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Chapter 2

Classical Optics

The classical electromagnetic phenomena are completely described byMaxwell’s

Equations. The simplest case we may consider is that of electrodynamics of

isotropic media

2.1 Maxwell’s Equations and Helmholtz Equa-

tion

Maxwell’s Equations are

∇×  =
 


+  (2.1a)

∇× = −



 (2.1b)

∇ ·  =  (2.1c)

∇ ·  = 0 (2.1d)

The material equations accompanying Maxwell’s equations are:

 = 0  +   (2.2a)

 = 0
 +  (2.2b)

Here,  and  are the electric and magnetic field strength,  the electric flux

density,  the magnetic flux density,  the current density of free charges, 

is the free charge density,  is the polarization, and  the magnetization.
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Note, it is Eqs.(2.2a) and (2.2b) which make electromagnetism an inter-

esting and always a hot topic with never ending possibilities. All advances

in engineering of artifical materials or finding of new material properties,

such as superconductivity and meta-materials, bring new life, meaning and

possibilities into this field.

By taking the curl of Eq. (2.1b) and considering

∇×
³
∇×

´
= ∇

³
∇ · 

´
−∆

where ∇ is the Nabla operator and ∆ the Laplace operator, we obtain
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and henceµ
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 (2.4)

with the vacuum velocity of light

0 =

s
1

00
 (2.5)

For dielectric non magnetic media, which we often encounter in optics,

with no free charges and currents due to free charges, there is  = 0,  = 0,

 = 0 One can also show that the electric field can be decomposed into a

longitudinal and tranasversal component  and  , which are characterized

by [6]

∇× = 0 and ∇ ·  = 0 (2.6)

If there are no free charges, the longitudinal component is zero and only a

transversal component is left over. Therefore, for the purpose of this class

(and most of optics) the wave equation greatly simplifies toµ
∆− 1

20

2

2

¶
 = 0

2

2
  (2.7)

This is the wave equation driven by the polarization of the medium in which

the field propagates.
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2.1.1 Helmholtz Equation

In general, the polarization in dielectric media may have a nonlinear and

non local dependence on the field. For linear media the polarizability of the

medium is described by a dielectric susceptibility  ( )

 ( ) = 0

Z Z
00  ( − 0 − 0)  (0 0)  (2.8)

The polarization in media with a local dielectric suszeptibility can be de-

scribed by

 ( ) = 0

Z
0  ( − 0)  ( 0)  (2.9)

This relationship further simplifies for homogeneous media, where the sus-

ceptibility does not depend on location

 ( ) = 0

Z
0  (− 0)  ( 0)  (2.10)

which leads to a dielectric response function or permittivity

 () = 0(() +  ()) (2.11)

and with it to

( ) =

Z
0  (− 0)  ( 0)  (2.12)

If the medium is linear and has only an induced polarization, completely

described in the time domain  () or in the frequency domain by its Fourier

transform, the complex susceptibility ̃() = ̃() − 1 with the relative
permittivity ̃() = ̃()0, we obtain in the frequency domain with the

Fourier transform relationship

e( ) = +∞Z
−∞

( )− (2.13)

e ( ) = 0̃()
e( ) (2.14)

where, the tildes denote the Fourier transforms in the following. Substituted

into (2.7) µ
∆+

2

20

¶ e( ) = −200̃()e( ) (2.15)
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we obtain µ
∆+

2

20
(1 + ̃()

¶ e( ) = 0 (2.16)

with the refractive index () and 1+ ̃() = ̃()2 results in the Helmholtz

equation µ
∆+

2

2

¶ e( ) = 0 (2.17)

where () = 0̃() is the velocity of light in the medium. This equation

is the starting point for finding monochromatic wave solutions to Maxwell’s

equations in linear media, as we will study for different cases in the following.

So far we have treated the susceptibility ̃() as a real quantity, which may

not always be the case as we will see later in detail.

2.1.2 Plane-Wave Solutions (TEM-Waves) and Com-

plex Notation

The real wave equation (2.7) for a linear medium has real monochromatic

plane wave solutions 
( ), which can be be written most efficiently in

terms of the complex plane-wave solutions 
( ) according to


( ) =

1

2

h

( ) + 

( )∗
i
= <

n

( )

o
 (2.18)

with
( ) =  

j(−·) () (2.19)

Note, we explicitly underlined the complex wave to indicate that this is a

complex quantity. Here, () is a unit vector indicating the direction of the

electric field which is also called the polarization of the wave, and 
is

the complex field amplitude of the wave with wave vector . Substitution

of eq.(2.18) into the wave equation results in the dispersion relation, i.e. a

relationship between wave vector and frequency necessary to satisfy the wave

equation

||2 = 2

()2
= ()2 (2.20)

