IMPRS Ultrafast Source Technology

Franz X. Kaertner /Uemit Demirbas

SoSe 2017



Chapter 2

Classical Optics

The classical electromagnetic phenomena are completely described by Maxwell’s
Equations. The simplest case we may consider is that of electrodynamics of
isotropic media

2.1 Maxwell’s Equations and Helmholtz Equa-
tion

Maxwell’s Equations are

VxH = =+ (2.1a)
VxE = —%—f, (2.1b)
V-D = p, (2.1c)
V-B = 0. (2.1d)
The material equations accompanying Maxwell’s equations are:
D = eFE+P, (2.2a)
B = pH+ M. (2.2b)

Here, E and H are the electric and magnetic field strength, D the electric flux
density, B the magnetic ﬂUZ{ density, J the current density of free charges, p
is the free charge density, P is the polarization, and M the magnetization.

bt



6 CHAPTER 2. CLASSICAL OPTICS

Note, it is Egs.(2.2a) and (2.2b) which make electromagnetism an inter-
esting and always a hot topic with never ending possibilities. All advances
in engineering of artifical materials or finding of new material properties,
such as superconductivity and meta-materials, bring new life, meaning and
possibilities into this field.

By taking the curl of Eq. (2.1b) and considering

Vx (WE) —v (v - E) _AE,

where V is the Nabla operator and A the Laplace operator, we obtain

) o 0P\ o_ B}
AE — o (;+ 0 E) = = Vxii+V (V~E> (2.3)

and hence

107\ = 8] 0? = 9 =
with the vacuum velocity of light

1
Cop = | —. 2.5
’ Ho€o ( )

For dielectric non magnetic media, which we often encounter in optlcs
with no free charges and currents due to free charges, there is M = 0, J = O
p = 0. One can also show that the electric field can be decomposed into a
longitudinal and tranasversal component E; and ET, which are characterized
by [6]

VxE,=0and V- Ep =0 (2.6)

If there are no free charges, the longitudinal component is zero and only a
transversal component is left over. Therefore, for the purpose of this class
(and most of optics) the wave equation greatly simplifies to

1 82 82 -

This is the wave equation driven by the polarization of the medium in which
the field propagates.
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2.1.1 Helmholtz Equation

In general, the polarization in dielectric media may have a nonlinear and
non local dependence on the field. For linear media the polarizability of the
medium is described by a dielectric susceptibility y (7, t)

Blt) = & / / A dt y (F— 7t — 1) E (7, 1) (2.8)

The polarization in media with a local dielectric suszeptibility can be de-
scribed by

P(7,t) = eo/dt’ X (Ft—t)E (7. t). (2.9)

This relationship further simplifies for homogeneous media, where the sus-
ceptibility does not depend on location

B(F.t) = e / b (t— 1) B (7.t (2.10)
which leads to a dielectric response function or permittivity
€(t) = eo(d(t) + x (1)) (2.11)
and with it to
D(7,t) = /dt’ e(t—t)E(F.1). (2.12)

If the medium is linear and has only an induced polarization, completely
described in the time domain y (¢) or in the frequency domain by its Fourier
transform, the complex susceptibility Y(w) = €.(w) — 1 with the relative
permittivity €.(w) = €(w)/ey, we obtain in the frequency domain with the
Fourier transform relationship

+oo
E(F,w) = / E(7 t)e L, (2.13)
P(7,w) = cot(w) E(7,w), (2.14)

where, the tildes denote the Fourier transforms in the following. Substituted
into (2.7)

. N
(A y w—> E(F.w) =~ ycoX () B(7, ) (2.15)
0
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we obtain

(A + “—5(1 + ;z(w)) E(7,w) =0, (2.16)

0
with the refractive index n(w) and 1+ X(w) = 71(w)? results in the Helmholtz
equation

(A 4 "é—j) E(7w) =0, (2.17)

where c¢(w) = ¢o/n(w) is the velocity of light in the medium. This equation
is the starting point for finding monochromatic wave solutions to Maxwell’s
equations in linear media, as we will study for different cases in the following.
So far we have treated the susceptibility y(w) as a real quantity, which may
not always be the case as we will see later in detail.

