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Chapter 1

Introduction

1.1 Course Mission

• Generation of ultrashort pulses: Nano-, Pico-, Femto-, Attosecond
Pulses

• Propagation of ultrashort pulses, linear and nonlinear effects

• Pulse Characterization

• Pulse Amplification

• Applications in high precision measurements, nonlinear optics, optical
signal processing, optical communications, ultrafast EUV/XUV pulse

generation via high harmonics,....

1.2 Pulse Characteristics

Most often, there is not an isolated pulse, but rather a pulse train.

1
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(n-1)TR nTR (n+1)TR

�FWHM

Figure 1.1: Periodic pulse train

: pulse repetition time

 : pulse energy

 = : average power

FWHM is the Full Width at Half Maximum of the intensity envelope of the

pulse in the time domain.

The peak power is roughly given by

 =


FWHM
= 



FWHM
 (1.1)

and the peak electric field is given by

 =

r
20



eff
 (1.2)

eff is the beam cross-section and 0 = 377Ω is the free space impedance.

Time scales:

1 ns ∼ 30 cm (high-speed electronics, GHz)

1 ps ∼ 300m

1 fs ∼ 300 nm

1 as = 10−18 s ∼ 03 nm = 3 Å (typ-lattice constant in metal)

The shortest optical pulses generated to date are about 3 − 5 fs at 800 nm
( = 27 fs), less than two optical cycles, and 80 as in the EUV at 10 nm.

For few-cycle pulses, the electric field becomes important, not only the in-

tensity!



1.2. PULSE CHARACTERISTICS 3

t

5fs

Figure 1.2: Electric field waveform of a 5 fs pulse at a center wavelength of

800 nm. The electric field depends on the carrier-envelope phase.

average power:

 ∼ 1 − 1

repetition rates:

−1 =  = mHz− 100GHz
pulse energy:

 = 1pJ− 1kJ
pulse width:

FWHM =
5 fs− 50 ps modelocked

30 ps− 100 ns Q− switched
peak power:

 =
1kJ

1 ps
=
1 J

1 fs
∼ 1PW

obtained with Nd:glass (LLNL - USA, [1][2][4])and Ti:sapphire lasers [3].

For a typical laboratory pulse, the peak power is

 =
10nJ

10 fs
∼ 1MW

peak field of typical laboratory pulse:

 =

s
2× 377× 10

6 × 1012
 × (15)2

V

m
≈ 1010 V

m
=
10V

nm


which is a field strength at the onset of plasma generation in a solid.
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1.3 Applications

• High time resolution: Ultrafast Spectroscopy, tracing of ultrafast phys-
ical processes in condensed matter (see Fig. 1.3), chemical reactions,

physical and biological processes, influence chemical reactions with fem-

tosecond pulses: Femto-Chemistry (Noble Prize, 2000 to A. Zewail).

Pump-probe measurement

Computer-controlled
translation stage

1 fs <=> 0.15 µm

Short pulse laser Beam splitter

Spiegel

s( t)
Slow
detector

Time delay between
pump and probe pulse

�t

�t

s( t)

Computer
screen

Pump pulse

Probe pulse

Lens

Test device

�

�

Charge carrier recombination: ns

Thermalization electrons with lattice: ps

Thermalization electron gas: 10 -100 fs

Figure 1.3: Pump-probe setup to extract time constants relevant for the

carrier dynamics in semiconductors.

• High power lasers with average powers of tens of kilowatts can cut many
centimeter thick steel plates at high speed using thermal melting.

• Short pulses enable high peak power at low average power: Nonthermal
laser material processing, surgery.

• Nonlinear frequency conversion
• Ultra high intensity physics: x-ray generation, particle acceleration, Ex-
treme Nonlinear Optics. Laser systems reaching petawatts (1015Watt)

of peak power were built at Lawrence Livermore Laboratory for the
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first time in 1996, (see Fig. 1.4) and much more compact versions are

under construction at several laboratories around the world reaching

peak intenisties approaching 1023Watt/cm2. The enormous peak power

(the average power consumption of the earth is on the order of a few

Terawatt (1012Watt)), even though only available over a fraction of a

picosecond, enables the investigation of new physics and fundamental

interactions at extreme intensities, such as the scattering of photons

with each other invoking vacuum nonlinearities (the Quantum Electro-

dynamic Vacuum), see Figure 1.5.

