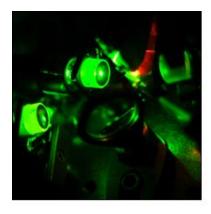
Ultrafast Optical Physics II SoSe 2017

Dr. Noah Chang & Prof. Franz Kärtner, Bldg. 99, Room O3.111 & O3. 097 Email & phone: guoqing.chang@cfel.de, 040 8998 6365 franz.kaertner@cfel.de, 040 8998 6350

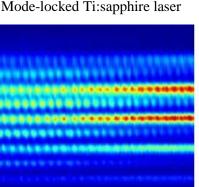
Lectures: Fr 08.30-10.00 SemRm IV, BLDG 99 Recitations: Fr 10.30-12.00 SemRm IV, BLDG 99

Start: 07.04.2017

Content:


Linear and nonlinear pulse propagation: Optical solitons and pulse compression.

Laser dynamics: Single-mode, multi-mode, Q-switching, mode locking. Pulse characterization: Autocorrelation, FROG, SPIDER and 2DSI.


Noise in mode-locked lasers and frequency combs.

Laser amplifiers and parametric amplifiers and oscillators.

Soft and hard X-ray sources including attosecond pulse generation.

High repetition-rate Kerr-lens Mode-locked Ti:sapphire laser

FROG-CRAB characterization of an attosecond pulse train

High energy cryogenically-cooled laser

Single-cycle pulse synthesizer

Required Textbook:

Class notes will be distributed in class.

Recommended Textbook:

Ultrafast Optics, Andrew M. Weiner, Hoboken, NJ, Wiley (2009).

Additional References:

Waves and Fields in Optoelectronics, H. A. Haus, Prentice Hall, NJ (1984).

Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale, J.-C. Diels and W. Rudolph, Academic Press (2006).

Few-Cycle Laser Pulse Generation and Its Applications, Ed. F. X. Kärtner, Topics in Applied Physics Vo. 95, Springer Verlag (2004).

Principles of Lasers, O. Svelto, Plenum Press, NY (1998).

Optical Resonance and Two-Level Atoms, L. Allen and J. H. Eberly, J. Wiley & Sons NY (1975).

Elements of Quantum Optics, P. Meystre, M. Sargent III, Springer-Verlag, NY, (2007).

Requirements:

8 Problem Sets and Term Paper Collaboration on problem sets is encouraged.

Course Policy:

Collaboration: Collaboration on problem sets is permitted. However, you must list who you collaborated with when you hand in your problem sets. Groups may discuss the problems, strategies for solutions, etc. However, each person is expected to do all of the problems independently. You may not copy the problem solutions from other members in your group. Evidence of copying will be considered cheating.

Plagiarism: Direct copying of text from other sources (books, review articles etc.) on the term papers will be considered plagiarism. Reproduction of figures or data is permitted provided that the reference is cited.

Tentative Schedule:

1		Introduction to Ultrafast Optics
	Noah Chang	
2	07/04/2017	Optical Pulses and Dispersion
	14/04/2017	No Class
3		Linear Pulse Propagation (I)
	Noah Chang	Problem Set 1 Out
4	21/04/2017	Linear Pulse propagation (II)

5		Nonlinear Schrödinger Equation (NLSE)
	Noah Chang	Problem Set 1 Due, Problem Set 2 Out
6	28/04/2017	Soliton Perturbation Theory
		Pulse Communication and Dismonsion Communication Techniques
7	Noah Chang	Pulse Compression and Dispersion Compensation Techniques
8	05/05/2017	Review of Quantum Mechanics
	33, 33, 232,	Terror of Quantum Meenumes
9		Two Level System and Maxwell-Bloch Equations
10	Noah Chang	Problem Set 2 Due, Problem Set 3 Out
10	08/05/2017	Laser Rate Equations
11		Laser CW-Operation
	Noah Chang	Problem Set 3 Due, Problem Set 4 Out
12	12/05/2017	Q-Switching: Active and Passive
		Distribute Term Paper Proposals
	10/05/2017	N. Cl
	19/05/2017	No Class
13		Master Equation
	Franz Kärtner	Problem Set 4 Due, Problem Set 5 Out
14	29/05/2017	Active Mode-Locking
15		Dessine Mede Leeking with Cotonoble Absorbers
13	Franz Kärtner	Passive Mode-Locking with Saturable Absorbers Problem Set 5 Due, Problem Set 6 Out
16	02/06/2017	Semiconductor Saturable Absorbers
10	02,00,201,	Semiconductor Saturasie Hissoriscis
	09/06/2017	No Class
	09/00/2017	No Class
17		Kerr-Lens Mode-Locking
	Franz Kärtner	Problem Set 6 Due, Problem Set 7 Out
18	16/06/2017	Pulse Characterization I – Autocorrelation
19		Pulse Characterization II – FROG
1)	Franz Kärtner	Term Paper Proposal Due
20	23/06/2017	Noise in Mode-Locked Lasers
21	Emane V:	Femtosecond Laser Frequency Combs
22	Franz Kärtner 30/06/2017	Problem Set 7 Due Pulse Amplification
22	30/00/2017	1 uise Ampinication
23		Second-Order Nonlinear Effects
	Franz Kärtner	Problem Set 8 Out
24	07/07/2017	Optical Parametric Amplification
25		High Harmonic Generation and Ultrafast X-Ray Sources
23	Franz Kärtner	Problem Set 8 due
26	14/07/2017	Ultrafast Optics Group Lab Tour
		F F
		