2.1.2 Plane-Wave Solutions (TEM-Waves) and Com-
plex Notation
The real wave equation (2.7) for a linear medium has real monochromatic

plane wave solutions E}(F, t), which can be be written most efficiently in
terms of the complex plane-wave solutions Er(r,t) according to

L 7= L .
Bit) = 5 |Eert) + E(mt)| = Re {Exm0) ), (218)

with B ) )
Eq(7 1) = E; @70 &(k). (2.19)

Note, we explicitly underlined the complex wave to indicate that this is a

complex quantity. Here, €(k) is a unit vector indicating the direction of the
electric field which is also called the polarization of the wave, and E; is
the complex field amplitude of the wave with wave vector k. Substitution
of eq.(2.18) into the wave equation results in the dispersion relation, i.e. a
relationship between wave vector and frequency necessary to satisfy the wave
equation

=——= k(w)?. (2.20)

The relation between wave vector and frequency of a wave is called dispersion
relation. Here, it is given by

k(W) = £—n(w). (2.21)

Co
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with the wavenumber
k=2m/\, (2.22)

where A is the wavelength of the wave in the medium with refractive index
n, w the angular frequency, k the wave vector. Note, the natural frequency

= w/2mr. From V - E = 0, for all time, we see that k L & Substitution of
the electric field 2.18 into Maxwell’s Egs. (2.1b) results in the magnetic field

. 171 .
Hy(rt) = 5 [ﬂ,;(ﬁ t) + Hp (7, 0)* (2.23)
with B o
H(F,t) = Hy @7 p(k). (2.24)

This complex component of the magnetic field can be determined from the
corresponding complex electric field component using Faraday’s law

—jF % (Eg 0“0 E(R)) = —jugw (), (2.25)
or E
Hy (7 1) = S @k g = Hoe@ kD) (2.26)
How
with ~
- k -
h(k) = s &(k) (2.27)
and " )
H:=-"F.=_—F. 2.2
==k Mow_k ZF—k ( 8)

The characteristic impedance of the TEM-wave is the ratio between electric
and magnetic field strength

1
fo _ ~ 7, (2.29)

I )

Lp = [hgC =
with the refractive index n = /¢, and the free space impedance

Ze = |22~ 3770, (2.30)

€0
Note that the vectors €, h and k form an orthogonal trihedral,

¢Lh klé kL. (2.31)
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That is why we call these waves transverse electromagnetic (TEM) waves.
We consider the electric field of a monochromatic electromagnetic wave with

frequency w and electric field amplitude Ej,, which propagates in vacuum

along the z-axis, and is polarized along the x-axis, (Fig. 2.1), i.e. ﬁ = &,

-,

and é(k) = €,. Then we obtain from Egs.(2.18) and (2.19)

E(7,t) = Eycos(wt — kz) &, (2.32)
and similiar for the magnetic field

E
H(7t) = =2 cos(wt — kz) €, (2.33)

= ZFO

see Figure 2.1.

Figure 2.1: Transverse electromagnetic wave (TEM) [6]
Note, that for a backward propagating wave with E(7,t) = E ot HikT g
and H(7,t) = H e/“**) & there is a sign change for the magnetic field

=g (2.34)
FroW

so that the (k, E, H) always form a right handed orthogonal system.

2.1.3 Poynting Vectors, Energy Density and Intensity

The table below summarizes the instantaneous and time averaged energy
content and energy transport related to an electromagnetic field
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Quantity Real fields Complex fields
2
Electric and W = %E D= %eoerf? (we) = feoer E‘
. 5 3 3 L2
e v | 4B | (o)
ensity W = W, + Wy,
Poynting vector S=FExH T= %E xH
S o o T - LE .5
Poynting theorem | divS + FE - j + a—lf =0 leT tah A
+2jw({wm) = (we)) =0
Intensity I=15| = cw I =Re{T} = ¢ (w)

Table 2.1: Poynting vector and energy density in EM-fields

For a plane wave with an electric field E (7, 1) = E@F2) & in a lossless

medium, i.e. ¢ = real,we obtain for the time averaged energy density in
units of [J/m?]

1
(w) = iﬁreo\ﬂﬁ, (2.35)
the complex Poynting vector
7oL E)? € (2.36)
= — €., .
L=97. &

and the intensity in units of [W/m?]

1 1
I =—|E?==Zp|H. 2.

2.2 Paraxial Wave Equation

We start from the Helmholtz Equation (2.17)

(A+K]) E(z,y,z,w) =0, (2.38)

with the free space wavenumber ky = w/co. This equation can easily be
solved in the Fourier domain, and one set of solutions are of course the plane
waves with wave vector |k|? = k2. We look for solutions which are polarized
in x-direction

E(%% Z7w) = E(x,y,z) gI (239)
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We want to construct a beam with finite transverse extent into the x-y-plane
and which is mainly propagating into the positive z-direction. As such we
may try a superposition of plane waves with a dominant z-component of the
k-vector, see Figure 2.2. The k-vectors can be written as

ko o= (k2 k2 k2,

k2 + k2
ko (1 - Tﬂ) : (2.40)
0

Q

with k;, k, << ko.

Figure 2.2: Construction of a paraxial beam by superimposing many plane
waves with a dominante k-component in z-direction.

