmental perturbations?



10.2 Atom-field interaction within the dipole
approximation

=

induced dipole moment = —ef.

Schrodinger equation for an atom in EM field Hup =Hy —d- E(Fa,t)

new equations of motion contain matrix elements

of dipole moment of atom symmetric/

antisymmetric
atomic
wavefunctions

—

V) () d7 = — [0z 7 (7).

My = [;; (7) d ve(7) dF = M,

[ 5 d vl = e [ 3




new equations of motion for probability amplitudes
1 - .
b = ey +icer ( / 027 d () df') (). (10.18)

Separating the electric field mto 1ts polarization vector € and field strength
E(t)
E(t) = E(t) €, (10.19)

the Schrodinger equation becomes

—

M, -€

bo = —iwec +ic—LE(b) (10.20)
by = e + e “E). (10.21)

The expectation value for the dipole moment of an atom in state (10.3) can
also be expressed in terms of the dipole matrix elements

(d) = [cel* Mo + [eg Mgy + ciegMeg + chee My
= M., + cec., (10.22)

atom only has dipole moment if in superposition of energy eigenstates



monochromatic field

E(t) = % (Eyet + Bge 1) | (10.23)

where E; 1s the complex electric field amplitude. We expect strong mteraction
between the field and the atom 1if the atomic transition frequency between the
states, Weg = We — Wy, 1s close to the frequency of the driving field, 1.e., w.y, = w.
It 1s advantageous to transform to new probability amplitudes, that take some
trivial oscillations already mmto account

C, = c (T (10.24)
— () F
Cg = ¢\ 77, (10.25)
which leads to the new equations of motion

: [ (W +wy +w . j(Leteatey) _-"L-_'feg € = j((Cetwatey)
Ce — ] 9 — JWe Ceej . +.]Cg A E(t) e - ;
: _. We + Wy — W . | '(*”'C"‘*"'g—wt) . ﬂ_j;g € = -(wc+wg—wt)
Cy = |] 5 — jwg| cg€’ 3 + jce 5 E(t) € 2 )

Introducing the detuning between the atomic transition and the electric field
frequencies

(10.26)



and the Rabi frequency

M . ¢ .
= % (Eq + Eje1) (10.27)

we obtain the following coupled-mode equations for the probability amplitudes

d 0
—C'. = —AC ——( 10.28
- Ce JAC, +i5-C, ( )
d ()
—C', = 1AC —C,. 10.29
- Ca HAC, +15 ( )

If the Rabi frequency is small compared to the optical transition || < w,, =
w, the so-called Rotating-Wave Approximation (RWA) [3] can be made, where
we only keep the slowly varying components in the mteraction, 1.e.,

O~ —9""F — const. 10.30
L




10.3 Rabi oscillations

. . dﬂ 0 2
resonant excitation e - | j c. (10.31)
detuning A=0 d- [’
g —3Cs = _| 4' c,. (10.32)

The solution to this set of equations are oscillations. If the atom 1s mmtially at
time ¢ = 0 in the ground state, i.e., Cy(0) =1 and C.(0) = 0, we arrive at

C,(t) = cos (lf;rlt) (10.33)
Q

Ce(t) = —jsin (|—2r|t) : (10.34)

Then, the probabilities for finding the atom in the ground or excited states are
()

le,(B))? = cos® (' 2""t> (10.35)

lce(t)]? = sin® (“:;rlt) : (10.36)

as 1llustrated m Fig. 10.2. For the expectation value of the dipole operator

—+

under the assumption of a real dipole matrix element iljfeg = M¢;,, we obtain

<.f) = Mo +coc. (10.37)
= —M_,sin (|| 1) sin (we,t) . (10.38)
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Figure 10.2: Evolution of occupation probabilities of ground and excited state and
the average dipole moment of a two-level atom in resonant interaction with a coher-

ent classical field.

population inversion w . _|2

w=F —FP,=

Mollow sidebands Wi = Weg €,




loss of coherence in the atomic system due to additional interactions of
the atom with its environment

dissipative processes can not easily be included in Schrodinger
equation formalism

dissipative quantum systems:
open quantum systems = quantum system coupled to bath

Here: include relaxation and dephasing phenomenologically into
equations of motion
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From the equations of motion for the coefficients of the wave function, Egs.
(10.28) and (10.29), we derive equations of motion for the complex slowly

varying dipole moment defined as
_* —jwt __
d=clcge =CC,.

