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Lecture.3: phase matching




Coupled wave equation
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Coupled wave equation
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Example: three wave mixing at three different frequencies, @, ®,,®; and @, = @, + 0,
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dz n( @,)C,

AlAze J(k1+k2 k3)Z

0,) =4g,d A AR > d_Al__ 2oy A ALl kirko)z

dz n( @,)C,

Pu(@,) = 46,0 By (@)E; (-@,) = 4¢,0, AlAze_j(ks_kl)z_> 9 __ 20)2 A A e tirkeko)z
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Monley-Rowe relations

Example: three wave mixing at three different frequencies, @, ®,,®; and @, = @, + ®,

If we define wave vector mismatch AK = k1 + k2 — k3 , we can rewrite the coupled wave
equations:

d—Agz_j%AlAze_jAkz d_Aiz_ 2(()1 eff ASAZ g jakz dA2 _j Za)zdeff ABAl*ejAkz

dz n(w,)c, dz n(a)l)c dz n(w,)c,

Intensity is a more convenient physical quantity, which is related to electric field as

| =2n¢,c,|A” = 2ng,c,AA"  Intensity variation is described as: al _ £,C O(AdA LA d_A)

dz dz dz

Using coupled wave equations, we can derive the following intensity variation equations:

dl e dl . e AR dl,
o =S IM(AA ™) 2= Bed o, IM(AA ™) =8e 05 IM(AA A ™)
d I, d | --xq-- TR Tt
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The rate at which @, photons 5 : o N 2
i S 3 3
are created = The rate at
Energy conservation in which @, photons are K I1--
a lossless system created = The rate at which ¢ o o
@5 photons are destroyed Y Y Y 4
SHG SFG DFG/OPA




Solution with no depletion

Example: three wave mixing at three different frequencies, @, ®,,®; and @, = @, + ,

Let’s consider the special case that @, field and @, field are not depleted; that is, A1

and A2 are constant.
1

dA, _ 25‘)3 off il BYNYPS jAkz
dz n( @;)C, 0.8}
é?a&
—2jwid  AA, 1—e it 3
Aﬁ(z)—‘ ; j ( ) ¥§Q¢
3C0 ‘ jAk @
- , 0.21
8w:d 1.1,z
1,(2) = 3ef 12 —sin cZ(A—kZ) . -
N(w,)N(w,)n(w,;)&,C; 2 10 10
Akz/2
Under perfect phase 8w?dZ 11,27
i ition:  Ak=k +k —-k.=0 1,(2)= 312
matching condition: 1 TRy =R, 2(2) n(a)l)n(a)z)n(a)?))gocg

How to select a nonlinear crystal to maximize the nonlinear effect? We can define a figure of
merit (FOM) to compare different crystals: d fo
e

FOM =
n(a,)n(w,)n(w;) 5




Phase matching

| (2) = 8wid’ 11,27 - Cz(AkZ) _ @ Coherence length: the propagation
3\S) T n(a)l)n(a)z)n(a)g,)gocg 2 coh ‘Ak‘ distance at which the thre(_e waves
accumulate a s phase difference.

| | I I I

—w/ phase mismatch For phase mismatched case,

— perfect phase match the SFG intensity reaches a
maximum at distance of one

coherence length. It then

2 O diminishes to zero and repeats
8 with the period of 2 coherence
2 ®, —> length.

§= —

ELD Perfect phase match (Momentum

N conservation): Ak = k,+k,—k; =0

;N = @ N, +w,N,

| B, SN anll | e
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# of coherence length




A more intuitive picture: SHG
Z=0 z z+dz 7=

—p E expl J(ot —k;2)] Input (fundamental) field at z

d.. E’ exp[j(2mt — 2k,z)] SH polarization of the

medium at z

deff E12 exp[ J (2(01'[ _ 2k12)]d2 SH field radiated by SH

polarization within z and z+dz

—
srieidar d,, E2exp[ j(2at — 2k,z) — jk, (I - 2)]dz

Z=L radiated
Y vation Jet 1 €XPLj(2eit —k,1) +[j(k, - 2k1)z'dz
e w, =20, K, =w,C/N(w,)

If the phase matching condition Ak =k, —2k, =0 is satisfied, the SH field arriving
at Z=L is independent on the position z from where the SH field originates. In other
words all SH field contribution, from O to L, add in phase at z=L, leading to the -
highest SHG efficiency.



