Guoging (Noah) Chang, October 09, 2015

Nonlinear optics: a back-to-basics primer

Suggested references

Georgian Ultrafast Optics Group: Prof, Rick Trebino

Lectures

Professor Trebino is happy to share his complete course lectures and downloaded for use by many other professors and teachers around the world. Theyre college level but are easlly modified for high-school level. In the research folder, there are various research lectures, short courses, and even a fully narrated colloquium talk by Prot. Trebino.

Also, if you would like to help. please send any improvements, corections, or additions to Prof. Trebino. and he will incorporate them into the files. Thanks!

Robert W. Boyd, Nonlinear optics (2008)
Geoffrey New, Introduction to nonlinear optics (2011)
George Stegeman and Robert Stegeman, Nonlinear optics: phenomena, materials, and devices (2012)

David N. Nikogosyan, Nonlinear optical crystals: a complete survey (2005)

Rick Trebino's course slides on optics (http://frog.gatech.edu/lectures.html)

Basic Nonlinear Optical Crystals

If you want to talk to a nonlinear optics person, you need to speak his language; that is, you should understand the jargon in this field.

Preface v
Abbreviations xi
1 Introduction 1
2 Basic Nonlinear Optical Crystals 5
$2.1 \quad \beta-\mathrm{BaB}_{2} \mathrm{O}_{4}$, Beta-Barium Borate (BBO) 5
$2.2 \mathrm{LiB}_{3} \mathrm{O}_{5}$, Lithium Triborate (LBO) 19
$2.3 \quad \mathrm{LiNbO}_{3}$, Lithium Niobate (LN) 35
$2.4 \mathrm{KTiOPO}_{4}$, Potassium Titanyl Phosphate (KTP) 54
3 Main Infrared Materials 75
$3.1 \mathrm{AgGaS}_{2}$, Silver Thiogallate (AGS) 75
3.2 AgGaSe_{2}, Silver Gallium Selenide (AGSe) 86
$3.3 \mathrm{ZnGeP}_{2}$, Zinc Germanium Phosphide (ZGP) 96
3.4 GaSe, Gallium Selenide 108
4 Often-Used Crystals 115
$4.1 \quad \mathrm{KH}_{2} \mathrm{PO}_{4}$, Potassium Dihydrogen Phosphate (KDP) 115
$4.2 \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$, Ammonium Dihydrogen Phosphate (ADP) 133
$4.3 \mathrm{KD}_{2} \mathrm{PO}_{4}$, Deuterated Potassium Dihydrogen Phosphate (DKDP) 145
$4.4 \mathrm{CsLiB}_{6} \mathrm{O}_{10}$, Cesium Lithium Borate (CLBO) 154
$4.5 \mathrm{MgO}: \mathrm{LiNbO}_{3}$, Magnesium-Oxide-Doped Lithium Niobate (MgLN) 161
4.6 KTiOAsO4, Potassium Titanyl Arsenate (KTA) 168
$4.7 \mathrm{KNbO}_{3}$, Potassium Niobate (KN) 173
5 Periodically Poled Crystals and "Wafer" Materials 185
$5.1 \mathrm{LiTaO}_{3}$, Lithium Tantalate (LT) 185
$5.2 \mathrm{RbTiOAsO}_{4}$, Rubidium Titanyl Arsenate (RTA) 190
$5.3 \mathrm{BaTiO}_{3}$, Barium Titanate 196

This chapter contains information on the four most widely used nonlinear optical crystals: beta-barium borate (BBO), lithium triborate (LBO), lithium niobate (LN), and potassium titanyl phosphate (KTP). Together with their periodically poled derivatives, periodically poled lithium niobate (PPLN) and periodically poled potassium titanyl phosphate (PPKTP), these materials are employed in at least 75% of all today's practical applications.

All the values of the angular, temperature and spectral acceptances, given in this and in the following chapters, correspond to a 1 cm length of the considered nonlinear crystal.

$2.1 \beta-\mathrm{BaB}_{2} \mathrm{O}_{4}$, Beta-Barium Borate (BBO)

Negative uniaxial crystal: $n_{0}>n_{\text {s }}$
Molecular mass: 222.950
Specific gravity: $3.84 \mathrm{~g} / \mathrm{cm}^{3}[1] ; 3.849 \mathrm{~g} / \mathrm{cm}^{3}[2] ; 3.85 \mathrm{~g} / \mathrm{cm}^{3}$ at $T=293 \mathrm{~K}[3]$
Point group: 3 m
Lattice constants:
$a=12.532 \AA[4] ; 12.532 \pm 0.001 \AA[2] ; 12.547 \AA[5]$
$c=12.717 \AA$ [4]; $12.726 \pm 0.001 \AA$ [2]; $12.736 \AA$ [5]
Mohs hardness: 4 [6], [7]; 4.5 [2]
Melting point: 1368 K [2], [8]
Linear thermal expansion coefficient α_{t} [3]

$T[\mathrm{~K}]$	$\alpha_{\mathrm{t}} \times 10^{6}\left[\mathrm{~K}^{-1}\right], \\| c$	$\alpha_{\mathrm{t}} \times 10^{6}\left[\mathrm{~K}^{-1}\right], \perp c$
293	0.36	-2.54