By applying the product rule, we find

d d d
—d = cr)c,+C | —=C
dt— (dt ) g *‘-(dt 9)

. * -QT ® * QT‘ L
= JACIC, =030, +IACIC, + i CIC.
0,
= jﬂ\iJrj?'w

and

d d d
= (2o - (S, Ctee
di” (dt ) (dt g) g T

Q2

(10.40)

(10.41)

(10.42)

(10.43)

(10.44)

= (—jACEC: +j&C T —]AC,CT —j—rC’eC‘;) + c.c.(10.45)

2 g=e a9=q 2
= +jQd+cc

(10.46)

For the monochromatic wave of Eq. (10.23), we find for the dynamics of a
two-level system interacting with a coherent driving field with Rabi frequency

Q,

d Q,
9 iAd
TRttt

d
W= +1€0d + c.c.

(10.47)

(10.48)
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10.4 Energy and phase relaxation

difficult to completely isolate atom from its environment due to interaction with
- electric field from all the free-space modes of surrounding EM field
- phonons in solids

random interaction leads to a thermalization and decoherence of atom

Example:

To provide an example for the interaction of an atom with its environment in
thermal equilibrium, we consider the interaction of a two-level system with the
free-space EM field, that is in thermal equilibrium with temperature T

the electric field amplitude in the Bloch equations (10.47) and (10.48) is a
random quantity and represents the field of the black-body radiation
M?, - &

Qpor (t) = r Ey(t), (10.49)

E(t) 1s the random field and €, the random polarization
12



analysis yields

d 1 :
—w = ——w(t). 10.58
S ==l (1059
L2
J.-‘I_ir JF 3
| eg| 2wy, h 1 |
with T = T3 3, ('n'th.(weg) + E) . (10.52)
and np(weyg) = 1/(exp(hwey/kT) —1). (10.53)

random field fluctuations of the EM vacuum lead to an exponential decay
of population inversion

| M.

This result can easily be mterpreted: The first factor ~——— comes from the
average of the projection of the dipole matrix element onto a unit vector,

when averaged over every possible polarization direction. The second factor
4w3 h .o . .
— (nt h(Weg) + %) originates from expressing the power spectral density of the

electric field amplitudes at the transition frequency w =~ w., by the spectral
energy density of the black-body radiation. However, we did not only include

in the energy the part due to the thermal photon population of the mode, but

also its ground-state energy fiwe,/2. Thus even at temperature T — 0, TLI

stays fimite. The white noise property helps us to find an equation of motion



Similarly the analysis yields

d

dt—

“d=iAd—

27Ty~

this equation describes now the average dipole moment in an ensemble of

identical atoms

relaxation to steady-state inversion

d
—w =

dt

w — iy

T,

(10.59)

(10.60)
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comparison with phenomenological discussion of how thermal equilibrium
between thermal radiation and a two-level system is reached using

Einstein’s A and B coefficients

E
Y
P
e E o
1 A
I'. = T('”-fh +1)
Tsp
[ [
ra — f_inth € °
Tsp
v Pg E
g

Figure 10.3: Two-level atom with transition rates due to induced and spontaneous
emission and absorption.
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dP,  dP. 1

[(PE_PH) ”:h‘l'Pﬂ]

At dt Tsp
or rewritten as ap ap
— 9 - T P-T.P,.
dt a9
with abbreviations
1
I = —(n 1).
: ™ (ch + )
1
Fﬂ, — _nthr
Tsp

see Fig. 10.3. For the mversion, we then obtain

d d d —2

SR b ) LR |:H-'—|— 1
TS}_;. 2 | Tsp Qnth + 1

(10.62)

(10.63)

(10.64)

(10.65)

(10.66)

] . (10.67)

Note, here we used that FP.+F, = 1 and thus F, = wtl  Comparing coefficients

2
between Eqgs. (10.60) and (10.67), we find

1 2 + 1

— = T 4T,

T — +

wy = Lo — L = ! = — tanh
YT T4l 2mg 1

(10.68)

(10.69)
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For zero temperature, the decay time T} approaches the spontaneous lifetime

of the atom due to the zero-poimnt fluctuations of the electromagnetic field

2

43
Weg

L1 |My

T Tep - Irhcie

This 1s an expression for the spontaneous hifetime of an atom in terms of the
dipole matrix element and the density of modes 1n the electromagnetic field at
the transition frequency we,.