Wavelength conversion using the 2"d order nonlinear optics

SFG
W; = W, + ,
Longer Shorter
wavelength wavelength
Optical
> frequency
0, = 0, — O, ®, W, =20, 0,=20,
DFG SHG SHG
Energy Momentum Phase matching
conservation conservation condition
SHG @y =20 ks =2k, %o —2%p n,=n
C C
SFG @, =, +® k. =k, +Kk
3 1 2 3 1 2 —
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Sellmeier equation to model refractive index

: : 2 2
If the frequency is far away from the absorption resonance ‘COO — ‘ >> 20y

2
@

1) =0 0s w? = Ne? /(ms,)

Normally there are multiple resonant frequencies for the electronic oscillators.
It means in general the refractive index will have the form

2

o A’
n°(o) =1+ y(w) =1+ L =1+)a———
(@ =1+ (@) =1+ 2 A =1+ 287

For the frequency (wavelength) far away from absorption resonance, refractive
index increases with increasing frequency, which leads to

w;N(w;) = (@ + ,)n(w;) > wn(@,) + w,N(w,)

Therefore, dispersion prevents phase matching in an isotropic medium.
How about an anisotropic medium?



Example: SHG of o wave in BBO

A bit more general: the k vector in the arbitrary direction, and
the electrical field is in the xy plane; that is, we consider an

ordinary wave: E (w)=E(w)sing

P.(2w) 0 0 0 O
P,2w) |=2¢|d;y —djg 0 dyg
P, (2w) dj; dy; dy O

d;; (1.064um)| = 0.04 pm/V
d,6(1.064um)| = 2.2pm/V

E, () =—-E(w)cos¢

[ E%(w)sin¢ |
0. d, Ez(a))ocosz¢
0O O
0O O 0
0
| —E*(w)sin2¢

P.(2w) k

P, (2w) = —2¢,d,,E* (@) sin 2¢
P, (20) = —2&,d,.E* (w) cos 2¢

E-field direction of o wave:

E-field direction of e wave:

(sin ¢,—co0s ¢,0)

(—cos @ cos¢,—cosasin @,sin H)

P,(2w) = 2‘9ods1EZ ()

We can project the polarization onto the direction of o wave and e wave which are normal to k:

P (2w) = -2&,d,.E*(w) cos 3¢

Case 1: ¢ =0,0 =0 Fundamental o wave

P.(2w) = 2¢,(d,, sin & +d,, cos @sin 3¢) E* (w)

Case 2:¢ =90, 0 = 0 Fundamental o wave

generates SH o wave, demanding phase
matching condition of

N, (20) =n, ()

generates SH e wave, demanding phase
matching condition of

n, (20,0 =0)=n_ (o) 10




Example: SHG of o wave in BBO

We can project the polarization onto the direction of o wave and e wave which are normal to k:

P (2w) = -2&,d,.E*(w) cos 3¢ P.(2w) = 2¢,(d,, sin & +d,, cos @sin 3¢) E* (w)
Case 1: ¢ =0,0=0 Fundamental o wave | Case 2:¢=90,80 =0 Fundamental o wave
generates SH o wave (0—>0), demanding generates SH e wave(o—->e€), demanding
phase matching condition of phase matching condition of
N, (2w) =n, (o) n, (20,0 =0) =n, (o)
1.7
1.68
1.66 ———— -
: 0 "o ~
T 1.64 N (207) =—
o
= 1.62
&
£ 16
2
1.58
1.56
A e e e s B —
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

wavelenéth [um] 11



Phase matching for o2>e SHG in BBO

n,(0.515um,d = 23.3") = n_(1.03um) n,(0.4um, 8 = 29.2°) = n_(0.8um)
1.7\\\\\
1.68 \\
N S ~——
1.66 . \H ............. _
*4\ ————— ]
(>]<) o \\_ ! °
g 1.64 N, (29.2°) ~m— n (23.3% —
o
2 1.62
&
© 1.6
x \
1.58
AN )
e
1.56 \\
1.54 ——
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

wavelength [um]