Mean value of linear thermal expansion coefficient [5]

$T[\mathrm{~K}]$	$\alpha_{\mathrm{t}} \times 10^{6}\left[\mathrm{~K}^{-1}\right], \\| c$	$\alpha_{\mathrm{t}} \times 10^{6}\left[\mathrm{~K}^{-1}\right], \perp c$
$298-1173$	36	4.0

Specific heat capacity c_{p} at $P=0.101325 \mathrm{MPa}$

$T[\mathrm{~K}]$	$c_{\mathrm{p}}[\mathrm{J} / \mathrm{kgK}]$	Ref.
298	490	$[2]$
	496	$[9]$

Thermal conductivity coefficient

$\kappa[\mathrm{W} / \mathrm{mK}], \\| c$	$\kappa[\mathrm{~W} / \mathrm{mK}], \perp c$	Ref.
0.8	0.08	$[5]$
1.6	1.2	$[10]$

Direct band-gap energy at room temperature: $E_{\mathrm{g}}=6.2 \mathrm{eV}$ [11], 6.43 eV [12]
Transparency range:
at 0.5 level: $0.198-2.6 \mu \mathrm{~m}$ for $0.8-\mathrm{cm}$-long crystal [13]; $0.196-2.2 \mu \mathrm{~m}$ for 0.3-cm-long crystal [2]
at " 0 " transmittance level: $0.189-3.5 \mu \mathrm{~m}$ [8], [14]
at 0.5 transmittance level: $0.198-2.6 \mu \mathrm{~m}$ [1]

Linear absorption coefficient α

$\lambda[\mu \mathrm{m}]$	$\alpha\left[\mathrm{cm}^{-1}\right]$	Ref.	Note	
0.1934	1.39	$[15]$	$T=295 \mathrm{~K}$	
	0.29	$[15]$	$T=91 \mathrm{~K}$	
0.213	<0.21	$[1]$	best crystals	
0.264	0.04 ± 0.01	$[16]$	$\\| c$	
	0.06 ± 0.003	$[16]$	$\perp c, o$-wave	
	0.10 ± 0.003	$[16]$	$\perp c, e$-wave	
0.2661	<0.17	$[1]$	best crystals	
	$0.04-0.15$	$[2]$		
0.5321	0.01	$[17]$		
	<0.01	$[9]$		
1.0	$0.001-0.002$	$[2]$		
1.0642	<0.001	$[9]$		
2.09	0.0085	$[2]$	e-wave	
	0.07	$[2]$	o-wave	
2.55	0.5	$[18]$		

Two-photon absorption coefficient β

λ $[\mu \mathrm{m}]$	τ_{p} $[\mathrm{ns}]$	$\beta \times 10^{11}$ $[\mathrm{~cm} / \mathrm{W}]$	Ref.	Note	
0.211	0.0009	243 ± 85	$[19]$	$\theta=30^{\circ}, \phi=0^{\circ}$	
0.264	0.0008	93 ± 33	$[19]$	$\theta=30^{\circ}, \phi=0^{\circ}$	
	0.00022	68 ± 6	$[20]$	$\\| c$	

λ $[\mu \mathrm{m}]$	τ_{p} $[\mathrm{ns}]$	$\beta \times 10^{11}$ $[\mathrm{~cm} / \mathrm{W}]$	Ref.	Note	
		66 ± 7	$[20]$	$\perp c, o$-wave	
		47 ± 5	$[20]$	$\perp c, e$-wave	
	0.0002	61	$[21]$	$\theta=48^{\circ}$	
0.2661	0.015	90 ± 10	$[11]$	$\\| c$	
0.3547	0.017	1.0 ± 0.2	$[11]$	$\\| c$	

Experimental values of refractive indices [5]

Experimental values of refractive indices $\left.{ }^{2}\right]$	n_{e}	
$\lambda[\mu \mathrm{m}]$	n_{o}	1.56796
0.40466	1.69267	1.56376
0.43583	1.68679	1.56024
0.46782	1.68198	1.55914
0.47999	1.68044	1.55691
0.50858	1.67722	1.55465
0.54607	1.67376	1.55298
0.57907	1.67131	1.55247
0.58930	1.67049	1.55012
0.64385	1.66736	1.54589
0.81890	1.66066	1.54542
0.85212	1.65969	1.54469
0.89435	1.65862	1.54333
1.01400	1.65608	

Temperature derivative of refractive indices for temperature range 293-353 K [5]

$\lambda[\mu \mathrm{m}]$	$d n_{\mathrm{o}} / d T \times 10^{6}\left[\mathrm{~K}^{-1}\right]$	$d n_{\mathrm{e}} / d T \times 10^{6}\left[\mathrm{~K}^{-1}\right]$
$0.4-1.0$	-16.6	-9.3

Best set of dispersion relations (λ in $\mu \mathrm{m}, T=293 \mathrm{~K}$) [13]:

$$
\begin{aligned}
& n_{\mathrm{o}}^{2}=2.7359+\frac{0.01878}{\lambda^{2}-0.01822}-0.01354 \lambda^{2} \\
& n_{\mathrm{e}}^{2}=2.3753+\frac{0.01224}{\lambda^{2}-0.01667}-0.01516 \lambda^{2}
\end{aligned}
$$