Then we obtain for the propagating field

Bla,y,z) = / / Eolks, k) -

. ki + K . .
exp |—jko [ 1 — 2 — jkyx — jkyy| dk,dk,,

282

+o0o +oo
= / / EO('I%:? ky) ’

k2 + k2 .
exp {j <Toy> 2 — jkyx — jkyy} dkydk, e %% (2.41)

where Eo(kx, k,) is the amplitude for the waves with the corresponding trans-
verse k-component. This function should only be nonzero within a small
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range kg, k, < ko. The function

+o00 +oo k2 + k2 . .
EO T, 2 / / Eo(kz, k) exp 2 = jkgx — jkyy| dk.dk,

2k
(2.42)
is a slowly varying function in the transverse directions x and y, and it can
be easily verified that it fulfills the paraxial wave equation

0 ~ —j (P P

Note, that this equation is in its structure identical to the dispersive spreading
of an optical pulse. The difference is that this spreading occurs now in the
two transverse dimensions and is called diffraction.

2.3 Gaussian Beams

Since the kernel in Eq.(2.42) is quadratic in the transverse k-components
using a two-dimensional Gaussian for the amplitude distribution leads to a
beam in real space which is also Gaussian in the radial direction because of
the resulting Gaussian integral. By choosing for the transverse amplitude
distribution

~ k2 4+ k2
Eo(ky, ky) ~ exp [— L y} ,

2.44
o (244)

Eq.(2.42) can be rewritten as

+o0 +0o0 1{72 —f-k‘Q
Eo (z,y,2 / / exp { ( ko y) (z+ jzr) — jksx —jk‘yyl dk,dk,,

(2.45)

with the parameter zp = ko/k%, which we will later identify as the Rayleigh
range. Thus, Gaussian beam solutions with different finite transverse width
in k-space and real space behave as if they propagate along the z-axis with
different imaginary z-component zr. Carrying out the Fourier transformation
results in the Gaussian Beam in real space

: 2, .2
‘]‘ exp | —jko & . (2.46)
24 jzr 2(z+ jzr)
The Gaussian beam is often formulated in terms of the complex beam para-
meter or g-parameter.

Eo(x, Y, 2) ~
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The propagation of the beam in free space and later even through optical
imaging systems can be efficiently described by a proper transformation of
the g-parameter

Fo(r, 2) ~ ﬁ exp [—jko (%)} | (2.47)

Free space propagation is then described by
q(z) =z +jzr (2.48)
Using the inverse g-parameter, decomposed in real and imagniary parts,

D S
az)  R() Tmer(z)

(2.49)

leads to

Butr.2) = YEh L e |- — b i) @50

Thus w(z) is the waist of the beam and R(z) is the radius of the phase
fronts. We normalized the beam such that the Gaussian beam intensity
I(z,7) =
beam is given by

- 2
Ey(r, z)) /(2ZF,) expressed in terms of the power P carried by the

Ir,2) = #exp[ %(22)1 (2.51)

W
2
ie. P = / / (r,z) rdr de. (2.52)

The use of the g-parameter simplifies the description of Gaussian beam prop-
agation. In free space propagation from z; to 2y, the variation of the beam
parameter ¢ is simply governed by

@ =q + 22— 2. (2.53)

where ¢ and ¢; are the beam parameters at z; and z,.
If the beam waist, at which the beam has a minimum spot size wy and
a planar wavefront (R = o0), is located at z = 0, the variations of the
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beam spot size and the radius of curvature of the phase fronts are explicitly

expressed as
1/2

1+ (i)zl , (2.54)

R(z) =2 {1 + (Z—R)Q] , (2.55)

z

w(z) = w,

and

where zp is called the Rayleigh range. The Rayleigh range is the distance
over which the cross section of the beam doubles. The Rayleigh range is
determined by the beam waist and the wavelength of light according to

2
W

= i 2.
ZR b\ ( 56)

Intensity

Figure 2.3 shows the intensity of the Gaussian beam according to Eq.(2.51)
for different propagation distances.

(a) b E (c)

Figure 2.3: The normalized beam intensity I/l as a function of the radial
distance r at different axial distances: (a) z=0, (b) z=zg, (c) z=2zp.
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The beam intensity can be rewritten as

2 2
wg 2r ) 2P
I(T, Z) = IOU}2—(,Z) exp |:—w2—(2)‘| y with ]0 = 7T_’Uj(2) (257)

For z > zp the beam radius growth linearly and therefore the area expands
quadratically, which brings down the peak intensity quadratically with prop-
agation distance.

On the beam axis (r = 0) the intensity is given by

U)g . ]0

2 - 2"
" (E)
The normalized beam intensity as a function of propagation distance is shown
in Figure 2.4

I(r,z) = Iy (2.58)

Figure 2.4: The normalized Beam intensity I(r = 0)/Iy on the beam axis as
a function of propagation distance z [6], p. 84.

