
  

 

1 

8 Optical solitons 
 

8.1 Dispersion 

8.2  Self-phase modulation 

8.3  Nonlinear Schrödinger equation (NLSE) 

8.4  The solitons of the NLSE  

8.4.1  The fundamental soliton   

8.4.2  Higher-order solitons 

8.5  Inverse scattering theory 

Nonlinear Optics (WiSe 2019/20) 
Lecture 8: December 6, 2019 



2 

9  Optical Parametric Amplifiers and Oscillators 

9.1  Optical parametric generation (OPG) 

9.2  Nonlinear optical susceptibilities 

9.3  Continuous-wave OPA 

9.4  Theory of optical parametric amplification 

9.5  Phase matching 

9.6  Quasi phase matching (QPM) 

9.7  Ultrashort-pulse parametric amplifiers (OPA) 

9.8  Optical parametric amplifier designs 

9.9  Ultrabroadband optical parametric amplifiers 

             using noncollinear phase matching 

9.10 Optical parametric chirped-pulse amplification (OPCPA)  

[5] Largely follows the review paper by G. Cerullo et al., “Ultrafast Optical 
Parametric Amplifiers,” Rev. Sci. Instrum. 74, 1-17 (2003) 

Nonlinear Optics (WiSe 2019/20) 
Lecture 8: December 6, 2019 



3 

8 Optical solitons 



4 



5 

8.1 Dispersion 
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8.2 Self-phase modulation 



Input: Gaussian pulse, Pulse duration = 100 fs, Peak power = 1 kW 

Self-phase modulation 
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8.3 Nonlinear Schrödinger equation (NLSE) 

John Scott Russell  
(1808-1882) 
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8.3 Nonlinear Schrödinger equation (NLSE) 



John Scott Russel 

   In 1834, while conducting experiments to 

determine the most efficient design for 

canal boats, John Scott Russell made a 

remarkable scientific discovery. As he 

described it in his "Report on Waves":  
 

Report of the fourteenth meeting of the British Association for 

the Advancement of Science, York, September 1844 (London 

1845), pp 311-390, Plates XLVII-LVII).  
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Russell’s report 

   “I was observing the motion of a boat which was rapidly 
drawn along a narrow channel by a pair of horses, 
when the boat suddenly stopped - not so the mass of 
water in the channel which it had put in motion; it 
accumulated round the prow of the vessel in a state of 
violent agitation, then suddenly leaving it behind, rolled 
forward with great velocity, assuming the form of a 
large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course 
along the channel apparently without change of form 
or diminution of speed.” 
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   “I followed it on horseback, and overtook it still 

rolling on at a rate of some eight or nine miles 

an hour, preserving its original figure some thirty 

feet long and a foot to a foot and a half in 

height. Its height gradually diminished, and after 

a chase of one or two miles I lost it in the 

windings of the channel. Such, in the month of 

August 1834, was my first chance interview with 

that singular and beautiful phenomenon which I 

have called the Wave of Translation.”  

Russell’s report 
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Scott Russell aqueduct 

89.3m long, 4.13m wide,1.52m deep, On the union Canal, Near 

Heroit-Watt Univ. 

www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt  
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www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt  
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Scott Russell aqueduct 



A brief history (mainly for optical soliton) 

• 1838 – observation of soliton in water 
 

• 1895 – mathematical description of waves on 
shallow water surfaces, i.e. KdV equation 
 

• 1972 – optical solitons arising from NLSE 
 

• 1980 – experimental demonstration 
 

• 1990’s – soliton control techniques 
 

• 2000’s –understanding soliton in the context of 
supercontinuum generation  
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8.4 The solitons of the NLSE 

8.4.1  The fundamental soliton  
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Propagation of fundamental soliton 

Input: 1ps soliton centered at 1.55 um; medium: single-mode fiber 
20 



area theorem 

nonlinear phase shift soliton acquires during propagation:  

(balance between dispersion and nonlinearity) 

soliton energy: pulse width: 

Important relations 

)(
2

2

2

2

22

0





 