Sellmeier equations with better accuracy near infrared absorption edge (λ in $\mu \mathrm{m}$, $T=293 \mathrm{~K}$) [22]:

$$
\begin{aligned}
& n_{\mathrm{o}}^{2}=2.7359+\frac{0.01878}{\lambda^{2}-0.01822}-0.01471 \lambda^{2}+0.0006081 \lambda^{4}-0.00006740 \lambda^{6} \\
& n_{\mathrm{e}}^{2}=2.3753+\frac{0.01224}{\lambda^{2}-0.01667}-0.01627 \lambda^{2}+0.0005716 \lambda^{4}-0.00006305 \lambda^{6}
\end{aligned}
$$

Other sets of Sellmeier equations are given in [1], [5], [8], [23], [24], [25], [26].

Nonlinear refractive index γ

$\lambda[\mu \mathrm{m}]$	$\gamma \times 10^{15}\left[\mathrm{~cm}^{2} / \mathrm{W}\right]$	Ref.	Note	
0.2661	0.025 ± 0.008	$[11]$	$\\| c$	
0.3547	0.36 ± 0.08	$[11]$	$\\| c$	
0.5321	0.55 ± 0.10	$[11]$	$\\| c$	
0.780	0.40 ± 0.05	$[27]$	$[100]$ direction	
	0.32 ± 0.05	$[27]$	$[010]$ direction	
0.850	0.37 ± 0.06	$[28]$	$\theta=29.2^{\circ}, \phi=0^{\circ}$	
1.0642	0.29 ± 0.05	$[11]$	$\\| c$	

Linear electrooptic coefficients measured at low frequencies (well below the acoustic resonances of BBO crystal, i.e., for the "free" crystal) at room temperature

$\lambda[\mu \mathrm{m}]$	$r_{22}^{\mathrm{T}}[\mathrm{pm} / \mathrm{V}]$	$r_{51}^{\mathrm{T}}[\mathrm{pm} / \mathrm{V}]$	Ref.	Note
0.5145	2.5 ± 0.1		$[29]$	$T=296 \mathrm{~K}$
0.6328	2.5	<0.04	$[30]$	
	2.2 ± 0.1		$[31]$	

Linear electrooptic coefficient measured at high frequencies (well above the acoustic resonances of BBO crystal, i.e., for the "clamped" crystal)

$\lambda[\mu \mathrm{m}]$	$r_{22}^{\mathrm{S}}[\mathrm{pm} / \mathrm{V}]$	Ref.	Note
0.5145	2.1 ± 0.3	$[29]$	$T=296 \mathrm{~K}$
0.6328	2.1 ± 0.1	$[31]$	

Expressions for the effective second-order nonlinear coefficient in general case (Kleinman symmetry conditions are valid, $d_{31}=d_{15}$) [32]:

$$
\begin{aligned}
& d_{\mathrm{ooe}}=d_{31} \sin (\theta+\rho)-d_{22} \cos (\theta+\rho) \sin 3 \phi \\
& d_{\mathrm{eoe}}=d_{\mathrm{oee}}=d_{22} \cos ^{2}(\theta+\rho) \cos 3 \phi
\end{aligned}
$$

Simplified expressions for the effective second-order nonlinear coefficient (approximation of small birefringence angle, Kleinman symmetry conditions are valid, $d_{31}=d_{15}$) [33]:

$$
\begin{aligned}
& d_{\mathrm{ooe}}=d_{31} \sin \theta-d_{22} \cos \theta \sin 3 \phi \\
& d_{\mathrm{eoe}}=d_{\mathrm{oee}}=d_{22} \cos ^{2} \theta \cos 3 \phi
\end{aligned}
$$

Absolute values of second-order nonlinear coefficients [32]:
$\left|d_{22}(0.532 \mu \mathrm{~m})\right|=2.6 \mathrm{pm} / \mathrm{V}$
$\left|d_{22}(0.852 \mu \mathrm{~m})\right|=2.3 \mathrm{pm} / \mathrm{V}$
$\left|d_{22}(1.064 \mu \mathrm{~m})\right|=2.2 \mathrm{pm} / \mathrm{V}$
$\left|d_{22}(1.313 \mu \mathrm{~m})\right|=1.9 \mathrm{pm} / \mathrm{V}$
$\left|d_{15}(1.064 \mu \mathrm{~m})\right|=0.03 \mathrm{pm} / \mathrm{V}$