Power

The fraction of the total power contained in the beam up to a certain radius

1S
P(T < 7“0) 2_7T "o

7 = 5 i I(r, z)rdr

- wQL(z) /0 " exp l—%(;} rdr (2.59)

el 2]
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Planes of const.
Phase

Beam Waist
L=R
1 1

-1 0

zlz R

Figure 2.5: Gaussian beam and its characteristics.

Thus, there is a certain fraction of power within a certain radius of the
beam

P(r <w(z))
P
P(r < 1.5w(z))
P

= 0.86, (2.60)

= 0.99. (2.61)

Beam radius

Due to diffraction, the smaller the spot size at the beam waist, the faster the
beam diverges according to 2.54 as illustrated in Figure ?7.

Beam divergence

The angular divergence of the beam is inversely proportional to the beam
waist. In the far field, the half angle divergence is given by

0= (2.62)

see Figure 2.5.
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Confocal parameter and depth of focus

In linear microscopy, only a layer which has the thickness over which the
beam is focused, called depth of focus, will contribute to a sharp image. In
nonlinear microscopy (see problem set) only a volume on the order of beam
cross section times depth of focus contributes to the signal. Therefore, the
depth of focus or confocal parameter of the Gaussian beam, is the distance
over which the beam stays focused and is defined as twice the Rayleigh range

2
2mws

A

b=2zp = (2.63)

The confocal parameter depends linear on the spot size (area) of the beam
and is inverse to the wavelength of light. At a wavelength of 1um a beam
with a radius of w, = 1em,.the beam will stay focussed ove distances as long
600m. However, if the beam is stronlgy focussed down to w, = 10um the
field of depth is only 600um.

Phase

The phase delay of the Gaussian beam is

2

B(r,2) = koz—C(z)—l—ko#(z) (2.64)
((z) = arctan (i) (2.65)

On beam axis, there is the additional phase ((z) when the beam undergoes
focussing as shown in Figure 2.6. This is in addition to the phase shift that
a uniform plane wave already aquires.



2.3. GAUSSIAN BEAMS 19

¢

Figure 2.6: Phase delay of a Gaussian beam relative to a uniform plane wave
on the beam axis [6], p. 87. This phase shift is known as Guoy-Phase-Shift.

This effect is known as Guoy-Phase-Shift. The third term in the phase
shift is parabolic in the radius and describes the wavefront (planes of constant
phase) bending due to the focusing, i.e. distortion from the uniform plane
wave.

Figure 2.7: The radius of curvature R(z) of the wavefronts of a Gaussian
beam [6], p. 89.

The surfaces of constant phase are determined by koz — ((2) + k:[)#?z) =
const. Since the radius of curvature R(z) and the additional phase ((z) are
slowly varying functions of z, i.e. they are constant over the radial variation
of the wavefront, the wavefronts are paraboloidal surfaces with radius R(z),
see Figures 2.7 and 2.8.
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Figure 2.8: Wavefronts of a Gaussian beam, [6] p. 88.

For comparison, Figure 2.9 shows the wavefront of (a) a uniform plane
wave, (b) a spherical wave and (c) a Gaussian beam. At points near the
beam center, the Gaussian beam resembles a plane wave. At large z, the
beam behaves like a spherical wave except that the phase fronts are delayed
by a quarter of the wavlength due to the Guoy-Phase-Shift.

(T
il

. N

@

z

|
|
I
|

fc}

Figure 2.9: Wavefronts of (a) a uniform plane wave;(b) a spherical wave; (c)
a Gaussian beam [5], p. 89.
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2.4 Ray Propagation

A ray propagating in an optical system, see Figure 2.10, can be described
by its position r with respect to the optical axis and its inclination with
respect to the optical axis 7. It is advantageous to use not (r,r’) as the
ray coordinates but the combination (r,n '), where n is the local refractive
index at the position of the ray. Due to propagation, the ray coordinates
may change, which can be desribed by a marix, that maps initial position
and inclination into the corresponding quantitaties after the propagation

()= (e 0) () 200

This imaging matrix is called an ABCD-matrix.

Optical \
r, r
System rzl \4

z

Figure 2.10: Description of optical ray propagation by its distance and incli-
nation from the optical axis

The advantage in using (r,n ') as the ray coordinates is that it preserves
the phase space volume, i.e. for lossless optical systems the determinant of
the ABCD-matrix must be 1. Also Snell’s law for paraxial rays has then a
simple form, see Figure 2.11. For paraxial rays the angles to the interface
normal, #; and 65, are much smaller than 1, and we can write

ri =tanf; & sinf; ~ 6;, and ry, = tan 0y ~ sin 6y ~ 6.