D
A

21 



22 

General fundamental soliton  



Higher-order solitons: periodical evolution in  

both the time and the frequency domain 

...3,2,1,
2 2

0  N
D

NA




G. P. Agrawal, Nonlinear fiber optics (2001)  23 



Interaction between solitons (soliton collision) 
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Input to NLSE: 

G. P. Agrawal, Nonlinear fiber optics (2001)  

Interaction of two solitons at the same center frequency 
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Interactions of two solitons 
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From Gaussian pulse to soliton 



Gaussian pulse to 3-order soliton 
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Evolution of a super-Gaussian pulse to soliton 
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Rogue wave 

find more information from New York Times: http://www.nytimes.com/2006/07/11/science/11wave.html 

 

optical rogue waves:   D. R. Solli et al., Nature 450, 1054 (2007)  

                                    D.-I. Yeom et al., Nature 450, 953 (2007)                                    
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http://www.nytimes.com/2006/07/11/science/11wave.html


One more rogue wave 
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Figure 8.9: Fourier transform method for the solution  

of linear time invariant PDEs 
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Figure 8.10: Schematic representation for the inverse scattering theory for 

the solution of integrable nonlinear partial differential equations 
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3.3.4 Inverse scattering theory 



Figure 8.11:  Solution of the NSE for a rectangular shaped initial pulse  

Rectangular shaped initial pulse and continuum generation 
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9 Optical Parametric Amplifiers and Oscillators 

9.1 Optical Parametric Generation (OPG) 

energy conservation: 

momentum conservation: 

Degeneracy:    wiwswp/2 
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pump 

signal and idler resonant 

Optical Parametric Oscillator (OPO) 

double resonant: 

single resonant: only signal resonant 

Advantage: Widely tunable, both signal and idler can be used! 

For OPO to operate, less gain is necessary in contrast to an OPA 

36 



Total field: pump, signal and idler: 

Nonlinear Optical Susceptibilities 

Drives polarization in medium: 

Polarization can be expanded in power series of the electric field: 

Defines susceptibility tensor: 
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Special Cases 
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9.2 Continuous-wave OPA 

Wave equation : 

Include linear and second-order terms: 

Changes group  
and phase  
velocities  
of waves 

Nonlinear  
interaction  
of waves 

Wave amplitudes 

z-propagation only: 
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Slowly varying amplitude approximation: 

Separate into three equations for each frequency component: 

Introduce phase mismatch: 

and effective nonlinearity and coupling coefficients: 
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Coupled wave equations: 
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Manley-Rowe relations: 

Intensity of waves: 

X 
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9.4 Theory of Optical Parametric Amplification 

Undepleted pump approximation: 

with: 

gain  max. gain, when phase matched  
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Maximum gain 

General solutions: 

Here: 

For large gain: 
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Figure of merit: 



Fig. 9.3 Parametric gain for an OPA at the pump wavelength lp = 0.8 mm and the 
signal wavelength ls = 1.2 mm, using type-I phase matching in BBO (deff   = 2 pm/V). 
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Fig. 9.4 Parametric gain for an OPA at the pump wavelength lp = 0.4 mm and the signal 
wavelength ls = 0.6 mm, using type-I phase matching in BBO (deff   = 2 pm/V). 
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9.4 Phase Matching 

Type I: noncritical 

Uniaxial crystal: ne < no 

Type I: critical 

Fig. 9.6 Type-I critical phase matching  
by adjusting the angle θ between wave  
vector of the propagating beam and the  
optical axis. 

Fig. 9.5 Type-I noncritical phase matching. 
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9.4 Phase Matching 

Critical Phase Matching 



Fig. 9.7  Angle tuning curves for a BBO OPA at the pump wavelength λp=0.8 μm for 
type-I phase matching (dotted line), type-II (os + ei → ep) phase matching (solid line), 
and type-II (es + oi → ep) phase matching (dashed line). 
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9.4 Phase Matching 
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Fig. 9.8  Angle tuning curves for a BBO OPA at the pump wavelength λp=0.4 μm for 
type-I phase matching (dotted line), type-II (os + ei → ep) phase matching (solid line), 
and type-II (es + oi → ep) phase matching (dashed line). 
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9.5 Quasi Phase Matching 