Angle tuning for phase-matching

Optical axis
0 wave input no (9’ a)) _ no (a))
.- 1 C052 (9) sin 2 (9)
Kk 2 T T
| n(0,0) 1@ n’(w)
Yo
O —_

e wave BBO crystal T a | (0", w) =n, (@)
(SHG) wo special cases:

n,(90°, ) = n, (o)

For second harmonic generation, the wave with

: O wave

lower frequency is called fundamental wave. inout

From photon picture, two o wave photons P -
generate one e wave SHG photon. So we note

this type of SHG processas g+ 0 — e k> @T o)

How about other possible combinations? l'

e+e—>0 0+e—>0 o+e—e ﬁ];vj‘t"e BBO crystal

Can they satisfy phase matching condition in BBO?
13



Example: SHG phase matching in BBO

Phase matching condition:

e+e 0 Kk (w)+k, (@) —k (20)=0c Loy %o 206

(@ 00 nCo)

Wy Dy 20C, _
(@) N(@0) 1, @0)

0+€—>0 K (w)+k (@) —k (20)=0

0+€ € Kk (0)+k,(0)—k (20)=0e Lo o 206

0

+ — =0<
n () n(w,0) n,(20,0)

n, (a), ‘9) =N, (260)

1 1 2

= + =
n (o) n(w,6) n,(2w)

N S
n (o) n(o60) n Qw06

17 \\ BBO is negative uniaxial crystal.
o n(00)<n,20) —b <2
, 0

1661\ e | ° n(w) n(,6) n (2w)
x ' N —
S 1.64 \‘ ° Therefore €+6—0 0+e—0are
EPp \\ not allowed. Only g+0—e and
g N (40°) 0+e — e can take place.
E’ 1.6\

1.58 - . .

N For positive uniaxial crystal,
I ne N
1.56 iy — e+e—>0 0+e—>0 are allowed
1.54 0+0—>e 0+e—e are forbidden.
03 04 05 06 07 08 09 1 11

wavelength [um]
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Acceptance angle (angular phase-matching bandwidth)

Phase matching using birefringence requires to align the input optical beam at some
angle with respect to the crystal’s optical axis. How accurately the angle should be? Let

0, be the phase matching angle.

Ak(,,) =0 sin CZ(ATKL) =1 L is the crystal length.

o
©

We define acceptance angle A6, be the phase
matching angle such that:

o
o

i

©
~

|

sinc?(AkL/2)

Ak, +A0,,)L=7 sincz(%)zOA

o
[N

/

\

The SHG power drops by 60% from its peak value
achieved at phase matching angle.

)

o

0
For type | phase matching: -10

0 0

After some mathematics, we have

o 1 Ao

-5 0
AKL/2

20 20 on,(2m, 6
AK(O,, +A0,,) = C—[nO (@) -n,2w,0,, +A0,)]= c_[n° (0)-n,(2w,0,, +A0,) _n,(2,6)

1

0 ~ =
" 4Lc, [n,(2w)-n,(2w)]sin26,, AL [n,(2e)-n,(20)]sin 26,

5 10

00

AG, ]
Hm

p

15



Phase matching: critical Vs noncritical

o O 1 A 1
" 4Lc, [n,(20)-n,(2w)]sin 26, AL [n,(2e) - n,(20)]sin 26,

(1)

SHG from 800 nm light 4, =800nm 9, =29.2" n,(400nm)=1.6903 n,(400nm)=1.5679

using 1 mm BBO crystal:
A0, =3.28mrad ~0.2°

There is a trade-off between the acceptance angle and crystal length. For a fixed crystal length,
acceptance angle limits how tight we can focus the incident beam onto the crystal—smaller focal
spot leads to larger divergence angle.