In summary, the equation for the dipole moment d and the mmversion w due
to 1ts interaction with the environment can be written as

d = G@@—wy—%)g (10.70)

w — u.‘u

w o= — (10.71)
The time constant 77 denotes the energy relaxation in the two-level system
and 75 the phase relaxation. T 1s the correlation time between amplitudes ¢,
and c;. The coherence between the excited and ground states described by the
dipole moment 1s destroyed by the interaction of the two-level system with the
environment.

T, energy relaxation time in general need to be computed from the

T, dephasing time scattering processes involved, in solids, e.g.,
electron-electron, electron-phonon scattering

17



If the inversion deviates from 1ts equilibrinum value, wy, it relaxes back nto
equilibrium with a time constant T;. Eq. (10.69) shows that for all temper-
atures 7' > 0 the mversion 1s negative, 1.e., the population of the lower level
1s higher than the upper level. Thus with incoherent thermal light. mversion

in a two-level system cannot be achieved. Inversion can only be achieved by

pumping with imcoherent heght, if there are more levels and subsequent relax-

ation processes into the upper laser level. Due to these relaxation processes,
the rate I', deviates from the equilibrium expression (10.65), and it has to be
replaced by the pump rate A. If the pump rate A exceeds I'., the mversion
corresponding to Eq. (10.69) becomes positive

AT,
A+

(10.74)

Wy

If we allow for artificial negative temperatures, we obtain with 7" < 0 for the
ratio of relaxation rates

F ]_ eq
e ST _ o (10.75)

Fa Tip

Thus the pumping of the two-level system drives the system away from thermal
equilibrium. Now, we have a correct description of an ensemble of atoms
in thermal equilibrium with 1ts environment, which 1s a much more realistic
description of media especially of typical laser media.

18



10.5 Bloch equations

Thus, the total dynamics of the two-level system mmcluding the pumping and
dephasing processes from Eqs.(10.70) and (10.71) is given by

- . Q, |
d = —(E—J(Lﬂeg—w))iJﬂ? w, (10.76)
W = _“’;“’“ﬂmg_mff, (10.77)

1

These equations are called the Bloch equations (within the RWA). They de-
scribe the dynamics of a statistical ensemble of two-level atoms interacting

with a classical electric field. Together with Maxwell's equations, where the
polarization of the medium 1s related to the expectation value of the dipole
moment of the atomic ensemble, these result in the Maxwell-Bloch equations.

19



10.6 Dielectric susceptibility and saturation

The Bloch equations are nonlinear. However, for moderate field strength £,
1.e., the magnmitude of the Rabi frequency 1s much smaller than the optical
frequency, |€2,| < w, the inversion does not change much within an optical
cycle of the field. We assume that the mversion w of the atom will only be
slowly changing and 1t adjusts 1tself to a steady-state value w,. For a constant
field strength E,, Eqs. (10.76) and (10.77) reach the steady-state values

i (M, 8)w,

- . E 10.78
2h1/Ty +j(w — wey) " (10.78)
we = - U;an - (10.79)
L+ 3 {'lfT2j2+(wfg—w}2 |Ey|

d,

We mtroduce the normalized lineshape function, which 1s 1n this case a Lorent-
zlan )
_ (ym)
(l/TQ)Q + (weg — ':"-’])E ?

and connect the square modulus of the field |E,|? to the intensity I of a
propagating plane wave, according to [ = %|ﬂu|2

(10.80)

J— urD
1+ fL(w)

¥

(10.81)

Thus the stationary mversion depends on the intensity of the mcident Light.