Experimental values of internal angular, temperature, and spectral bandwidths at

Interacting wavelengths $[\mu \mathrm{m}]$	$\begin{aligned} & \theta_{\mathrm{pm}} \\ & {[\mathrm{deg}]} \end{aligned}$	$\begin{aligned} & \Delta \theta^{\text {int }} \\ & {[\mathrm{deg}]} \end{aligned}$	$\begin{aligned} & \Delta T \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \\ & \hline \end{aligned}$	$\begin{aligned} & \Delta v \\ & {\left[\mathrm{~cm}^{-1}\right]} \end{aligned}$	Ref.
$\begin{aligned} & \hline \text { SHG, } o+o \Rightarrow e \\ & 1.0642 \Rightarrow 0.5321 \end{aligned}$			37	9.7	[4]
	22.8	0.021			
	21.9	0.028			[23]
	22.7	0.030	51		[5]
$0.5321 \Rightarrow 0.26605$	47.3	0.010	4		[5]
$0.53 \Rightarrow 0.265$	47.6 (298 K	0.006			[80]
$\mathrm{SFG}, o+o \Rightarrow e$					
$1.0641+0.53205 \Rightarrow 0.3547$	31.3	0.011	16		[77]
$1.0642+0.5321 \Rightarrow 0.35473$	31.1	0.015			[5]
$2.44702+0.5712 \Rightarrow 0.4631$	22.1	0.026			[25]
$2.68823+0.5712 \Rightarrow 0.4711$	21.8	0.028			[25]
SHG, $e+o \Rightarrow e$					
$1.0642 \Rightarrow 0.5321$	32.7	0.034		8.8	[4]
	32.4	0.046	37		[5]
$\mathrm{SFG}, e+o \Rightarrow e$					
$1.0642+0.5321 \Rightarrow 0.35473$	38.4	0.020	13		[5]
$\mathrm{SFG}, o+e \Rightarrow e$					
$1.0642+0.5321 \Rightarrow 0.35473$	58.4	0.050	12		[5]

Interacting wavelengths [$\mu \mathrm{m}$]	θ_{pm} [deg]	$d \theta_{\mathrm{pm}} / d T[\mathrm{deg} / \mathrm{K}]$
SHG, $o+o \Rightarrow e$		
$0.5321 \Rightarrow 0.26605$	47.3	0.00250
$1.0642 \Rightarrow 0.5321$	22.7	0.00057
$\mathrm{SFG}, o+o \Rightarrow e$		
$1.0642+0.5321 \Rightarrow 0.35473$	31.1	0.00099
SHG, $e+o \Rightarrow e$		
$1.0642 \Rightarrow 0.5321$	32.4	0.00120
$\mathrm{SFG}, e+o \Rightarrow e$		
$1.0642+0.5321 \Rightarrow 0.35473$	38.4	0.00150
$\mathrm{SFG}, o+e \Rightarrow e$		
$1.0642+0.5321 \Rightarrow 0.35473$	58.4	0.00421

Calculated values of inverse group-velocity mismatch for SHG process in BBO

Interacting wavelengths $[\mu \mathrm{m}]$	$\theta_{\mathrm{pm}}[\mathrm{deg}]$	$\beta[\mathrm{fs} / \mathrm{mm}]$
$\mathrm{SHG}, o+o \Rightarrow e$		
$1.2 \Rightarrow 0.6$	21.18	54
$1.1 \Rightarrow 0.55$	22.28	76
$1.0 \Rightarrow 0.5$	23.85	104
$0.9 \Rightarrow 0.45$	26.07	141

A timeline of classical (linear) optics

Willibrord Snell (1591-1626), Snell's law
Johannes Kepler (1571-1630), Total internal reflection
Pierre de Fermat (1601-1665), Fermat principle
Christiaan Huygens (1629-1695), Wave theory of optics
Isaac Newton (1642-1727), Particle theory of light
Thomas Young (1773-1829), Interference of optical waves
Augustin Fresnel (1788-1827), Fresnel coefficients
James Clerk Maxwell (1831-1879), Maxwell's equations

Operators used in Maxwell's Equations

The "Del" operator: $\quad \nabla \equiv\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
The "Gradient" of a scalar function: $\quad \nabla f \equiv\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$

The "Divergence" of a vector function:

$$
\nabla \cdot G \equiv \frac{\partial G_{x}}{\partial x}+\frac{\partial G_{y}}{\partial x}+\frac{\partial G_{z}}{\partial x}
$$

The "Laplacian" operator:

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

Operators used in Maxwell's Equations

The "Laplacian" of a scalar function:

$$
\begin{aligned}
\nabla^{2} f \equiv \nabla \cdot \nabla f & =\nabla \cdot\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
& =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

The "Laplacian" of a vector function is the same, but for each component:

$$
\nabla^{2} G \equiv\left(\frac{\partial^{2} G_{x}}{\partial x^{2}}+\frac{\partial^{2} G_{x}}{\partial y^{2}}+\frac{\partial^{2} G_{x}}{\partial z^{2}}, \frac{\partial^{2} G_{y}}{\partial x^{2}}+\frac{\partial^{2} G_{y}}{\partial y^{2}}+\frac{\partial^{2} G_{y}}{\partial z^{2}}, \frac{\partial^{2} G_{z}}{\partial x^{2}}+\frac{\partial^{2} G_{z}}{\partial y^{2}}+\frac{\partial^{2} G_{z}}{\partial z^{2}}\right)
$$

Operators used in Maxwell's Equations

The "Curl" of a vector function:

$$
\nabla \times G \equiv\left(\frac{\partial G_{z}}{\partial y}-\frac{\partial G_{y}}{\partial z}, \frac{\partial G_{x}}{\partial z}-\frac{\partial G_{z}}{\partial x}, \frac{\partial G_{y}}{\partial x}-\frac{\partial G_{x}}{\partial y}\right)
$$