Then Snell’s law is
ny ry=ng rh. (2.67)
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1 2

rl
r, 9& r,

yd z

Figure 2.11: Snell’s law for paraxial rays

The ABCD-matrix describing a ray going from a medium with index n4
to a medium with index ny is the unity matrix

To = T (268)

Free space propagation

For propagation in free space, see Figure 2.12, the relationship between input
and output ray parameters is

ry = ri+r;-L

or the propagation matrix is

M:((l) f) (2.70)
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Figure 2.12: Free space propagation

Propagation in medium with length L and index n

Free propagation through a medium with index n does result in a reduced
position shift with respect to the optical axis in comparison to free space,
because the beam is first bent to the optical axis according to Snell’s law,
see Figure 2.13. Therefore the corresponding ABCD-matrix is

M = ( (1) L{” ) . (2.71)

/

\—‘\
-
-

Figure 2.13: Ray propagation through a medium with refractive index n,
shortens the path length of the beam by a factor of n.

Parbolic surface or thin lens

Plano-Convex Lens When a ray penetrates a parabolic surface between
two media with refractive indices ny; and ns, it changes its inclination. A
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parabolic surface can be closely approximated by the surface of a sphere, see
Figure 2.14. Snells law in paraxial approximation is

ny (r1+a)=ny (rh+a). (2.72)

Figure 2.14: Derivation of ABCD-matrix of a thin plano-convex lens.

The small angle a can be approximated by o = r1/R. In total we then
obtain the mapping

re = 1 (2.73)
nprhy = myrh+ L ;2”27“1 (2.74)
or
M:(ﬁ (1)> (2.75)
R

Note, the second normal interface does not change the ray propagation matrix
and therefore Eq.(2.75) describes correctly the ray propagation through a thin
plano-convex lens.

Biconvex Lens If the lens would have a second convex surface, this would
refract the ray twice as strongly and we would obtain

1 0
M = ( pmom | > : (2.76)
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The quantity 2#25" is called the refractive strength of the biconvex lense
or inverse focal length 1/ f.Because the system of a thin lens plus free space
propagation results in the matrix (calculated in the reverse order)

(L) (44 em

which ensures that each ray parallel to the optical axis goes through the on
axis focal point at the end of the free space section, see Figure 2.15.

Figure 2.15: Imaging of parallel rays through a lens with focal length f.

Curved Mirrors

Other often used optical components in imaging systems are curved mirrors
with radius of curvature ROC = R, see Figure 2.16. The advantage of
reflective optics is that the rays don’t have to pass through dispersive material
like through a lense, which is very disturbing for ultrashort pulses.
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Figure 2.16: Derivation of ray matrix for concave mirror with Radius R.

As in the case of the thin lens,e the imaging does not change the distance
of the ray from the optical axis, however, the slope of the rays obey

r—a=rh+a. (2.78)

with @ & r1/R in paraxial approximation. Therefore the ABCD matrix
describing the reflection of rays at a curved mirror with ROC' = R is

1 2

M:(_ll 0>,withf:£ (2.79)
f

Gauss’ Lens Formula:

As a simple application of the ray matrices for optical system design, we
derive Gauss’ lens formula, which says that all rays emitted from an orignial
placed a distance d; from a lens with focal length f form an image at a
distance ds, which is related to d; by

(2.80)

see Figure 2.17.
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rll\ ‘

d, d,

Figure 2.17: Gauss’ lens formula.

The magnification of the lens system is M, = == g—f = ‘#7 . The ray
matrix that describes the imagaing from the orignal plane I to the image

plane II is described by the product

(ep) =G )6 )
_ ( - % (_d%)dﬁdQ). (2.81)

1 1_@

f !

In order that the distance ry only depends on 1, but not on 7}, B must be
0, which is Eq. (2.80). Thus in total we have

Magnification M, = d_I% (2.82)
Distance to focus | dy — f = M? (d; — f) .

More complicated imaging systems, such as thick lenses, can be described
by ray matrices and arbitrary paraxial optical systems can be analyzed with
them, which shall not be pursued further here. Rather, we want to study
how Gaussian beams are imaged by paraxial optical systems

2.5 Gaussian Beam Propagation

The propagation of Gaussian beams through paraxial optical systems can
be efficiently evaluated using the ABCD-law [4], which states that the q-
parameter of a Gaussian beam passing a optical system described by an
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ABCD-marix is given by
_Aq +B

N C q1 + D ’
where ¢; and ¢, are the beam parameters at the input and the output planes
of the optical system or component, see Figure 2.18

(2.83)

q2

w,
2
w
— || |* & R
C D
91 .
9z

Figure 2.18: Gaussian beam transformation by ABCD law, [6], p. 99.