The relation between wave vector and frequency of a wave is called dispersion

relation. Here, it is given by

() = ±

0
() (2.21)
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with the wavenumber

 = 2 (2.22)

where  is the wavelength of the wave in the medium with refractive index

,  the angular frequency,  the wave vector. Note, the natural frequency

 = 2. From ∇ ·  = 0, for all time, we see that  ⊥ . Substitution of

the electric field 2.18 into Maxwell’s Eqs. (2.1b) results in the magnetic field


( ) =

1

2

h

( ) + 

( )∗
i

(2.23)

with

( ) = 

j(−
·) () (2.24)

This complex component of the magnetic field can be determined from the

corresponding complex electric field component using Faraday’s law

−j ×
³
 

j(−·) ()
´
= −j0 ( ) (2.25)

or

( ) =


0
j(−

·) ×  = 
j(−·) (2.26)

with

() =


|| × () (2.27)

and

 =
||
0

 =
1



 (2.28)

The characteristic impedance of the TEM-wave is the ratio between electric

and magnetic field strength

 = 0 =

r
0
0

=
1


0 (2.29)

with the refractive index  =
√
 and the free space impedance

0 =

r
0
0
≈ 377Ω (2.30)

Note that the vectors ,  and  form an orthogonal trihedral,

 ⊥   ⊥   ⊥  (2.31)
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That is why we call these waves transverse electromagnetic (TEM) waves.

We consider the electric field of a monochromatic electromagnetic wave with

frequency  and electric field amplitude 0, which propagates in vacuum

along the z-axis, and is polarized along the x-axis, (Fig. 2.1), i.e.

|| = 

and () = . Then we obtain from Eqs.(2.18) and (2.19)

( ) = 0 cos(− )  (2.32)

and similiar for the magnetic field

( ) =
0

0

cos(− )  (2.33)

see Figure 2.1.

c

y

x

z

E

H

Figure 2.1: Transverse electromagnetic wave (TEM) [6]

Note, that for a backward propagating wave with ( ) =  j+j
· 

and ( ) =  j(+
)  there is a sign change for the magnetic field

 = − ||
0

 (2.34)

so that the (  ) always form a right handed orthogonal system.

2.1.3 Poynting Vectors, Energy Density and Intensity

The table below summarizes the instantaneous and time averaged energy

content and energy transport related to an electromagnetic field
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Quantity Real fields Complex fields

Electric and

magnetic energy

density

 =
1
2
 ·  = 1

2
0 

2

 =
1
2
 ·  = 1

2
0

2

 =  + 

hi = 1
4
0

¯̄̄

¯̄̄2

hi = 1
4
0

¯̄̄

¯̄̄2

hi = hi+ hi
Poynting vector  = ×  = 1

2
× 

∗

Poynting theorem div +  · + 

= 0

div + 1
2
 ·∗+

+2(hi− hi) = 0
Intensity  =

¯̄̄

¯̄̄
=   = Re{} =  hi

Table 2.1: Poynting vector and energy density in EM-fields

For a plane wave with an electric field ( ) = j(−)  in a lossless
medium, i.e.  = realwe obtain for the time averaged energy density in

units of [J/m3]

hi = 1

2
0||2 (2.35)

the complex Poynting vector

 =
1

2

||2  (2.36)

and the intensity in units of [W/m2]

 =
1

2

||2 = 1

2
 ||2 (2.37)

2.2 Paraxial Wave Equation

We start from the Helmholtz Equation (2.17)¡
∆+ 20

¢ e(   ) = 0 (2.38)

with the free space wavenumber 0 = 0 This equation can easily be

solved in the Fourier domain, and one set of solutions are of course the plane

waves with wave vector ||2 = 20 We look for solutions which are polarized

in -direction e(   ) = e(  )  (2.39)
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We want to construct a beam with finite transverse extent into the x-y-plane

and which is mainly propagating into the positive -direction. As such we

may try a superposition of plane waves with a dominant -component of the

k-vector, see Figure 2.2. The -vectors can be written as

 =
q
20 − 2 − 2

≈ 0

µ
1− 2 + 2

220

¶
 (2.40)

with    0

z

k

y
x

Figure 2.2: Construction of a paraxial beam by superimposing many plane

waves with a dominante k-component in z-direction.

