
  

 

Nonlinear optics: a back-to-basics primer  
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Lecture 3: phase matching 



Coupled wave equation 
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coupled equations. 

Plane waves propagating 
in the +z direction 
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Coupled wave equation 

Example: three wave mixing at three different frequencies,                    and  
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Monley-Rowe relations 
Example: three wave mixing at three different frequencies,                    and  321 ,, ωωω 213 ωωω +=
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If we define wave vector mismatch                               , we can rewrite the coupled wave 
equations: 
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Intensity is a more convenient physical quantity, which is related to electric field as 
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Solution with no depletion 
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Example: three wave mixing at three different frequencies,                    and  321 ,, ωωω 213 ωωω +=
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Let’s consider the special case that      field and       field are not depleted; that is,        
and       are constant. 
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Phase matching 
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A more intuitive picture: SHG 
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If the phase matching condition                                is satisfied, the SH field arriving 
at Z=L is independent on the position z from where the SH field originates. In other 
words all SH field contribution, from 0 to L, add in phase at z=L, leading to the 
highest SHG efficiency.   
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Wavelength conversion using the 2nd order nonlinear optics 
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Sellmeier equation to model refractive index 
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Normally there are multiple resonant frequencies for the electronic oscillators. 
It means in general the refractive index will have the form 

If the frequency is far away from the absorption resonance 
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For the frequency (wavelength) far away from absorption resonance, refractive 
index increases with increasing frequency, which leads to  

Therefore, dispersion prevents phase matching in an isotropic medium. 
How about an anisotropic medium? 



Example: SHG of o wave in BBO 
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z (optic axis) 
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A bit more general: the k vector in the arbitrary direction, and 
the electrical field is in the xy plane; that is, we consider an 
ordinary wave:   



























−
















−=

















φω

φω
φω

ε
ω
ω
ω

2sin)(
0
0
0
cos)(
sin)(

000
000

0000
2

)2(
)2(
)2(

2

22

22

333131

151616

1615

0

E

E
E

ddd
ddd

dd

P
P
P

z

y

x

φωεω 2sin)(2)2( 2
160 EdPx −=

)(2)2( 2
310 ωεω EdPz =

φωεω 2cos)(2)2( 2
160 EdPy −=

)2( ωeP

)2( ωoP

We can project the polarization onto the direction of o wave and e wave which are normal to k: 

φωεω 3cos)(2)2( 2
160 EdPo −= )()3sincossin(2)2( 2

16310 ωφθθεω EddPe +=
Case 1:                       Fundamental o wave 
generates SH o wave, demanding phase 
matching condition of  
                       

φ

φωω sin)()( EEx = φωω cos)()( EEy −=

E-field direction of o wave: )0,cos,(sin φφ −

E-field direction of e wave: )sin,sincos,coscos( θφθφθ −−

Vpmumd /2.2)064.1(16 =

Vpmumd /04.0)064.1(31 =

0,0 == θφ Case 2:                        Fundamental o wave 
generates SH e wave, demanding phase 
matching condition of  
                       

0,90 == ° θφ

)()2( ωω oo nn = )()0,2( ωθω oe nn ==



Example: SHG of o wave in BBO 
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We can project the polarization onto the direction of o wave and e wave which are normal to k: 
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Phase matching for oe SHG in BBO 
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Angle tuning for phase-matching 
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For second harmonic generation, the wave with 
lower frequency is called fundamental wave. 
From photon picture, two o wave photons 
generate one e wave SHG photon. So we note 
this type of SHG process as eoo →+
How about other possible combinations? 

oee →+ eeo →+oeo →+
Can they satisfy phase matching condition in BBO? 



Example: SHG phase matching in BBO 
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BBO is negative uniaxial crystal.  
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Therefore                                are 
not allowed. Only                  and  
                can take place. 
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For positive uniaxial crystal,  
oee →+ oeo →+ are allowed 
eoo →+ eeo →+ are forbidden. 
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Acceptance angle (angular phase-matching bandwidth) 
Phase matching using birefringence requires to align the input optical beam at some 
angle with respect to the crystal’s optical axis. How accurately the angle should be? Let            
      be the phase matching angle. 

For type I phase matching:  
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Phase matching: critical Vs noncritical 
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There is a trade-off between the acceptance angle and crystal length. For a fixed crystal length, 
acceptance angle limits how tight we can focus the incident beam onto the crystal—smaller focal 
spot leads to larger divergence angle.  
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One specific case:                , Eq. (1) diverges, and we need to use higher order term in the 
Taylor expansion.  
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After some mathematics, we have                                                                                                                In this case, the acceptance angle  
 
is normally one order of magnitude larger. Phase matching might be achieved by temperature tuning. 

°≠ 90pmθFor phase matching with                   , acceptance angle (or angular phase-matching bandwidth) is 
smaller. We call this type of birefringence-enabled phase matching as critical phase matching.  

In contrast, phase matching with                   , acceptance angle (or angular phase-matching 
bandwidth) is larger. We call this type of birefringence-enabled phase matching as noncritical phase 
matching.  

°= 90pmθ



Phase matching: type I Vs. type II 

In general, second-order nonlinear effects 
involve three waves with frequencies linked 
by the equation 
 
 
Here      is the highest frequency of the three.   
 
Type I phase matching:  
 
      wave and       wave have the same 
polarization; that is, they are both ordinary 
waves or extraordinary waves: 
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Type II phase matching:  
 
     wave and       wave have different 
polarization: 
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 Robert Boyd, Nonlinear optics, chapter 2 



Type 0 phase matching to maximize nonlinearity 
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To use      to maximize the nonlinearity, we need to align 
the E-field along z. Take SHG as an example: 
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The generated SHG wave is e wave, so we end up with  
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Quasi phase matching (QPM) by periodic 
arrangement of nonlinearity 
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QPM by periodically poled LiNbO3  (PPLN) 
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Homemade QPM 
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GaAs has a second-order nonlinear 
coefficient about 7 times larger than 
LiNbO3. However it is an isotropic 
medium, and thus we cannot use 
birefringence enabled phase matching. 
LiNbO3  works up to 5 um and GaAs is 
transparent up to 17 um. 

Vpmumd /170)064.1(36 =

Orientation patterned GaAs (OP-GaAs) 
or GaP (OP-GaP): material growing with 
opposite orientation. 
 



Summary of phase matching conditions 
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The 22-page paper describes most of the basic principles of 
nonlinear optics as we know it today. 

Then why the field is still growing? 
 

New laser technology, novel optical materials, and emerging applications. 
24 
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Take-home message 

 Coupled wave equations describe the wave-mixing 
process. 
 

 Phase matching is critical in maximizing the power 
conversion efficiency in the wave-mixing process. 
 

 Phase matching can be achieved using birefringence in 
an anisotropic medium. 
 

 Quasi-phase matching allows type 0 phase matching to 
access to the largest tensor element. 



Suggested reading 

Coupled wave equation 
 

-- Robert Boyd, Nonlinear optics, chapter 2 
-- George Stegemann and Robert Stegemann, Nonlinear 
optics, chapter 2 (chapter 4 presents detailed analytical 
solution) 
 
Phase matching 
 

-- Geoffrey New, Introduction to nonlinear optics, chapter 2 
-- George Stegemann and Robert Stegemann, Nonlinear 
optics, chapter 3 
-- Robert Boyd, Nonlinear optics, chapter 2 
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