To proove this law, we realize that it is true for the case of free space
propagation, i.e. pure diffraction, comparing (2.83) with (2.53) and (2.70). If
we can proove that it is additionally true for a thin lens, then we are finished,
because every ABCD matrix (2x2 matrix) can be written as a product of a
lower and upper triangular matrix (LR-decomposition) like the one for free
space propagation and the thin lens. Note, the action of the lens is identical
to the action of free space propagation, but in the Fourier-domain. In the
Fourier domain the Gaussian beam parameter is replaced by its inverse (2.46)

; 2, ,2
o J . Tty
Ey(x,y,z) = ——exp l— k (—)1 2.84
- k2 + k2
Bulhbys) = 2mjow|-ia) (S t)] 28
0
But the inverse g-parameter transforms according to (2.83)
1 in +C
— = 2.86
Q2 qul + A (2.86)
which leads for a thin lens to
1 1 1
—=——-. (2.87)
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This is exactly what a thin lens does, see Eq.(2.49), it changes the radius of
curvature of the phase front but not the waist of the beam according to

1 1 1
_ = 2.88
BT (2.88)

With that finding, we have proven the ABCD law for Gaussian beam prop-
agation through paraxial optical systems.

The ABCD-matrices of the optical elements discussed so far including
nonnomal incidence are summarized in Table 2.2. As an application of the

|| Optical Element H ABCD-Matrix H
Propagation in Medium with 1 L/n
index n and length L < 0 1 >
Thin Lens with 1 0
focal length f —1/f 1

Mirror under Angle

0 to Axis and Radius R
Sagittal Plane

Mirror under Angle

0 to Axis and Radius R
Tangential Plane

Brewster Plate under (

)
o 1)

Dd

O =

Angle 0 to Axis and Thickness
d, Sagittal Plane

Brewster Plate under

Angle 0 to Axis and Thickness
d, Tangential Plane

3
~

O =

— 3
N———

Table 2.2: ABCD matrices for commonly used optical elements.

Gaussian beam propagation, lets consider the imaging of a Gaussian beam
with a waist wg; by a thin lens at a distance d; away from the waist to a
beam with a different size wqs, see Figure 2.19.
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A
v

d, d,

Figure 2.19: Focusing of a Gaussian beam by a lens.

There will be a new focus at a distance ds.The corresponding ABCD
matrix is of course the one from Eq.(2.81), which is repeated here

<é} g):<1:% <1_fz>ddj+d2>. (2.89)

f

|~

The g-parameter of the Gaus31an beam at the position of minimum waist is

purely imaginary ¢, = jzp = j - 01 and go = jzps = j - 32 , where

AQ1+B _jZRlA+B . jZRlA+B
C g + D jleC + D jleC + D

G2 = = JZR2. (2.90)
In the limit of ray optics, where the beam waists can be considered to by
zero, i.e. zr; = zre = 0 we obtain B = 0, i.e. the imaging rule of classical
ray optics Eq.(2.80). It should not come at a surprise that for the Gaussian
beam propagation this law does not determine the exact distance ds of the
position of the new waist. Because, in the ray analysis we neglected dif-
fraction. Therefore, the Gaussian beam analysis, although it uses the same
description of the optical components, gives a slightly different and improved
answer for the position of the focal point. To find the position d», we request
that the real part of the right hand side of (2.90) is zero,

BD — 2%, AC =0 (2.91)
which can be rewritten as

e (2.92)
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Again for zg; — 0, we obtain the ray optics result. And the imaginary part

of Eq.(2.90) leads to

LoDy, (2.93)

ZR2 ZR1

1 1 d1)2 ( ZR1 )2
— =—|1-—= 1+ . 2.94
Wy Wy ( / di— f ( )

With the magnification M for the spot size, with is closely related to the
Magnification M, of ray optics, we can rewrite the results as

or

Magnification M = M,/\/14 & with & = 72 and M, = dlf_
Beam waist Wz = M - woy;

Confocal parameter | 2zpy = M? 229

Distance to focus | dy — f = M?*(d; — f)

Divergence Oo2 = o1 /M

~

(2.95)

2.6 Optical Resonators

With the Gaussian beam solutions, we can finally construct optical resonators
with finite transverse extent, i.e. real Fabry-Perots. To do that we insert into
the Gaussian beam, see Figure 2.20, curved mirrors with the proper radius
of curvature, such that the beam is imaged upon itself.