Then we obtain for the propagating field

e(  ) =

Z +∞

−∞

Z +∞

−∞
e0( ) ·

exp

∙
−0

µ
1− 2 + 2

220

¶
 − − 

¸


=

Z +∞

−∞

Z +∞

−∞
e0( ) ·

exp

∙


µ
2 + 2

20

¶
 − − 

¸


−0 (2.41)

where e0( ) is the amplitude for the waves with the corresponding trans-
verse -component. This function should only be nonzero within a small
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range   ¿ 0 The function

e0(  ) = Z +∞

−∞

Z +∞

−∞
e0( ) exp ∙µ2 + 2

20

¶
 − − 

¸


(2.42)

is a slowly varying function in the transverse directions  and , and it can

be easily verified that it fulfills the paraxial wave equation




e0(  ) = −

20

µ
2

2
+

2

2

¶ e0(  ) (2.43)

Note, that this equation is in its structure identical to the dispersive spreading

of an optical pulse. The difference is that this spreading occurs now in the

two transverse dimensions and is called diffraction.

2.3 Gaussian Beams

Since the kernel in Eq.(2.42) is quadratic in the transverse -components

using a two-dimensional Gaussian for the amplitude distribution leads to a

beam in real space which is also Gaussian in the radial direction because of

the resulting Gaussian integral. By choosing for the transverse amplitude

distribution e0( ) ∼ exp ∙−2 + 2

22

¸
 (2.44)

Eq.(2.42) can be rewritten as

e0(  ) ∼ Z +∞

−∞

Z +∞

−∞
exp

∙


µ
2 + 2

20

¶
( + )− − 

¸


(2.45)

with the parameter  = 0
2
 , which we will later identify as the Rayleigh

range. Thus, Gaussian beam solutions with different finite transverse width

in -space and real space behave as if they propagate along the z-axis with

different imaginary z-component . Carrying out the Fourier transformation

results in the Gaussian Beam in real space

e0(  ) ∼ 

 + 
exp

∙
−0

µ
2 + 2

2( + )

¶¸
 (2.46)

The Gaussian beam is often formulated in terms of the complex beam para-

meter or -parameter.
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The propagation of the beam in free space and later even through optical

imaging systems can be efficiently described by a proper transformation of

the -parameter

e0( ) ∼ 1

()
exp

∙
−0

µ
2

2()

¶¸
 (2.47)

Free space propagation is then described by

() =  +  (2.48)

Using the inverse -parameter, decomposed in real and imagniary parts,

1

()
=

1

()
− 



2()
 (2.49)

leads to

e0( ) = p
40√
()

exp

∙
− 2

2()
− 0

2

2()
+ ()

¸
 (2.50)

Thus () is the waist of the beam and () is the radius of the phase

fronts. We normalized the beam such that the Gaussian beam intensity

( ) =
¯̄̄ e0( )¯̄̄2 (20) expressed in terms of the power  carried by the

beam is given by

( ) =
2

2()
exp

∙
− 22

2()

¸
 (2.51)

i.e.  =

Z ∞

0

Z 2

0

( )   (2.52)

The use of the q-parameter simplifies the description of Gaussian beam prop-

agation. In free space propagation from 1 to 2, the variation of the beam

parameter  is simply governed by

2 = 1 + 2 − 1 (2.53)

where 2 and 1 are the beam parameters at 1 and 2.

If the beam waist, at which the beam has a minimum spot size 0 and

a planar wavefront ( = ∞), is located at  = 0, the variations of the



2.3. GAUSSIAN BEAMS 15

beam spot size and the radius of curvature of the phase fronts are explicitly

expressed as

() = 

"
1 +

µ




¶2#12
 (2.54)

and

() = 

∙
1 +

³


´2¸
 (2.55)

where  is called the Rayleigh range. The Rayleigh range is the distance

over which the cross section of the beam doubles. The Rayleigh range is

determined by the beam waist and the wavelength of light according to

 =
2


 (2.56)

Intensity

Figure 2.3 shows the intensity of the Gaussian beam according to Eq.(2.51)

for different propagation distances.

Figure 2.3: The normalized beam intensity 0 as a function of the radial

distance r at different axial distances: (a) z=0, (b) z=z, (c) z=2z
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The beam intensity can be rewritten as

( ) = 0
20

2()
exp

∙
− 22

2()

¸
 with 0 =

2

20
 (2.57)

For    the beam radius growth linearly and therefore the area expands

quadratically, which brings down the peak intensity quadratically with prop-

agation distance.

On the beam axis ( = 0) the intensity is given by

( ) = 0
20

2()
=

0

1 +
³




´2  (2.58)

The normalized beam intensity as a function of propagation distance is shown

in Figure 2.4

Figure 2.4: The normalized Beam intensity ( = 0)0 on the beam axis as

a function of propagation distance  [6], p. 84.

Power

The fraction of the total power contained in the beam up to a certain radius

is

 (  0)


=

2



Z 0

0

( )

=
4

2()

Z 0

0

exp

∙
− 22

2()

¸
 (2.59)

= 1− exp
∙
− 220
2()

¸
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Planes of const.
 Phase

Beam Waist

z/z R

Figure 2.5: Gaussian beam and its characteristics.