Fig.12.30: Variation of deff in a quasi phase matched material as a 
function of propagation distance. 
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9.6 Ultrashort-Pulse Optical Parametric Amplification   

Pulse envelopes 
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Temporal walkoff 
Group Velocity Mismatch (GVM) 

Pump pulse width 

Fig. 9.9: Pump-signal (δsp) and pump-idler (δip) group velocity mismatch curves for  
a BBO OPA at the pump wavelength λp=0.8 μm for type-I phase matching (solid line) and  
type-II (os + ei → ep) phase matching (dashed line). 

j=s,i 
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Fig. 9.10: Pump-signal (δsp) and pump-idler (δip) group velocity mismatch 
curves for a BBO OPA at the pump wavelength λp=0.4 μm for type-I phase matching 
(solid line) and type-II (os + ei → ep) phase matching (dashed line). 
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Fig. 9.11: Signal pulse evolution for a BBO type-I OPA with λp = 0.4 μm,  λs = 0.7 μm, 
for different lengths L of the nonlinear crystal. Pump intensity is 20 GW/cm2. Time 
is normalized to the pump pulse duration and the crystal length to the pump-signal 
pulse splitting length. [5] 
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Figure 9.12: Signal pulse evolution for a BBO type-I OPA with λp = 0.8 μm,  λs = 1.5 
μm, for different lengths L of the nonlinear crystal. Pump intensity is 20 GW/cm2. 
Time is normalized to the pump pulse duration and the crystal length to the pump-
signal pulse splitting length. [5] 
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OPA Bandwidth 

Bandwidth limitation due to GVM 

For signal-idler group velocity matching: 



Fig. 9.13: Phase matching bandwidth for a BBO OPA at the pump wavelength λp=0.8 μm for 
type-I phase matching (solid line) and type-II (os + ei → ep) phase matching (dashed line). 
Crystal length is 4 mm and pump intensity 50 GW/cm2. 



Fig. 9.14: Phase matching bandwidth for a BBO OPA at the pump wavelength λp=0.4 μm for 
type-I phase matching (solid line) and type-II (os + ei → ep) phase matching (dashed line). 
Crystal length is 2 mm and pump intensity 100 GW/cm2. 
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9.7 Optical Parametric Amplifier Designs 

Fig. 9.15: Scheme of an ultrafast optical parametric amplifier. SEED: seed generation stage; 
DL1, DL2: delay lines; OPA1, OPA2 parametric amplification stages; COMP:  compressor. 
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Near-IR OPA 

Fig. 9.16:  Scheme of a near-IR OPA. DL: delay lines; WL: white light generation stage; DF: 
dichroic filter.  [5]  
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9.8 Noncollinear Optical Parametric Amplifier (NOPA) 

Fig. 9.17: a) Schematic of a noncollinear interaction geometry; b) representation of signal 
and idler pulses in the case of collinear interaction; and c) same as b) for noncollinear 
interaction. 

Phase-matching condition: vector condition: 

p 

p 
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Variation on phase matching condition by 

X 

X 

and addition  

Only possible if: 

gs gi 
Correct 
index 



Fig. 9.18: Phase-matching curves for a noncollinear type-I BBO OPA pumped at λp=0.4 
μm, as function of the pump-signal angle a. [5] 



Fig. 9.19:  Scheme of a noncollinear visible OPA. BS: beam splitter; VA: variable 
attenuator; S: 1-mm-thick sapphire plate; DF: dichroic filter; M1 ,M2 , M3 , spherical 
mirrors. [5]   

NOPA Layout 



Fig. 9.20: a) Solid line: NOPA spectrum 
under optimum alignment conditions;  
dashed line: sequence of spectra obtained  
by increasing the white light chirp;  
b) points: measured group delay (GD) of 
the NOPA pulses; dashed line: GD after 
ten bounces on the ultrabroadband 
chirped mirrors. 
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Fig. 9.21:  Reconstructed temporal intensity of the compressed NOPA pulse measured 
by the SPIDER technique. The inset shows the corresponding pulse spectrum. [5] 
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9.9 Optical Parametric Chirped-Pulse Amplifier (OPCPA) 