The curl can be computed from a matrix determinant:

$$
\nabla \times G=\operatorname{det}\left[\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
G_{x} & G_{y} & G_{z}
\end{array}\right]
$$

Maxwell's Equations of differential form in a medium without free current and free charge

Ampere's law:
$\nabla \times H=\frac{\partial D}{\partial t}$
Gauss's law:

$$
\nabla \cdot D=0
$$

Faraday's law:

$$
\nabla \times E=-\frac{\partial B}{\partial t}
$$

Gauss's law of magnetism:

$$
\nabla \cdot B=0
$$

Constitutive relations for a nonmagnetic material:

$$
D=\varepsilon_{0} E+P \longrightarrow \begin{aligned}
& \text { Polarization. It takes into } \\
& \text { light-matter interaction. }
\end{aligned} B=\mu_{0} H
$$

$\varepsilon_{0} \quad$ Electric permittivity in vacuum
$\mu_{0} \quad$ Magnetic permeability in vacuum

Derivation of wave equation

Vector Identity:

$$
\nabla \times(\nabla \times E)=\nabla(\nabla \cdot E)-\nabla^{2} E
$$

$$
\begin{aligned}
\nabla \times(\nabla \times E) & =-\nabla \times \frac{\partial B}{\partial t}=-\frac{\partial}{\partial t}(\nabla \times B) \\
& =-\frac{\partial}{\partial t}\left(\nabla \times\left(\mu_{0} \mathrm{H}\right)\right)=-\frac{\partial}{\partial t}\left(\mu_{0} \nabla \times \mathrm{H}\right) \\
& =-\frac{\partial}{\partial t}\left(\mu_{0}\left(\varepsilon_{0} \frac{\partial E}{\partial t}+\frac{\partial P}{\partial t}\right)\right) \\
\nabla^{2} E & -\nabla(\nabla \cdot E)=\mu_{0}\left(\varepsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}+\frac{\partial^{2} P}{\partial t^{2}}\right)
\end{aligned}
$$

Derivation of wave equation

$$
\nabla^{2} E-\nabla(\nabla \cdot E)=\mu_{0}\left(\varepsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}+\frac{\partial^{2} P}{\partial t^{2}}\right)
$$

In the linear optics of isotropic source-free media:

$$
\nabla \cdot D=0 \quad \longrightarrow \quad \nabla \cdot E=0
$$

In the nonlinear optics, normally we have: $\quad \nabla(\nabla \cdot E) \ll \nabla^{2} E$

Vacuum speed of light:

$$
c_{0}=\sqrt{\frac{1}{\mu_{0} \epsilon_{0}}}
$$

Simplified wave equation:

$$
\left(\nabla^{2}-\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) E=\mu_{0} \frac{\partial^{2} P}{\partial t^{2}}
$$

Interaction between EM waves and materials

Wavelength of green light is about 500 nm . So the optical wave experiences an effective homogeneous medium, which is characterized by

Electric permittivity \mathcal{E} and Magnetic permeability μ
For a nonmagnetic material

$$
P=\varepsilon_{0} \chi E \quad \varepsilon=\varepsilon_{0}(1+\chi) \mu=\mu_{0}
$$

χ is the electric susceptibility. The velocity of light is different from the vacuum speed by a factor called the refractive index

$$
n=\sqrt{(\varepsilon \mu) /\left(\varepsilon_{0} \mu_{0}\right)}=\sqrt{1+\chi}
$$

Lorentz model of light-atom interaction

Important assumptions

The atomic core is

-- positively charged
-- static (heavy, fixed within the crystal lattice)

- - with the center of charge at $x=0$.

The electrons are
-- light weight
-- elastically bound by a massless spring with spring constant with equilibrium position at $x=0$
-- carrying out a damped movement; that is, after removing the force, the movement decreases and finally ends.
-- the electron and atomic core form an oscillator with a resonant frequency w_{0}.

Lorentz model: forced electron harmonic oscillator

Dipole moment is defined as the product of magnitude of charges and the distance of separation between the charges.

Without an applied field, the centers of the negative and the positive charges coincide. The dipole moment is zero.
If a field constant in time is applied, the electrons are displaced relative to their position in the absence of an external field. The centers of the positive and negative charges no longer coincide and a static dipole moment is induced.

If a time-dependent electric field interacts with the atom, then the electron starts to oscillate around its equilibrium position with the same frequency of the electric field. Such an oscillating dipole moment will emit a new electromagnetic wave at the same frequency as well.

Lorentz model of light-atom interaction

When light of frequency w excites an atom with resonant frequency w_{0} :

Incident Light excites electron oscillation \rightarrow electron oscillation emits new light at the same frequency \rightarrow incident light interferes with the new light leading to the transmitted light.

The crucial issue is the relative phase of the incident light and this emitted light. For example, if these two waves are $\sim 180^{\circ}$ out of phase, the beam will be attenuated. We call this absorption.

Forced oscillator and resonance

When we apply a periodic force to a natural oscillator (such as a pendulum, spring, swing, or atom), the result is a forced oscillator.