R,

A 4

Figure 2.20: Fabry-Perot resonator with finite beam cross section by inserting
curved mirrors into the beam to back reflect the beam onto itself.
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Curved-Flat Mirror Resonator

We first consider the simple resonator constructed by a curved and flat mirror,
i.e. only the left side of the gaussian beam in Figure 2.20, see Figure 2.21

»
»

z, =L
Figure 2.21: Curved-Flat Mirror Resonator

From Eqs.(2.54) and (2.55) we immediately get an expression for the
radius of curvature of the mirror necessary to generate a certain confocal

2 . . . .
parameter zp = ”3\”0 or spot size on the flat mirror given a certain wavelength

1/2

s (E)] 290

Ri=1L [1 + (%)1 . (2.97)

Since the confocal parameter is a positive quantity it follows that we always
need a mirror with a radius of curvature R; > L, to form a stable gaussian
mode in the resonator. The spot size on the flat and curved mirrors in terms
of the radius of curvature of the mirror and the distance of the mirror is

[ AR,
¢ 1—— 2.
\/ Rl Rl (2.98)

(2.99)

w1 =

and

and
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There is a resonator mode with finite size for 0 < L < R;, i.e. the cavity
is stable in this parameter range.. Figure 2.22 shows the normalized beam

radii on both mirrors as a function of the normalized distance between the

: L
mirrors Ry

3 | |

w, /sqrt(R,A/m)

N
I
I

Beam Radii
|_\

I

|

W,/sqrt(R,A/m) \

0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0
L/R,

Figure 2.22: Beam waists of the curved-flat mirror resonator as a function of
the cavity parameter g;.

Note, that for a given curved mirror with radius of curvature (ROC) =
Ry, the waist of the beam goes to zero for both extremes of the distance
between the mirrors where the cavity is stable. There is a large central range
around L ~ R;/2, where the beam waist is maximum and insensitive to the
exact distance between the mirrors.

Two-Curved Mirror Resonator

Now, we can analyze what happens for the case of a resonator with two curved
mirrors as shown in Figure 2.20. The gaussian beam formulas Eqgs.(2.54)
and (2.55) give us now the following conditions for beam waists

1/2

1+ (5—2)1 , (2.100)
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971/2
we = 1w, |1+ <ﬁ> , (2.101)
ZR
] A\
Ry=z |1+ (—R> , (2.102)
21
] A\
Ry=12 |1+ (—R> : (2.103)
22
and
L= 21+ 22. (2104)

The last three equations determine the confocal parameter zr and the dis-
tances between location of waist and mirrors z; and z; in dependence on the
radii of curvature R;, Ry and the distance between mirrors L. It is straight
forward to eliminate the confocal parameter from Egs.(2.102), (2.103) and
to solve the remaining equation together with Eq.(2.104) for the distances
z1 and zo. The result is

L(Ry— L)
=" 2.105
Z1 Rl + R2 _ 2L7 ( )
and by symmetry
L(Ry — L)
=L — 2. 2.1
2T R+ R, —2L . (2106)

Resubstitution into Eq.(2.102) leads to an expression for the Rayleigh range
of the beam and its waist

Ri— L)(Ry — L)(R, + Ry — L)
, (R . 2.107
“R (Ri + Ry — 2L)2 100
and therefore
AL (By— L)(By — L)(Ry + By — L)
Y 2.1
w, ( - ) L(Ry 4+ Ry — 2L)? i
_(WERN L -2 5w w) (2.109)
T Ri R, (R% RL2_2RL1RL2)2 o
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For completeness the spot size on the mirrors is given by

AR1\? Ry—L L

4 1 2

_ 2.110
o (w> RI—L(R1+R2—L) (2:110)

L (MEEY

7 L I L L
Q I T R i

(2.111)

By symmetry, we find the spot size on mirror 2 by switching index 1 and 2:

ARO\?> R, — L L
4 2 1
- 2.112
2 <7T> RQ—L R1+R2—L) ( )
2
WER\ 1= 7 7, 7s (2.113)
= - 1L L L LL .
Ro Ry Ra R1 Ro

The mode characteristics wg, wy, wa, 21 and zxfor the two-mirror resonator
are shown in Figure 2.23 for the case Ry = 10cm and Ry = 11cm as a function
of the mirror distance L
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Figure 2.23: From top to bottom: two-mirror resonator mode characteristics
wo, Wi, Wa, 21, 29 and cavity parameters, g1, g», S for the case Ry = 10 cm

and Ry = 11 cm.
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Resonator stability As we can read of from Figure 2.23 for a two-mirror
resonator with concave mirrors and Ry < Ry, we obtain the general stability
diagram as shown in Figure 2.24.

L
—
0 R Ry Ri+R,

Figure 2.24: Stabile regions (black) for the two-mirror resonator.

There are two ranges for the mirror distance L, within which the cavity
is stable, 0 < L < R; and Ry < L < Ry + R,.The stable and unstable
parameter ranges can be expressed in a compact way in terms of the cavity
parameters ¢g; and g defined by ¢; = (R; — L)/R;, for i = 1,2.These cavity
parameters together and its product S = g; - go are shown in the last graph
of Figure 2.23. The cavity mode has finite size, i.e. it is stable for

stable: 0 < g1 -go=5<1 (2.114)

and unstable for

unstable : g1go < 0; or g1go > 1. (2.115)

The stability criterion can be easily interpreted geometrically. Of importance
are the distances between the mirror mid-points M; and the cavity end points,
ie. ¢g;=(R;, — L)/R; = —S;/R;, as shown in Figure 2.25.
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A
A

Figure 2.25: The stability criterion involves distances between the mirror
mid-points M; and the cavity end points. i.e. g; = (R; — L)/R; = —S;/R;.