One specific case: ‘9pm =90, Eg. (1) diverges, and we need to use higher order term in the
Taylor expansion.

A, 1

4L |n,(20) - n, (20)
is normally one order of magnitude larger. Phase matching might be achieved by temperature tuning.

After some mathematics, we have Aﬁpm ~{

For phase matching with Hpm #90° , acceptance angle (or angular phase-matching bandwidth) is
smaller. We call this type of birefringence-enabled phase matching as critical phase matching.

In contrast, phase matching with Hpm =90 acceptance angle (or angular phase-matching
bandwidth) is larger. We call this type of birefringence-enabled phase matching as noncritical phase

matching.

}1’2 In this case, the acceptance angle

16



Phase matching: type | Vs. type |l

In general, second-order nonlinear effects - ~=g-r- e
involve three waves with frequencies linked
by the equation
— ()]
; + W, = W, 0 o
Here @, is the highest frequency of the three. -1-120 (g (g
Type | phase matching: K Y
i)
w
@, wave and @, wave have the same “1 1
polarization; that is, they are both ordinary Y Y Y
waves or extraordinary waves: SHG SFG DFG/OPA

O+0—>€e o e+e—>0

Type |l phase matching:

(0, wave and (), wave have different
polarization:

O+é—>€ 0+€—0
e+0—>0 €+0—F€

TABLE 2.3.2 Phase-matching methods for uniaxial crys-
tals

Positive uniaxial Negative uniaxial
(ne = ng) (ne < ng)
Type I nga)_g = }?T(Ul —0—}15(:)2 n%’a)_g = n(l)wl + n§wn
Type 11 ngc% = n(l)cul —0—}15(:)2 }1%(:)3 =nfl"wl + n9wn

Robert Boyd, Nonlinear optics, chapter 2




Type 0 phase matching to maximize nonlinearity

"0 0 0 0 d, d16— For BBO crystal:

dnp: d16 _d16 0 d15 0 0 d,;(1.064um)=2.2pm/V| d,;(1.064um)=0.03pm/V
d;, dy; d; 0O 0 O

. d,,(1.064um) =0.04pm/V d,;(1.064um) =0.04pm/V

LiNbO, belongs to the same group:
d,s(1.064um) =-2.1pm/V d(1.064um) =-4.3pm/V

d,, (1.064um) = —4.3pm/V |d., (1.064um) = —27.2pm/V P.(20)

To use 4z to maximize the nonlinearity, we need to align
the E-field along z. Take SHG as an example:

P(20)=0 P,(20)=0 P,(20)=25,d,E*() K

The generated SHG wave is e wave, so we end up with

When all waves are in the same polarization,
E+E€ € Lecanit Type 0 phase matching. X

Perfect phase matching Ak =( is impossible. 18



aA _

dz

E(w)
—_—

SHG intensity

Quasi phase matching (QPM) by periodic
arrangement of nonlinearity

- 2a)dei’“f 2 ,— jAkz
n@2ao)c, (SHG)
deff E deff E deff E

When the mismatched phase accumulates
to 7 ,3x,57..., energy starts to flow

back from SH to the fundamental.

deff

deff

deff

3

4

# of coherent length

o
N

N Ol
3 N

w
3

N
SN

Total mismatched phase
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Quasi phase matching (QPM) by periodic
arrangement of nonlinearity

When the mismatched phase accumulates to 77 , 377,97 ..., energy starts to
flow back from SH to the fundamental. How about we shut down nonlinearity to
avoid this back conversion?