Examples:
Child on a swing being pushed
Periodically pushed pendulum
Bridge in wind or an earthquake
Electron in a light wave
Nucleus in a light wave

Tacoma Narrows Bridge oscillating and collapsing because oscillatory winds blew at its resonance frequency. (collapsed under $64 \mathrm{~km} / \mathrm{h}$ wind conditions the morning of November 7, 1940)

The forced oscillator is one of the most important problems in physics. It is the concept of resonance.

One more example: child on a swing

LOW TRERGENCY

At resonanle

High reequency

If you give the swing a push it will swing back and forward. If you just give it one push it will swing back and forth a few times and then come to rest. (That's because of friction and damping.) To keep the swing moving you have to push again each time the swing reaches the closest point to you. You have to match the frequency of the swing to make it swing high.

The forced oscillator

Electric field

The forced oscillator

The electron charge is negative, so there's a 180° phase shift in all cases (compared to the previous slide's plots).

Above	
resonance	Weak
$\omega \gg \omega_{0}$	
vibration.	
In phase.	

\section*{The forced oscillator Electric field Emitted
 The forced oscillator
 | Electric field | | Emitted |
| :--- | :--- | :--- |
| at atom | Electron | field |}

Below resonance $\omega \ll \omega_{0}$		0	Weak emission. 90° out of phase.
On resonance $\omega=\omega_{0}$	-	\bigcirc	Strong emission. 180° out of phase.

Maxwell's Equations will yield emitted light that's 90° phaseshifted with respect to the atom's motion.

Above	
resonance	Weak emission. $\omega \gg \omega_{0}$
	-90° out of phase.

Interference depends on relative phase

When two waves add together with the same complex exponentials, we add the complex amplitudes, ${\underset{\sim}{E}}_{0}+{\underset{\sim}{E}}^{\prime}$.

Constructive interference:

Laser

Destructive interference:

Absorption

Quadrature phase:
$\pm 90^{\circ}$ interference:

Slower phase velocity (when accumulated over
Adapted from Rick Trebino's course slides distance)

Dielectric Permittivity: Lorentz model

$$
\begin{aligned}
& P(t)=\frac{\text { Dipole moment }}{\text { Volume }}=N \cdot p(t)=\varepsilon_{0} \chi E(t) \\
& \quad \text { Density }(\# \text { of atoms pe } \\
& \text { Elementary Dipole }
\end{aligned}
$$

Lorentz Model:

$$
p(t)=-e x(t)
$$

Pos.
Charge
Neg.
Charge

$x(t)$ is much smaller than the wavelength of electric field. Therefore we can neglect the spatial variation of the E field during the motion of the charge.

$$
\vec{E}(\vec{r}, t)=\vec{E}\left(\vec{r}_{A}, t\right)=E(t) \vec{e}_{x}
$$

Response to a monochromatic field: forced electron harmonic oscillator

damping frequency of undamped oscillator

$$
\begin{gathered}
E(t)=\mathrm{E} e^{j \omega t} \rightarrow x(t)=x e^{j \omega t} \rightarrow p(t)=-e x(t)=\mathrm{p} e^{j \omega t} \\
\mathrm{p}=\frac{e^{2} / m}{\omega_{0}^{2}-\omega^{2}+2 j \omega \gamma} \mathrm{E}
\end{gathered}
$$

$$
\chi(\omega)=\frac{N e^{2} /\left(m \varepsilon_{0}\right)}{\omega_{0}^{2}-\omega^{2}+2 j \omega \gamma}
$$

Sellmeier equation to model refractive index

If the frequency is far away from the absorption resonance $\left|\omega_{0}^{2}-\omega^{2}\right| \gg 2 \omega \gamma$

$$
\chi(\omega)=\frac{\omega_{p}^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)} \quad \omega_{p}^{2}=N e^{2} /\left(m \varepsilon_{0}\right)
$$

Normally there are multiple resonant frequencies for the electronic oscillators. It means in general the refractive index will have the form

$$
n^{2}(\omega)=1+\chi(\omega)=1+\sum_{i} A_{i} \frac{\omega_{i}^{2}}{\omega_{0}^{2}-\omega^{2}}=1+\sum_{i} a_{i} \frac{\lambda^{2}}{\lambda^{2}-\lambda_{i}^{2}}
$$

	Fused Quartz	Sapphire
a_{1}	0.6961663	1.023798
a_{2}	0.4079426	1.058364
a_{3}	0.8974794	5.280792
λ_{1}^{2}	$4.679148 \cdot 10^{-3}$	$3.77588 \cdot 10^{-3}$
λ_{2}^{2}	$1.3512063 \cdot 10^{-2}$	$1.22544 \cdot 10^{-2}$
λ_{3}^{2}	$0.9793400 \cdot 10^{2}$	$3.213616 \cdot 10^{2}$