20



Therefore, wqg 1s called the unsaturated mversion, w, the saturated mversion
and [, with

= M e, (10.82)

1s the saturation intensity. The expectation value of the dipole operator (10.22)
1s then given by

;o lleTQZF -

<d> = M,,d & +c.c. (10.83)

Multiplication with the number of atoms per unit volum;e, N, relates the dipole
moment of the atom to the macroscopic polarization P. As the electric field,

also the polarization can be written in terms of complex quantities

Pt) = %(Eﬂeiw* + E’,"je—iwt) (10.84)
= NM,d, et + ce. (10.85)

ar
Py =2NM.,d,. (10.86)

With the definition of the complex susceptibility
Py = eox(w)EE, (10.87)

and comparison with Eqgs. (10.86) and (10.78), we obtain for the linear sus-
ceptibility of the medium

r

\(w) = M, M+< o

egl . , 10.88
T heg 1/To + j(w — weg) ( )
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which 1s a tensor. In the following we assume that the direction of the atom 1s
random, 1.e., the alignment of the atomic dipole moment, 11-}@7 and the electric
field 1s random. Therefore, we have to average over the angle enclosed between
the electric field of the wave and the atomic dipole moment, which results in

Mg M. Mega M7 Mega M M? 0

' i ' egy €g “egx ; 1 = 5
Mgy M cqx Mgy M gy ﬂ-fegyﬂ-fegz = 0 fm'egy 0 = §| 1feg| 1.
Meg- My, Mg My, Mg M., 0 0 M2,
(10.89)

0

How to arrive at this average over the orientation is also discussed in Appendix
A. Thus, for homogeneous and 1sotropic media the susceptibility tensor shrinks

to a scalar ) .\
, _+ I—* QJi / ws
X = g e 1T+ i — )

Real and mmaginary part of the susceptibility

X(w) = x'(w) + X" (w)
are then given by

B |;“L-feg|2_-'“\fru-'s'T§(wEg —w)

X'(w) = L(w),

3heq

P |M,,[>2Nw, Ty _,

(10.90)

(10.91)

(10.92)

(10.93)

22



xeu IiI:!l‘I (m )II

0.0 0.5 1.0 15 20

Figure 10.4: Real and imaginary part of the complex susceptibility for an inverted
medium wg > 0. The positive imaginary susceptibility indicates exponential growth
of an electromagnetic wave propagating in the medium.

If the mcident radiation 1s weak, 1.e.,

I
—Lw) < 1 (10.94)
I
we obtamm w, = wy. For optical transitions there 1s no thermal excitation of
the excited state and wg = —1. For an mverted system, wg > 0, the real and

imaginary parts of the susceptibility are shown mn Fig. 10.4.

The shape of the susceptibility computed quantum mechanically compares
well with the classical susceptibility (2.22) derived from the harmonic oscillator
model close to the transistion frequency w,, for a transition with reasonably
high @ = Thw,,. Note, the quantum mechanical susceptibility is identical to the

complex Lorentzian one encounters in the discussion of loss and gam There 13

an appreciable deviation, however, far away from resonance. Far off resonance,

the RWA should not be used.
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The physical meaning of the real and 1maginary part of the susceptibility
1s of course 1dentical to our earlier discussion. The propagation constant k of
a TEM-wave in such a medium is related to the susceptibility by

1 :
ke = wy/ poeo(1 4+ x(w)) = kg (1 + 51(@) . with kg =w\/peg (10.95)
for |y| << 1. Under this assumption we obtain
k= ko(1+ %} —|—jfcu%. (10.96)

The real part of the susceptibility contributes to the refractive index n =
1 +'/2. In the case of \" < 0, the imaginary part leads to an exponential

damping of the wave. For " > 0, amplification takes place. Amplification of
the wave 1s possible for wy > 0, 1.e., In an mverted medium.
The phase relaxation rate 1 / 15 of the dipole moment determines the width

of the absorption line or the bandwidth of the amphtfier. The amplification can
not occur forever, because the amplifier saturates, when the intensity reaches

the saturation intensity. This 1s a strong deviation from the linear susceptibility
we derived from the classical oscillator model. The reason for this saturation
1s twofold: First, the light can not extract more energy from the atoms than
stored 1n them, 1.e., energy conservation holds. Second, the mduced dipole
moment n a two-level atom 1s limited by the maximum wvalue of the matrix
element. In contrast, the induced dipole moment 1n a classical oscillator grows
proportionally to the applied field without Lmits.
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10.7 Rate equations and cross-sections

limit of fast dephasing, i.e., T, much shorter than dynamics we are
interested in

the magnitude of the dipole moment relaxes instantaneously into the steady
state and follows the slowly varying electric field envelope Ey(t), which evolves
on a much longer time scale. We obtain with the quasi-steady-state solution
for the dipole moment (10.78), which may now have a slow time dependence
due to the slowly varying field envelope Ey(t), for the time-dependent inversion
in the atomic system