E(a)) : ! : ; :
—p Ay 0 i dy 0 I dy 1 0
672' %
/ <c_—5
2 / """"""" o7 5
2 A &
Q [S
= JC
© g
5 27T C_EU
oS
T
0 1 2 3 4 5 6

# of coherent length
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QPM by periodically poled LINbO5; (PPLN)

We can even do a better job by dAg - Za)deff

R 2e—jAkz
periodically flip the sign of 7 iz n2a)c,
E(w) : : : : :
m——l Tdeﬁ i l_deﬂ i ‘ deff i l_deﬂ i ‘ deff i l_deﬂ
Poling period A = 2L_ = 2r 67
Ak 5
> 7T
@ / A
9
S 377
i
%) / 27T

3 4
# of coherence length

Total mismatched phase
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Homemade QPM

GaAs has a second-order nonlinear
coefficient about 7 times larger than
LiNbO,; However it is an isotropic
medium, and thus we cannot use
birefringence enabled phase matching.
LiNbO,; works up to 5 um and GaAs is
transparent up to 17 um.

000d, 0 0
dy={0 0 0 0 dy O
000 0 0 d

d,(1.064um) =170 pm/V

Orientation patterned GaAs (OP-GaAs)
or GaP (OP-GaP): material growing with
opposite orientation.

22



SHG Iintensity

Summary of phase matching conditions

— perfect phase matching
—— quasi phase matching
— phase mismatched

-

L

//

/

0 1

2 3 4 5 6
# of coherence length
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PHYSICAL REVIEW VOLUME 127, NUMBER 46 SEPTEMBER 15, 1962

Interactions between Light Waves in a Nonlinear Dielectric*

J. A. ArRMSTRONG, N. BLOEMBERGEN, J. Ducuine,} Anp P. S. PERSHAN
Division of Engineering and A pplied Physics, Harvard University, Cambridge, Massachusetls

(Received April 16, 1962)

The induced nonlinear electric dipole and higher moments in an atomic system, irradiated simultaneously
by two or three light waves, are calculated by quantum-mechanical perturbation theory. Terms quadratic
and cubic in the field amplitudes are included. An important permutation symmetry relation for the non-
linear polarizability is derived and its frequency dependence is discussed. The nonlinear microscopic prop-
erties are related to an effective macroscopic nonlinear polarization, which may be incorporated into Max-
well’s equations for an infinite, homogeneous, anisotropic, nonlinear, dielectric medium. Energy and power
relationships are derived for the nonlinear dielectric which correspond to the Manley-Rowe relations in the
theory of parametric amplifiers. Explicit solutions are obtained for the coupled amplitude equations, which
describe the interaction between a plane light wave and its second harmonic or the interaction between
three plane electromagnetic waves, which satisfy the energy relationship ws=wi+ws, and the approximate
momentum relationship k3= k;+ks+Ak. Third-harmonic generation and interaction between more waves
is mentioned. Applications of the theory to the dc and microwave Kerr effect, light modulation, harmonic
generation, and parametric conversion are discussed.

The 22-page paper describes most of the basic principles of
nonlinear optics as we know it today.

Then why the field is still growing?

New laser technology, novel optical materials, and emerging applications.
24



Take-home message

Coupled wave equations describe the wave-mixing
process.

Phase matching is critical in maximizing the power
conversion efficiency in the wave-mixing process.

Phase matching can be achieved using birefringence in
an anisotropic medium.

Quasi-phase matching allows type O phase matching to
access to the largest tensor element.

25



Suggested reading

Coupled wave equation

-- Robert Boyd, Nonlinear optics, chapter 2

-- George Stegemann and Robert Stegemann, Nonlinear
optics, chapter 2 (chapter 4 presents detailed analytical
solution)

Phase matching

-- Geoffrey New, Introduction to nonlinear optics, chapter 2

-- George Stegemann and Robert Stegemann, Nonlinear
optics, chapter 3

-- Robert Boyd, Nonlinear optics, chapter 2
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