Susceptibility is a tensor

$$
\left.\begin{array}{c}
\qquad P=\varepsilon_{0} \chi E \\
D=\varepsilon_{0} E+P
\end{array}\right] D=\varepsilon_{0} \varepsilon E \xrightarrow[=]{=1+\chi} \text { Dielectric constant } \quad \begin{aligned}
& \text { Polarization and electric field are vectors: } \quad P=\left[\begin{array}{c}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right] \quad E=\left[\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]
\end{aligned}
$$ order tensor (i.e., 3 by 3 matrix):

$$
\left[\begin{array}{c}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right]=\varepsilon_{0}\left[\begin{array}{ccc}
\chi_{x x} & \chi_{x y} & \chi_{x z} \\
\chi_{y x} & \chi_{y y} & \chi_{y z} \\
\chi_{z x} & \chi_{z y} & \chi_{z z}
\end{array}\right]\left[\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]
$$

A more convenient notation:

$$
\begin{array}{ll}
P_{i}=\varepsilon_{0} \chi_{i j} E_{j} \quad & \chi_{i j} \text { is the linear susceptibility tensor. } \\
\text { Repeated indices imply summation. }
\end{array}
$$

$D_{i}=\varepsilon_{0} \varepsilon_{i j} E_{j}=\varepsilon_{0}\left(\delta_{i j}+\chi_{i j}\right) E_{j} \quad \delta_{i j}$ is the identity matrix.

Optical anisotropy: birefringence

$$
\left[\begin{array}{l}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right]=\varepsilon_{0}\left[\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{y x} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right]\left[\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]
$$

We can always select a (x, y, z) axes (i.e., principal dielectric axes) to diagonalize the dielectric matrix to the following form:

$$
\begin{aligned}
& {\left[\begin{array}{l}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right]=\varepsilon_{0}\left[\begin{array}{ccc}
\varepsilon_{x x} & 0 & 0 \\
0 & \varepsilon_{y y} & 0 \\
0 & 0 & \varepsilon_{z z}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]=\varepsilon_{0}\left[\begin{array}{ccc}
n_{x}^{2} & 0 & 0 \\
0 & n_{y}^{2} & 0 \\
0 & 0 & n_{z}^{2}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]} \\
& n_{x}=n_{y}=n_{z} \rightarrow \begin{array}{c}
\text { Isotropic ("the same in all directions") } \\
\text { medium (no birefringence) }
\end{array} \\
& n_{x}=n_{y}=n_{o} \quad n_{z}=n_{e} \neq n_{o} \quad \text { Uniaxial medium }\left\{\begin{array}{l}
n_{e}>n_{o} \\
n_{e}<n_{o}
\end{array}\right. \text { Positive uniaxial } \\
& n_{x} \neq n_{y} \neq n_{z} \quad \rightarrow \quad \text { Diaxial medium uniaxial }
\end{aligned}
$$

Crystal symmetry

A crystal or crystalline solid is a solid material whose constituents, such as atoms, molecules or ions, are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions.

From Wikipedia

Every crystal belongs to one of 32 point symmetry classes, which are categorized into 7 crystal systems.

If an object is invariant under point reflection through its center, it is said to possess center symmetry or inversion symmetry. The object is centrosymmeric. Othervise it is non-centrosymmetric.

System/Class No.	Symmetry code	Inversion sym.	Examples
Biaxial crystals			
Triclinic system			
1	1	no	
2	$\overline{1}$	yes	Copper sulphate
Monoclinic system			
3	2	no	
4	m	no	
5	$2 / \mathrm{m}$	yes	
Orthorhombic system			
6	222	no	
7	mm 2	no	LBO, KTP, KTA
8	2/m $2 / \mathrm{m} 2 / \mathrm{m}$	yes	
Uniaxial crystals			
Tetragonal system			
9	$\overline{4}$	no	
10	4	no	
11	$\overline{4} 2 \mathrm{~m}$	no	KDP, ADP, CDA
12	422	no	Nickel sulphate
13	4/m	yes	
14	4 mm	no	
15	4/m 2/m 2/m	yes	
Trigonal system			
16	3	no	Sodium periodate
17	$\overline{3}$	yes	
18	32	no	α-quartz
19	3 m	no	BBO, Lithium niobate
20	$\overline{3} 2 / \mathrm{m}$	yes	Calcite
Hexagonal system			
21	$\overline{6}$	no	
22	$\overline{6} 2 \mathrm{~m}$	no	Gallium selenide
23	6	no	Lithium iodate
24	622	no	β-quartz
25	6/m	yes	
26	6 mm	no	Cadmium selenide
27	6/m 2/m 2/m	yes	
Optically isotropic crystals			
Cubic system			
28	23	no	Sodium chlorate
29	432	no	
30	$3 \mathrm{~m}=2 / \mathrm{m} \overline{3}$	yes	Pyrite
31	$\overline{4} 3 \mathrm{~m}$	no	Gallium arsenide, zinc blende
32	$4 / \mathrm{m} \overline{3} 2 / \mathrm{m}=\mathrm{m} 3 \mathrm{~m}$	yes	Sodium chloride, diamond

Maxwell's Equations of differential form in a medium without free current and free charge

Ampere's law:
$\nabla \times H=\frac{\partial D}{\partial t}$
Gauss's law:

$$
\nabla \cdot D=0
$$

Faraday's law:

$$
\nabla \times E=-\frac{\partial B}{\partial t}
$$

Gauss's law of magnetism:

$$
\nabla \cdot B=0
$$

Constitutive relations for a nonmagnetic material:

$$
D=\varepsilon_{0} E+P \longrightarrow \text { Polarization } \quad B=\mu_{0} H
$$