The following rules for a stable resonator can be derived from Figure 2.25
using the stability criterion expressed in terms of the distances S;. Note, that
without proof, the distances and radii can be positive and negative, where
the latter indicate concave mirrors

5159 <

stable : 0 < <1 (2.116)

1412

This results in the following rules for the geometry of stable two-mirror res-
onators:

e A resonator is stable if the mirror radii, laid out along the optical axis,
overlap.

e A resonator is unstable if the radii do not overlap or one lies within the
other.

Figure 2.26 shows stable and unstable resonator configurations.
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Stable Unstable
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[ e [ R
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Figure 2.26: Illustration of stable and unstable resonator configurations.

Hermite-Gaussian-Beams (TEM,,,,-Beams)

It turns out that the Gaussian Beams are not the only solution to the paraxial
wave equation (2.43). The stable modes of the resonator reproduce them-
selves after one round-trip,

Bon(,y,2) = Amn {%} G ;;/(2:3; G, D/g} (2.117)

where
2

G [u] = H,, [u] exp [—%1 ,form=0,1,2, ... (2.118)
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are the Hermite-Gaussians with the Hermite-Polynomials

Hyu] = 1,

Hilu] = 2u,

Hy[u] = 4u*—1, (2.119)
H3u] = 8u®—12u,

and ((z) is the Guoy-Phase-Shift according to Eq.(2.65). The lower order
Hermite Gaussians are depicted in Figure 2.27

Gofu) Gyfu) Golu) quw

L3 A

(a) (b) (c) (@)

Figure 2.27: Hermite-Gauissians G,,(u) for m = 0,1,2 and 3.

and the intensity profile of the first higher order resonator modes are
shown in Figure 2.28.
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TEM TEMu,

B TEM» 'r'm.._
- 480 | 2l
| | | 7| 98P

TEMs - TEMy TEM=

Figure 2.28: Intensity profile of TEM,,,,,-beams, [6], p. 103.

Besides the different mode profiles, the higher order modes experience
greater phase advances during propogation, because they are made up of
k-vectors with larger transverse components.

Axial Mode Structure

As we have seen for the Fabry-Perot resonator, the longitudinal modes are
characterized by a roundtrip phase that is a multiple of 27. Back then, we
did not consider transverse modes. Thus in a resonator with finite transverse
beam size, we obtain an extended family of resonances, with distinguish-
able field patterns. The resonance frequencies w,,, are determined by the
roundtrip phase condition

Gpim, = 2pm, for p=0,+1,£2, .. (2.120)
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For the linear resonator according to Figure 2.20, the roundtrip phase of a
Hermite-Gaussian T),,,-beam is

Ppim = 2kL = 2(1 +m + 1) (¢(22) — ¢(21)) (2.121)
where ((22) — ((21) is the additional Guoy-Phase-Shift, when the beam goes

through the focus once on its way from mirror 1 to mirror 2. Then the
resonance circular frequencies are

wpim = 7 [p + (L+m+ 1) (C(22) = ()] (2.122)

If the Guoy-Phase-Shift is not a rational number times 7, then all resonance
frequencies are non degenerate. However, for the special case where the
two mirrors have identical radius of curvature R and are spaced a distance
L = R apart, which is called a confocal resonator, the Guoy-Phase-shift is
((z2) — ((#1) = 7/2, with resonance frequencies

c 1
fpim = oL [p—k 5(1 +m+ 1)} ) (2.123)

In that case all even, i.e. [ + m, transverse modes are degenerate to the
longitudinal or fundamental modes, see Figure 2.29.

02p - 2) 30p 020-1  30(p-1) 02p 30p 02p + 1)
200p - 2) 03p 00 -1y  03p-1) 20p 03p 00 + 1)
1 -2) 01p - 1) -1 0lp 1p 0lp+ 1) Hip+1)
00 - 1) 10(p — 1) 00p 10p 00+ 1) 10+ 1) 00(p + 2)

! 1
| | |
! f |
| I |
1 _1 | |
- ) k——Af=c/2d——->’ [ —
A

A= — A
2d

Figure 2.29: Resonance frequencies of the confocal Fabry-Perot resonator,
[6], p. 128.

The odd modes are half way inbetween the longitudinal modes. Note, in
contrast to the plan parallel Fabry Perot all mode frequencies are shifted by

half of the free spectral range, 'SR = 5+, due to the Guoy-Phase-Shift.
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