Thus, there is a certain fraction of power within a certain radius of the

beam

 (  ())


= 086 (2.60)

 (  15())


= 099 (2.61)

Beam radius

Due to diffraction, the smaller the spot size at the beam waist, the faster the

beam diverges according to 2.54 as illustrated in Figure ??

Beam divergence

The angular divergence of the beam is inversely proportional to the beam

waist. In the far field, the half angle divergence is given by

 =




 (2.62)

see Figure 2.5.
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Confocal parameter and depth of focus

In linear microscopy, only a layer which has the thickness over which the

beam is focused, called depth of focus, will contribute to a sharp image. In

nonlinear microscopy (see problem set) only a volume on the order of beam

cross section times depth of focus contributes to the signal. Therefore, the

depth of focus or confocal parameter of the Gaussian beam, is the distance

over which the beam stays focused and is defined as twice the Rayleigh range

 = 2 =
22


 (2.63)

The confocal parameter depends linear on the spot size (area) of the beam

and is inverse to the wavelength of light. At a wavelength of 1 a beam

with a radius of  = 1the beam will stay focussed ove distances as long

600m. However, if the beam is stronlgy focussed down to  = 10 the

field of depth is only 600m.

Phase

The phase delay of the Gaussian beam is

Φ( ) = 0 − () + 0
2

2()
(2.64)

() = arctan

µ




¶
 (2.65)

On beam axis, there is the additional phase () when the beam undergoes

focussing as shown in Figure 2.6. This is in addition to the phase shift that

a uniform plane wave already aquires.
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Figure 2.6: Phase delay of a Gaussian beam relative to a uniform plane wave

on the beam axis [6], p. 87. This phase shift is known as Guoy-Phase-Shift.

This effect is known as Guoy-Phase-Shift. The third term in the phase

shift is parabolic in the radius and describes the wavefront (planes of constant

phase) bending due to the focusing, i.e. distortion from the uniform plane

wave.

Figure 2.7: The radius of curvature () of the wavefronts of a Gaussian

beam [6], p. 89.

The surfaces of constant phase are determined by 0 − () + 0
2

2()
=

 Since the radius of curvature () and the additional phase () are

slowly varying functions of  i.e. they are constant over the radial variation

of the wavefront, the wavefronts are paraboloidal surfaces with radius (),

see Figures 2.7 and 2.8.
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Figure 2.8: Wavefronts of a Gaussian beam, [6] p. 88.

For comparison, Figure 2.9 shows the wavefront of (a) a uniform plane

wave, (b) a spherical wave and (c) a Gaussian beam. At points near the

beam center, the Gaussian beam resembles a plane wave. At large z, the

beam behaves like a spherical wave except that the phase fronts are delayed

by a quarter of the wavlength due to the Guoy-Phase-Shift.

Figure 2.9: Wavefronts of (a) a uniform plane wave;(b) a spherical wave; (c)

a Gaussian beam [5], p. 89.
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2.4 Ray Propagation

A ray propagating in an optical system, see Figure 2.10, can be described

by its position  with respect to the optical axis and its inclination with

respect to the optical axis 0 It is advantageous to use not ( 0) as the
ray coordinates but the combination (  0), where  is the local refractive
index at the position of the ray. Due to propagation, the ray coordinates

may change, which can be desribed by a marix, that maps initial position

and inclination into the corresponding quantitaties after the propagationµ
2
2

0
2

¶
=

µ
 

 

¶µ
1
1

0
1

¶
 (2.66)

This imaging matrix is called an ABCD-matrix.

Z

r’1

r2

r’2r1

1
2

Optical

System

Figure 2.10: Description of optical ray propagation by its distance and incli-

nation from the optical axis

The advantage in using (  0) as the ray coordinates is that it preserves
the phase space volume, i.e. for lossless optical systems the determinant of

the ABCD-matrix must be 1. Also Snell’s law for paraxial rays has then a

simple form, see Figure 2.11. For paraxial rays the angles to the interface

normal, 1 and 2 are much smaller than 1, and we can write

01 = tan 1 ≈ sin 1 ≈ 1 and 02 = tan 2 ≈ sin 2 ≈ 2

Then Snell’s law is

1 
0
1 = 2 

0
2 (2.67)
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Z

r’1 r2

r’2

r1

1 2

n1 n2

2

1

Figure 2.11: Snell’s law for paraxial rays

The ABCD-matrix describing a ray going from a medium with index 1
to a medium with index 2 is the unity matrix

2 = 1 (2.68)

2 
0
2 = 1 

0
1 (2.69)

Free space propagation

For propagation in free space, see Figure 2.12, the relationship between input

and output ray parameters is

2 = 1 + 01 · 
02 = 01

or the propagation matrix is

M =

µ
1 

0 1

¶
 (2.70)
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Z

r’1
r2

r’2

r1

1 2

L

Figure 2.12: Free space propagation

Propagation in medium with length L and index 

Free propagation through a medium with index  does result in a reduced

position shift with respect to the optical axis in comparison to free space,

because the beam is first bent to the optical axis according to Snell’s law,

see Figure 2.13. Therefore the corresponding ABCD-matrix is

M =

µ
1 

0 1

¶
 (2.71)

Z

r’1 r2

r’2

r1

1 2

L

Figure 2.13: Ray propagation through a medium with refractive index ,

shortens the path length of the beam by a factor of .