- _w(t) —wo w(t) . _
w = T TlISL(w)I(t], (10.97)

where I(t) = |Eo(t)|? /(2Zp) is the intensity of the electromagnetic wave inter-
acting with the two-level atom. In this imit, the Bloch equations are replaced
by a simple rate equation for the population. We only take care of the counting
of population differences due to spontaneous and stimulated emissions.

The interaction of an atom with light at a given transition with the stream
of photons on resonance, 1.e., w = w,, 1s often described by the mass action
law. That 1s, the number of induced transitions from the excited to the ground
state, 1s proportional to the product of the number of atoms 1n the excited state
and the photon flux density I, = I/ ﬁwEi

—owly, = —%I. (10.08) 2°

w | induced —



This defines an interaction cross-section o that can be expressed in terms of
the saturation mmtensity as

huse
o = Tlf (10.99)
- %mﬁ*gg-a? (10.100)

To summarize the findings of the discussions in this chapter so far, we
found the most important spectroscopic quantities that characterize an atomic
transition, which are the lifetime of the excited state or often called upper-state
lifetime or longitudinal hifetime T3, the phase relaxation time or transverse
relaxation time 75 which is the inverse half-width at half maximum (HWHM)
of the line, and the interaction cross-section ¢ that only depends on the dipole

matrix element and the linewidth of the transition.
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10.8 Extreme nonlinear optical response
of two-level systems

extreme nonlinear optics: E(t) not I(t) o |_’£7(f) 2 matters

RWA and SVEA cannot be used ‘ L(I)J
observables depend on CEP ¢ ” f‘
numerically solve Bloch equations exactly . ﬂp’“w V\'PW“‘—:
(i.e., without employing RWA) driven by E(f) “

M. Wegener, Extreme Nonlinear Optics, Springer, Berlin (2005)
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Carrier-wave Rabi flopping

Bloch vector (u,v,w)=(2Re(p,.).2Im(p,.),f.-f,)  Rabi frequency Qg(t)xcE(t) ‘

1. Rabi (1937)  (b) Wi S Hughes (1998)

Qr=0y

4r pulse




Carrier-wave Mollow triplets

B.R. Mollow (1969)
30 cycle long box-shaped pulses

Photon energy ho (eV)

0/,

Mollow sidebands at (2n+1)w,*= Qg



Within the dipole approximation, but without employing the RWA and
without transverse or longitudinal damping, the Bloch equations of a two-

level system with transition frequency €2 for the Bloch vector (u, v, w)T can be
written 1in matrix form as
u 0 +02 0 u
v = —Q 0 —20x(t) v . (10.101)
w 0 +2Qr(1) 0 w

The dots denote the derivative with respect to time t. Here, we have introduced
the (instantaneous) Rabi frequency g () via the (instantaneous) Rabi energy

hR(t) = dE(t) (10.102)
with dipole matrix element d and the laser electric field defined as
E(t) = E(t) cos(wot + ¢). (10.103)

Note that the Rabi frequency itself oscillates with the carrier frequency of light
and periodically changes sign. We shall call the peak of the Rabi frequency (g

[rather than Qg(t)] with AQg = dEq, where Ej is the peak of the electric-field
envelope.