Figure 1.4: First petawatt laser system installed at LLNL us-

ing chirped pulse amplification and the NOVA amplifier chain, see

http://www.llnl.gov/str/MPerry.html.
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Figure 1.5: Progress in peak intensity generation from lasers over the last 45

years. Courtesy Gerard Mourou.

• High speed sampling of fast electrical signals with low jitter, see Fig.
1.6.

As we will see, femtosecond lasers have the potential to generate pulse

trains with equal spacing to the level of 100 attoseconds and below over

time periods stretching over a millisecond.
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High Speed A/D-Conversion
(100 GHz)

Voltage

Time

o o

To

�t

Voltage

Modulator

Pulse jitter �t: = 2�
�t
To

Vo

�V

�V
Vo

�V
Vo

: 10 bit

=100 GHz
1
To

=> �t ~ 1 fs

Time

Figure 1.6: High speed A/D conversion with a high repetition rate pico- or

femtosecond laser.

• High spatial resolution: FWHM; optical imaging, e.g. optical coher-
ence tomography, see Figs. 1.7-1.9).

XY

Breadboard

Detector

Reference

mirror

Scanning system

High resolution OCT

KLM

Titan sapphire laser

Personal

computer

J. G. Fujimoto, MIT

Figure 1.7: Setup for optical coherence tomography.
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Figure 1.8: Cross section through the human eye.

Figure 1.9: Comparison of retinal images taken with a superluminescence

diode (top) versus a broadband Ti:sapphire laser (below).

• Optical Frequency Metrology: Optical spectrum of periodic pulse train
is a set of discrete equally spaced lines. Can be used as ruler in the

frequency domain. Enables direct measurement of optical frequencies

with sub-Hz level precision and the construction of optical clocks, see

Figure 1.10
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fR = 1/TR    : pulse repetition rate

fR

f0 = m fROptical Ref. 

Optical Clock Principle

TR

CE 0 

Laser CE-phase stabilized Femtosecond Pulse Train 

CE 0  CE 0  CE 0  CE 0  CE 0 

(n/m) f0

Figure 1.10: Principle of femtosecond laser frequency combs and optical

clocks

• High Order Harmonic Generation in the EUV/XUV range and Attosec-
ond Pulse Generation

Figure 1.11: Three step model of high order harmonic generation: (a) Energy

scale of electron ionized by strong field tunneling from an atom, acceleration

within a laser cycle, and recollision with the parent ion.(b) Electric field

waveform and electron trajectories depending on the time of ionization.
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1.4 Review of Laser Essentials

Linear and ring cavities:

Laser

Gain

High reflector
(r 100%)1�

Output coupler
(r )2

z

High
reflector

Output
coupler

High reflector

Gain

12

1

(a)

(b) Output
beam

Figure 1.12: Possible cavity configurations. (a) Schematic of a linear cavity

laser. (b) Schematic of a ring laser. [1]

Steady-state operation: Electric field must repeat itself after one roundtrip.

Consider a monochromatic, linearly polarized field

( ) = <©0j(−)ª  (1.3)

where

 =



 (1.4)

is the propagation constant in a medium with refractive index .

Consider linear resonator in Fig. 1.12a. Propagation from (1) to (2) is

determined by  = 0+j00 (complex refractive index), with the electric field
given by

 = <
n
0



00 j−j



(0+)

o
 (1.5)
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where  is the complex refractive index of the gain medium (outside the

gain medium  = 1 is assumed),  is the length of the gain medium,  is

the outside gain medium, and  =  +  is the optical path length in the

resonator.

Propagation back to (1), i.e. one full roundtrip results in

 = <
n
12

2

00 0

j−j2


o
⇒ 12

2

00  = 1 (1.6)

i.e. the gain equals the loss, and furthermore, we obtain the phase condition

2


= 2 (1.7)

The phase condition determines the resonance frequencies, i.e.

 =



(1.8)

and

 =


2
 (1.9)

The mode spacing of the longitudinal modes is

∆ =  − −1 =


2
(1.10)

(only true if there is no dispersion, i.e.  6= ()). Assume frequency

independent cavity loss and bell shaped gain (see Fig. 1.13).

Laser gain
Cavity loss

Longitudinal modes

Laser output

Frequency

�f=c/2l

Figure 1.13: Laser gain and cavity loss spectra, longitudinal mode location,

and laser output for multimode laser operation.
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Laser output

Frequency

Small signal gain

Cavity loss

Longitudinal modes

�f=c/2l

Saturated gain

due to filter

Figure 1.14: Gain and loss spectra, longitudinal mode locations, and laser

output for single mode laser operation.