Parbolic surface or thin lens

Plano-Convex Lens When a ray penetrates a parabolic surface between

two media with refractive indices 1 and 2 it changes its inclination. A
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parabolic surface can be closely approximated by the surface of a sphere, see

Figure 2.14. Snells law in paraxial approximation is

1 (
0
1 + ) = 2 (

0
2 + )  (2.72)

Z

r’1 r2

r’2

r1

n2

0





R

Figure 2.14: Derivation of ABCD-matrix of a thin plano-convex lens.

The small angle  can be approximated by  ≈ 1 In total we then

obtain the mapping

2 = 1 (2.73)

2 
0
2 = 1 

0
1 +

1 − 2


1 (2.74)

or

M =

µ
1 0

1−2


1

¶
 (2.75)

Note, the second normal interface does not change the ray propagation matrix

and therefore Eq.(2.75) describes correctly the ray propagation through a thin

plano-convex lens.

Biconvex Lens If the lens would have a second convex surface, this would

refract the ray twice as strongly and we would obtain

M =

µ
1 0

21−2


1

¶
 (2.76)
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The quantity 22−1


is called the refractive strength of the biconvex lense

or inverse focal length 1Because the system of a thin lens plus free space

propagation results in the matrix (calculated in the reverse order)

M =

µ
1 

0 1

¶µ
1 0

− 1

1

¶
=

µ
0 

− 1

1

¶
 (2.77)

which ensures that each ray parallel to the optical axis goes through the on

axis focal point at the end of the free space section, see Figure 2.15.

f

r1

z

Figure 2.15: Imaging of parallel rays through a lens with focal length 

Curved Mirrors

Other often used optical components in imaging systems are curved mirrors

with radius of curvature  = , see Figure 2.16. The advantage of

reflective optics is that the rays don’t have to pass through dispersive material

like through a lense, which is very disturbing for ultrashort pulses.
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Z

r’1
r2

r’2

r1

0


-R



r’1

Figure 2.16: Derivation of ray matrix for concave mirror with Radius R.

As in the case of the thin lens,e the imaging does not change the distance

of the ray from the optical axis, however, the slope of the rays obey

01 −  = 02 +  (2.78)

with  ≈ 1 in paraxial approximation. Therefore the ABCD matrix

describing the reflection of rays at a curved mirror with  =  is

M =

µ
1 0

− 1

1

¶
 with  =



2
 (2.79)

Gauss’ Lens Formula:

As a simple application of the ray matrices for optical system design, we

derive Gauss’ lens formula, which says that all rays emitted from an orignial

placed a distance 1 from a lens with focal length  form an image at a

distance 2, which is related to 1 by

1

1
+
1

2
=
1


 (2.80)

see Figure 2.17.
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f
r1

z

d1 d2

r2

I II

Figure 2.17: Gauss’ lens formula.

The magnification of the lens system is  =
2
1
= 2

1
=
¯̄̄



1−

¯̄̄
 The ray

matrix that describes the imagaing from the orignal plane I to the image

plane II is described by the productµ
 

 

¶
=

µ
1 2
0 1

¶µ
1 0

− 1

1

¶µ
1 1
0 1

¶
=

Ã
1− 2



³
1− 2



´
1 + 2

− 1


1− 1


!
 (2.81)

In order that the distance 2 only depends on 1, but not on 01,  must be

0, which is Eq. (2.80). Thus in total we have

Magnification  =
¯̄̄



1−

¯̄̄
Distance to focus 2 −  =2

 (1 − )
(2.82)

More complicated imaging systems, such as thick lenses, can be described

by ray matrices and arbitrary paraxial optical systems can be analyzed with

them, which shall not be pursued further here. Rather, we want to study

how Gaussian beams are imaged by paraxial optical systems

2.5 Gaussian Beam Propagation

The propagation of Gaussian beams through paraxial optical systems can

be efficiently evaluated using the ABCD-law [4], which states that the q-

parameter of a Gaussian beam passing a optical system described by an
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ABCD-marix is given by

2 =
1 +

1 +
 (2.83)

where 1 and 2 are the beam parameters at the input and the output planes

of the optical system or component, see Figure 2.18

Figure 2.18: Gaussian beam transformation by ABCD law, [6], p. 99.