T. Tritschler et al., PRA 68, 033404 (2003)
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The Bloch vector (u, v, w)" thus allows an intuitive geometric representa-
tion of the state of the two-level system which was introduced by R. P. Feynman
et al. [9]. The complex amplitude of the superposition state is encoded in the
real and the imaginary part of the transition amplitude, 1.e., in the compo-
nents « and v of the Bloch vector. The component w 1s agaimn the mversion
of the two-level system, 1.e., 1t 1s equal to -1 if all electrons are in the ground
state, and 1t 1s +1 for complete mversion. The light itensity radiated by the
two-level system 1s proportional to the square modulus of the second tempo-
ral derivative of the macroscopic polarization, hence proportional to |w?u(w)|?
i the Fourler domain, where w 1s the spectrometer frequency. For vanishing
relaxation, the length of the Bloch vector 1s conserved and equal to one, 1.e.,

Vut)?2+ o) +w()?2=1. (10.104)

Hence, all the physics can be represented as rotations of the Bloch vector on
a sphere with radius unity, the so-called Bloch sphere. For vanishing electric
field, the Bloch vector rotates in the uv-plane with a frequency given by the
optical transition frequency (2, for very large fields one gets a rotation in the
vw-plane with frequency Qg (). This oscillation is the Rabi oscillation. If, for
example, during the action of the electric field pulse, the Bloch vector performs
one complete rotation i the vw-plane, the pulse area © = %fj: dt E(t) 18
equal to 2m. There 1s, however, no simple analytical expression for ©. For
finite 2 and (. the dynamics of the Bloch vector 1s a combination of both
rotations, one in the uv-plane and one in the vw-plane.
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Most importantly the optical Bloch equations (10.101) are invariant under
space inversion [8]: Space inversion means that we have to replace ¥ — —r.
Thus, the dipole matrix element transforms as d — —d, the electric field as
E(t) — —E(t), and the Rabi frequency as Qg(t) — +€g(f) according to Eq.
(10.102). As a result, the optical Bloch equations (10.101) are invariant un-
der space inversion and the solution for the Bloch vector (u(t),v(t),w(t))" is

also unchanged. Fially, the macroscopic optical polarization, which 1s given
by P(t) = nyppsdu(t) with the density of two-level systems nyrs, transforms
according to P(t) — —P(t). Consequently, in an expansion of the polariza-

tion in_terms of powers of the electric field up to infinite order, strictly no
even harmonic orders occur — even for arbitrarily large electric fields [8]. In

the literature, one can find several papers reporting on symmetry breaking
of two-level systems driven by strong laser fields, that is supposedly lea,dmg
to second-harmonic generation. This claim is ph}»smallv wrong, as proven bv
the invariance under space inversion! A more careful analysis reveals that al-
though hght can indeed be emitted at the spectral position of even harmonics,

the corresponding carrier frequency and phases allow to clearly identify them
belonging to odd-order harmonics, as we will below.
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From this model, a complete overview of the rich behavior as a function of
the four involved frequencies can be obtained [7, 8]: Carrier frequency of light
wp, transition frequency (2, Rabi frequency {1y, and spectrometer frequency w.
Thereby 1t 1s natural to scale all frequencies to wp, in which case the dependence
of the radiated intensity on the three dimensionless parameters €2 /wg, Qg /wy.
and w/wg has to be studied. In all calculations, we start from the ground state
of the two-level system, i.e., from Bloch vector (0,0, —1)7.

Figure 10.5: Box-shaped optical pulses E(t): The integer number of cycles in the
pulse is called N. The gray area indicates the electric-field envelope E(t). [§]
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Figure 10.6: Gray-scale images of the radiated intensity spectra [.,4(w) o |c.-,'2u{:¢) 2
(normalized and on a logarithmic scale) from exact numerical solutions of the two-
level system Bloch equations (10.101). The peak Rabi frequency {2z of the exciting
N = 30 cycles long hox-shaped optical pulses is plotted along the vertical axis. The
transition frequency w is parameter. (a) 2/wp = 1 and (b) /wp = 5. wp is the
carrier frequency of the laser pulses. [8]

resonant excitation

conventional Rabi flopping

carrier-wave Rabi flopping

carrier-wave Mollow triplets
around odd harmonics

off-resonant excitation

T. Tritschler et al.,
PRA 68, 033404 (2003)

34



(@) Q. / 0= 1.0

-1

2
. 3 3
8 =
= 2

-1

-2
g A :E
G g

10
w/w,

Figure 10.7: Same as Fig. 10.6, but versus transition frequency £} for two fixed
values of the peak Rabi frequency fIr. (a) 2r/wo = 1 and (a) OQr/wo = 10. [8]