$\varepsilon_{0} \quad$ Electric permittivity in vacuum
$\mu_{0} \quad$ Magnetic permeability in vacuum

Light propagation in anisotropic media

Consider plane EM waves of angular frequency ω propagating in the direction of the unit vector \hat{s}, that is

$$
D=D_{0} \exp [\mathrm{j}(\omega \mathrm{t}-k \cdot r)] \quad B=B_{0} \exp [\mathrm{j}(\omega \mathrm{t}-k \cdot r)]
$$

Gauss's law: $\quad \nabla \cdot D=0 \quad \longrightarrow k \cdot D=0] \quad k \perp D \perp B$
Gauss's law $\nabla \cdot B=0 \longrightarrow k \cdot B=0 \quad$ They form a orthogonal basis. of magnetism:

Ampere's law: $\nabla \times H=\frac{\partial D}{\partial t} \longrightarrow H \perp D$
Faraday's law: $\quad \nabla \times E=-\frac{\partial B}{\partial t} \longrightarrow E \perp B$
Constitutive relations for a nonmagnetic materi

$$
\begin{aligned}
B & =\mu_{0} H \longrightarrow H / / B \\
D & =\varepsilon_{0} E+P
\end{aligned}=\varepsilon_{0} \varepsilon E \longrightarrow D H E \text { in an anisotropic medium. }
$$

Poynting vector $E \times H$ is NOT in the same direction as k.

Light propagation in a uniaxial crystal

$$
\left[\begin{array}{ccc}
\varepsilon_{x x} & 0 & 0 \\
0 & \varepsilon_{y y} & 0 \\
0 & 0 & \varepsilon_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
n_{x}^{2} & 0 & 0 \\
0 & n_{y}^{2} & 0 \\
0 & 0 & n_{z}^{2}
\end{array}\right] \longrightarrow \begin{array}{cc}
n_{x}=n_{y}=n_{o} & n_{z}=n_{e} \\
\frac{x^{2}}{n_{o}^{2}}+\frac{y^{2}}{n_{o}^{2}}+\frac{z^{2}}{n_{e}^{2}}=1 & \begin{array}{l}
\text { Index ellipsoid for } \\
\text { uniaxial crystal }
\end{array} \\
\hline
\end{array}
$$

Take BBO as an example

$$
\left\lvert\, \begin{gathered}
n_{o}^{2}(\lambda)=2.7359+\frac{0.01878}{\lambda^{2}-0.01822}-0.01354 \lambda^{2} \\
\frac{d n_{o}}{d T}=-9.3 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
n_{e}^{2}(\lambda)=2.3753+\frac{0.01224}{\lambda^{2}-0.01667}-0.01516 \lambda^{2} \\
\frac{d n_{e}}{d T}=-16.6 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{gathered}\right.
$$

Light propagation in a uniaxial crystal

(1) Index ellipsoid is used to find the two refractive indices and the two corresponding directions of D associated with the two independent plane waves that can propagate along k direction.
(2) The plane through the origin and perpendicular to k intersects with the index ellipsoid and generates an ellipse.
(3) D_{1} lies in the $x-y$ plane and is perpendicular to the optical axis z. D_{2} lies in the plane of $z-k . D_{1}$ is called ordinary wave and D_{2} extraordinary wave.
(4) The two axes of the intersection ellipse are $2 n_{o}$ and $2 n_{\text {eff }}(\theta)$
(5) n_{o} is the refractive index for D_{1}. $n_{\text {eff }}(\theta)$ is the refractive index for D_{2}.

$$
\frac{1}{n_{e f f}^{2}(\theta)}=\frac{\cos ^{2}(\theta)}{n_{o}^{2}}+\frac{\sin ^{2}(\theta)}{n_{e}^{2}} \text { Two special cases: }
$$

$$
\begin{aligned}
& n_{e}\left(0^{0}\right)=n_{o} \\
& n_{e}\left(90^{0}\right)=n_{e}
\end{aligned}
$$

Example: BBO at room temperature

BBO is a negative uniaxial nonlinear crystal.

More on ordinary wave and extraordinary wave

$s=E \times H \quad$ Represents the energy flow.
For o-wave, D and E are in parallel, and k and s are in the same direction.
For e-wave, D and E are NOT in parallel, and the energy flows at the direction different from k.

Take-home message

- Constitutive relations describe light-matter interaction.
- Material polarization can be modeled by harmonic electric oscillation.
- In an anisotropic medium, linear susceptibility is a $2^{\text {nd }}$ rank tensor.
- Ordinary wave (o wave) and extraordinary wave (e wave) experience different refractive indices. The refractive index of e wave depends on the incident angle.
- E wave and o wave carry energies, which may flow at different direction causing double refraction.

Suggested reading

Classical harmonic oscillator model
-- Mark Fox, optical properties of solids, chapter 2
-- George Stegemann and Robert Stegemann, Nonlinear optics, chapter 1

EM wave propagation in anisotropic media
-- Amnon Yariv and Pochi Yeh, optical waves in crystals, chapter 1 and 4
-- Geoffrey New, Introduction to nonlinear optics, chapter 3