To proove this law, we realize that it is true for the case of free space

propagation, i.e. pure diffraction, comparing (2.83) with (2.53) and (2.70). If

we can proove that it is additionally true for a thin lens, then we are finished,

because every ABCD matrix (2x2 matrix) can be written as a product of a

lower and upper triangular matrix (LR-decomposition) like the one for free

space propagation and the thin lens. Note, the action of the lens is identical

to the action of free space propagation, but in the Fourier-domain. In the

Fourier domain the Gaussian beam parameter is replaced by its inverse (2.46)

e0(  ) =


()
exp

∙
−0

µ
2 + 2

2()

¶¸
 (2.84)

e0(  ) = 2 exp

∙
−()

µ
2 + 2

20

¶¸
(2.85)

But the inverse q-parameter transforms according to (2.83)

1

2
=

 1
1
+ 

 1
1
+

 (2.86)

which leads for a thin lens to

1

2
=
1

1
−1

 (2.87)
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This is exactly what a thin lens does, see Eq.(2.49), it changes the radius of

curvature of the phase front but not the waist of the beam according to

1

2
=
1

1
−1

 (2.88)

With that finding, we have proven the ABCD law for Gaussian beam prop-

agation through paraxial optical systems.

The ABCD-matrices of the optical elements discussed so far including

nonnomal incidence are summarized in Table 2.2. As an application of the

Optical Element ABCD-Matrix

Propagation in Medium with

index  and length 

µ
1 

0 1

¶
Thin Lens with

focal length 

µ
1 0

−1 1

¶
Mirror under Angle

 to Axis and Radius 

Sagittal Plane

µ
1 0

−2 cos 


1

¶
Mirror under Angle

 to Axis and Radius 

Tangential Plane

µ
1 0
−2

 cos 
1

¶
Brewster Plate under

Angle  to Axis and Thickness

 Sagittal Plane

µ
1 



0 1

¶
Brewster Plate under

Angle  to Axis and Thickness

 Tangential Plane

µ
1 

3

0 1

¶

Table 2.2: ABCD matrices for commonly used optical elements.

Gaussian beam propagation, lets consider the imaging of a Gaussian beam

with a waist 01 by a thin lens at a distance 1 away from the waist to a

beam with a different size 02, see Figure 2.19
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d1 d2

zR1 zR2

Figure 2.19: Focusing of a Gaussian beam by a lens.

There will be a new focus at a distance 2The corresponding ABCD

matrix is of course the one from Eq.(2.81), which is repeated hereµ
 

 

¶
=

Ã
1− 2



³
1− 2



´
1 + 2

− 1


1− 1


!
 (2.89)

The q-parameter of the Gaussian beam at the position of minimum waist is

purely imaginary 1 = 1 = 
201

and 2 = 2 = 

202


 where

2 =
 1 +

 1 +
=
1+

1 +
=

1+

1 +
= 2 (2.90)

In the limit of ray optics, where the beam waists can be considered to by

zero, i.e. 1 = 2 = 0 we obtain  = 0 i.e. the imaging rule of classical

ray optics Eq.(2.80). It should not come at a surprise that for the Gaussian

beam propagation this law does not determine the exact distance 2 of the

position of the new waist. Because, in the ray analysis we neglected dif-

fraction. Therefore, the Gaussian beam analysis, although it uses the same

description of the optical components, gives a slightly different and improved

answer for the position of the focal point. To find the position 2 we request

that the real part of the right hand side of (2.90) is zero,

 − 21 = 0 (2.91)

which can be rewritten as

1

2
=
1


− 1

1+
2
1

1−
 (2.92)
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Again for 1 → 0, we obtain the ray optics result. And the imaginary part

of Eq.(2.90) leads to
1

2
=

1

1

¡
2 + 21

2
¢
 (2.93)

or
1

202
=

1

201

µ
1− 1



¶2 "
1 +

µ
1

1 − 

¶2#
 (2.94)

With the magnification  for the spot size, with is closely related to the

Magnification  of ray optics, we can rewrite the results as

Magnification  =
p
1 + 2 with  = 1

1− and  =
¯̄̄



1−

¯̄̄
Beam waist 02 = · 01
Confocal parameter 22 =2 22
Distance to focus 2 −  =2 (1 − )

Divergence 02 = 01

(2.95)

2.6 Optical Resonators

With the Gaussian beam solutions, we can finally construct optical resonators

with finite transverse extent, i.e. real Fabry-Perots. To do that we insert into

the Gaussian beam, see Figure 2.20, curved mirrors with the proper radius

of curvature, such that the beam is imaged upon itself.

z1

L

z2

R1
R2

Figure 2.20: Fabry-Perot resonator with finite beam cross section by inserting

curved mirrors into the beam to back reflect the beam onto itself.