On the diagonal, where

w = Q, very large resonant
enhancement effects

large contributions can
occur at spectral positions
of even harmonics

but no even harmonics
(inversion symmetry)

THG in disguise of SHG

for SHG it would be
carrier wave 2@,

CEP 2¢ s
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Figure 10.8: Same as Fig. 10.6(a), l.e., £2/wy = 1, but for Gaussian optical pulses
with CEP ¢ = 0 and with a FWHM of (a) N = 30 and (b) N = 3 optical cycles. [8]
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Experiment
GaAs/Al,;Ga,,As double heterostructure (W. Stolz)
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O. D. Miicke et al., PRL 87, 057401 (2001)
Q. T. Vu et al., PRL 92, 217403 (2004)




~5fs Ti:sapphire laser pulses

balanced Michelson
interferometer is
actively stabilized by a
Pancharatnam screw
[M. U. Wehner et al.,

Opt. Lett. 22, 1455 (1997)]

remaining fluctuations in time
delay t are <30 as

two reflective microscope
objectives with NA=0.5
— 1 micron focus radius

ST

Karlsruhe Institute of Technology

Wegener group, Applied Physics
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Interferometric measurements
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Interferometric measurements
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Interferometric measurements
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CEP dependence

fundamental / third-harmonic Mollow triplet: 1¢ /3¢
+

surface second-harmonic generation: 2¢

|

CE phase dependence: 1¢

Photon energy ho (eV)
1 2 3

o/,

. Mucke et al., PRL 89, 127401 (2002)
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Measuring the CEO frequency with GaAs

‘ =465 nm

=400 nm

T ——

’ 2=340 nm

2=300nm

0 10 20 30 40 50 60 70 80
FREQUENCY (MHz)

detection at
| I10dB 2=480 nm /fR

« feeo (SHG+fundamental)

 fepo (SHG+THG)

O.D. Mucke et al.,
Opt. Lett. 29, 2160 (2004)




Light-induced gaps in semiconductors

two-level system two-band semiconductor
Mollow triplet light-induced gaps
B. R. Mollow (1969) V. F. Elesin (1971)

conduction band
+

1-photon sideband

f A
r'y QR _______ ¥
¥ X S avoided [crossing
Q G c 9 Wy _ _
%} | C light-induced gaps
| S triplet in third harmonic

: }
X Qp-—————1- Y-
v v /\ /\ Rabi splitting>damping
Q. T.Vu et al.,, PRL92, 217403 (2004)



Light-induced gaps in semiconductors
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Q. T.Vu et al., PRL 92, 217403 (2004)

theory (dashed curves):

« semiconductor Bloch
equations

« full tight-binding bands

* density- and energy-
dependent dephasing
and relaxation

 no RWA

experiment (solid curves):
* 100nm thin GaAs film

high excitation
(upper curves)

low excitation
(lower curves)



Light-induced gaps in semiconductors

1.0
E 4 mﬂ{‘ 485 meV
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Figure 13.12: Computed inversion for various excess energies above the band gap
versus time ¢ for a peak electric field of 1.65x10° V/m. For t = 20 fs, the carrier
density equals 1.1 x 10%° cm®. The lower trace shows the laser field E(t). [52]

Q. T.Vu et al., PRL 92, 217403 (2004)



Light-induced gaps in semiconductors
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ZnO: 3.3 ym band gap . peak electric field
E,=6V/nm

Bloch energy
h eV

Bloch period
Ty =1.4fs

optical period (800nm)
T, =2.8fs

Bloch oscillations??
white

SHG SV @ O D. Miicke et al.,

broadened fundamental Opt. Lett. 27, 2127 (2002)

: ) . T. Tritschler et al.,
5-fs 800-nm pulses from Ti:sapphire oscillator PRL 90, 217404 (2003)




THG in disguise of SHG

PHOTON ENERGY fio (eV) 5fs sinc? pulses

T. Tritschler et al., PRL 90, 217404 (2003)
T. Tritschler et al., PRA 68, 033404 (2003)




THG in dis_guise of SHG

o/ o,
T. Tritschler et al., PRL 90, 217404 (2003)

T. Tritschler et al., PRA 68, 033404 (2003)




THG in disguise of SHG

experiment
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