32 CHAPTER 2. CLASSICAL OPTICS

Curved-Flat Mirror Resonator

We first consider the simple resonator constructed by a curved and flat mirror,

i.e. only the left side of the gaussian beam in Figure 2.20, see Figure 2.21

z1 L

R1

=

Figure 2.21: Curved-Flat Mirror Resonator

From Eqs.(2.54) and (2.55) we immediately get an expression for the

radius of curvature of the mirror necessary to generate a certain confocal

parameter  =
2

or spot size on the flat mirror given a certain wavelength

1 = 

"
1 +

µ




¶2#12
 (2.96)

and

1 = 

∙
1 +

³


´2¸
 (2.97)

Since the confocal parameter is a positive quantity it follows that we always

need a mirror with a radius of curvature 1   to form a stable gaussian

mode in the resonator. The spot size on the flat and curved mirrors in terms

of the radius of curvature of the mirror and the distance of the mirror is

 =

r
1


4

s


1

µ
1− 

1

¶
 (2.98)

and

1 =

r
1


4

vuut 
1

1− 
1

 (2.99)
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There is a resonator mode with finite size for 0    1, i.e. the cavity

is stable in this parameter range. Figure 2.22 shows the normalized beam

radii on both mirrors as a function of the normalized distance between the

mirrors 
1


3

2

1

0

B
ea

m
 R

ad
ii

1.00.80.60.40.20.0
L/R1

w1/sqrt(R1)

w0/sqrt(R1)

Figure 2.22: Beam waists of the curved-flat mirror resonator as a function of

the cavity parameter 1

Note, that for a given curved mirror with radius of curvature () =

1, the waist of the beam goes to zero for both extremes of the distance

between the mirrors where the cavity is stable. There is a large central range

around  ≈ 12, where the beam waist is maximum and insensitive to the

exact distance between the mirrors.

Two-Curved Mirror Resonator

Now, we can analyze what happens for the case of a resonator with two curved

mirrors as shown in Figure 2.20. The gaussian beam formulas Eqs.(2.54)

and (2.55) give us now the following conditions for beam waists

1 = 

"
1 +

µ
1



¶2#12
 (2.100)
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2 = 

"
1 +

µ
2



¶2#12
 (2.101)

1 = 1

"
1 +

µ


1

¶2#
 (2.102)

2 = 2

"
1 +

µ


2

¶2#
 (2.103)

and

 = 1 + 2 (2.104)

The last three equations determine the confocal parameter  and the dis-

tances between location of waist and mirrors 1 and 2 in dependence on the

radii of curvature 1, 2 and the distance between mirrors . It is straight

forward to eliminate the confocal parameter from Eqs.(2.102), (2.103) and

to solve the remaining equation together with Eq.(2.104) for the distances

1 and 2. The result is

1 =
(2 − )

1 +2 − 2 (2.105)

and by symmetry

2 =
(1 − )

1 +2 − 2 = − 1 (2.106)

Resubstitution into Eq.(2.102) leads to an expression for the Rayleigh range

of the beam and its waist

2 = 
(1 − )(2 − )(1 +2 − )

(1 +2 − 2)2  (2.107)

and therefore

4 =

µ




¶2
(1 − )(2 − )(1 +2 − )

(1 +2 − 2)2 (2.108)

=

µ

√
12



¶2
2

12

(1− 
1
)(1− 

2
)( 

1
+ 

2
− 

1


2
)

( 
1
+ 

2
−2 

1


2
)2

 (2.109)
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For completeness the spot size on the mirrors is given by

41 =

µ
1



¶2
2 − 

1 − 

µ


1 +2 − 

¶
(2.110)

=

µ

√
12



¶2 1− 
2

1− 
1


1


2


1
+ 

2
− 

1


2

 (2.111)

By symmetry, we find the spot size on mirror 2 by switching index 1 and 2:

42 =

µ
2



¶2
1 − 

2 − 

µ


1 +2 − 

¶
(2.112)

=

µ

√
12



¶2 1− 
1

1− 
2


1


2


1
+ 

2
− 

1


2

 (2.113)

The mode characteristics 0, 1, 2, 1 and 2for the two-mirror resonator

are shown in Figure 2.23 for the case1 = 10cm and 2 = 11cm as a function

of the mirror distance 
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Figure 2.23: From top to bottom: two-mirror resonator mode characteristics

0, 1, 2, 1, 2 and cavity parameters, 1, 2,  for the case 1 = 10 cm

and 2 = 11 cm.
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Resonator stability As we can read of from Figure 2.23 for a two-mirror

resonator with concave mirrors and 1 ≤ 2, we obtain the general stability

diagram as shown in Figure 2.24.

L

0 R2 1R +R
2

R1

Figure 2.24: Stabile regions (black) for the two-mirror resonator.

There are two ranges for the mirror distance L, within which the cavity

is stable, 0 ≤  ≤ 1 and 2 ≤  ≤ 1 + 2The stable and unstable

parameter ranges can be expressed in a compact way in terms of the cavity

parameters 1 and 2 defined by  = ( − ), for  = 1 2These cavity

parameters together and its product  = 1 · 2 are shown in the last graph
of Figure 2.23. The cavity mode has finite size, i.e. it is stable for

stable : 0 ≤ 1 · 2 =  ≤ 1 (2.114)

and unstable for

unstable : 12 ≤ 0; or 12 ≥ 1 (2.115)

The stability criterion can be easily interpreted geometrically. Of importance

are the distances between the mirror mid-points M and the cavity end points,

i.e.  = ( − ) = − as shown in Figure 2.25.
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R1 R2

M1 M2 Z

r

L

S1S2

Figure 2.25: The stability criterion involves distances between the mirror

mid-points M and the cavity end points. i.e.  = ( − ) = −

The following rules for a stable resonator can be derived from Figure 2.25

using the stability criterion expressed in terms of the distances  Note, that

without proof, the distances and radii can be positive and negative, where

the latter indicate concave mirrors

stable : 0 ≤ 12

12
≤ 1 (2.116)

This results in the following rules for the geometry of stable two-mirror res-

onators:

• A resonator is stable if the mirror radii, laid out along the optical axis,
overlap.

• A resonator is unstable if the radii do not overlap or one lies within the
other.

Figure 2.26 shows stable and unstable resonator configurations.
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R1
R2 R1

R2

Stable Unstable

R1

R2

R2

R1

R2

R2

Figure 2.26: Illustration of stable and unstable resonator configurations.

Hermite-Gaussian-Beams (TEM-Beams)

It turns out that the Gaussian Beams are not the only solution to the paraxial

wave equation (2.43). The stable modes of the resonator reproduce them-

selves after one round-trip,

e(  ) = 

∙
0

()

¸


"√
2

()

#


∙√
2

()

¸
· (2.117)

exp

∙
−0

µ
2 + 2

2()

¶
+ (+ + 1)()

¸

where

 [] =  [] exp

∙
−

2

2

¸
, for  = 0 1 2  (2.118)
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are the Hermite-Gaussians with the Hermite-Polynomials

0 [] = 1

1 [] = 2

2 [] = 42 − 1 (2.119)

3 [] = 83 − 12

and () is the Guoy-Phase-Shift according to Eq.(2.65). The lower order

Hermite Gaussians are depicted in Figure 2.27

Figure 2.27: Hermite-Gauissians () for  = 0 1 2 and 3.

and the intensity profile of the first higher order resonator modes are

shown in Figure 2.28.
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Figure 2.28: Intensity profile of TEM-beams, [6], p. 103.

Besides the different mode profiles, the higher order modes experience

greater phase advances during propogation, because they are made up of

-vectors with larger transverse components.

Axial Mode Structure

As we have seen for the Fabry-Perot resonator, the longitudinal modes are

characterized by a roundtrip phase that is a multiple of 2 Back then, we

did not consider transverse modes. Thus in a resonator with finite transverse

beam size, we obtain an extended family of resonances, with distinguish-

able field patterns. The resonance frequencies  are determined by the

roundtrip phase condition

 = 2 for  = 0±1±2  (2.120)
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For the linear resonator according to Figure 2.20, the roundtrip phase of a

Hermite-Gaussian T-beam is

 = 2− 2( ++ 1) ((2)− (1))  (2.121)

where (2)− (1) is the additional Guoy-Phase-Shift, when the beam goes

through the focus once on its way from mirror 1 to mirror 2. Then the

resonance circular frequencies are

 =



[+ ( ++ 1) ((2)− (1))] (2.122)

If the Guoy-Phase-Shift is not a rational number times  then all resonance

frequencies are non degenerate. However, for the special case where the

two mirrors have identical radius of curvature  and are spaced a distance

 =  apart, which is called a confocal resonator, the Guoy-Phase-shift is

(2)− (1) = 2 with resonance frequencies

 =


2

∙
+

1

2
( ++ 1)

¸
 (2.123)

In that case all even, i.e.  + , transverse modes are degenerate to the

longitudinal or fundamental modes, see Figure 2.29.

Figure 2.29: Resonance frequencies of the confocal Fabry-Perot resonator,

[6], p. 128.

The odd modes are half way inbetween the longitudinal modes. Note, in

contrast to the plan parallel Fabry Perot all mode frequencies are shifted by

half of the free spectral range,  = 
2
, due to the Guoy-Phase-Shift.
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