To assure single frequency operation use filter (etalon); distinguish be-

tween homogeneously and inhomogeneously broadened gain media, effects of

spectral hole burning! Distinguish between small signal gain 0 per roundtrip,

i.e. gain for laser intensity  → 0, and large signal gain, most often given by

 =
0

1 + 
sat

 (1.11)

where sat is the saturation intensity. Gain saturation is responsible for the

steady state gain (see Fig. 1.14), and homogeneously broadened gain is

assumed.

To generate short pulses, i.e. shorter than the cavity roundtrip time,

we wish to have many longitudinal modes runing in steady state. For a

multimode laser the laser field is given by

( ) = <
"X



̃
j(−+)

#
 (1.12a)

 = 0 +∆ = 0 +



 (1.12b)

 =



 (1.12c)
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where the symbolˆdenotes a frequency domain quantity. Equation (1.12a)

can be rewritten as

( ) = <
(
j0(−)

X


̃
j(∆(−)+)

)
(1.13a)

= < £(− )j0(−)
¤

(1.13b)

with the complex envelope


³
− 



´
=
X


̃
j(∆(−)+) = complex envelope (slowly varying)

(1.14)

j0(−) is the carrier wave (fast oscillation). Both carrier and envelope
travel with the same speed (no dispersion assumed). The envelope function

is periodic with period

 =
2

∆
=
2


=




 (1.15)

 is the roundtrip length (optical)!

Examples:

We assume  modes with equal amplitudes ̃ = 0 and equal phases

 = 0, and thus the envelope is given by

( ) = 0

(−1)2X
=−(−1)2

j(∆(−)) (1.16)

With
−1X
=0

 =
1− 

1− 
 (1.17)

we obtain

( ) = 0
sin
£
∆
2

¡
− 



¢¤
sin
£
∆
2

¡
− 



¢¤  (1.18)

The laser intensity  is proportional to ( )2, averaged over one optical

cycle:  ∼ |( )|2. At  = 0, we obtain

() ∼ |0|2
sin2

¡
∆
2

¢
sin2

¡
∆
2

¢  (1.19)
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Intensity

�N

Time

(a)

(b)

Intensity

�N2

Time

Figure 1.15: (a) mode-locked laser output with constant mode phase. (b)

Laser output with randomly phased modes.

(a) Periodic pulses given by Eq. (1.19), period  = 1∆ = 

• pulse duration
∆ =

2

∆
=

1

∆
(1.20)

• peak intensity ∼ 2|0|2
• average intensity ∼  |0|2 ⇒ peak intensity is enhanced by a

factor  .

(b) If phases of modes are not locked, i.e.  random sequence

• Intensity fluctuates randomly about average value (∼  |0|2),
same as modelocked case

• correlation time is ∆ ≈ 1
 ·∆

• Fluctuations are still periodic with period  = 1∆ .

In a usual multimode laser,  varies over .
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1.5 History

1960: First laser, ruby, Maiman [5].

1961: Proposal for -switching, Hellwarth [6].

1963: First indications of mode locking in ruby lasers, Guers and

Mueller [7],[8], Statz and Tang [9]. on He-Ne lasers.

1964: Activemodelocking (HeNe, Ar, etc.), DiDomenico [10], [11] and

Yariv [12].

1966: Passive modelocking with saturable dye absorber in ruby by A.

J. DeMaria, Mocker and Collins [13].

1966: Dye laser, F. P. Schäfer, et al. [14].

1968: mode-locking (Q-Switching) of dye-lasers, Schmidt, Schäfer [15].

1972: cw-passive modelocking of dye laser, Ippen, Shank, Dienes [16].

1972: Analytic theories on active modelocking [22, 23].

1974: Sub-ps-pulses, Shank, Ippen [17].

1975: Theories for passive modelocking with slow [1], [25] and fast

saturable absorbers [26] predicted hyperbolic secant pulse

1981: Colliding-pulse mode-locked laser (CPM), [18].

1982: Pulse compression [21].

1984: Soliton Laser, Mollenauer, [27].

1985: Chirped pulse amplification, Strickland and Morou, [2].

1986: Ti:sapphire (solid-state laser), P. F. Moulton [29].

1987: 6 fs at 600 nm, external compression, Fork et al. [19, 20].

1988: Additive Pulse Modelocking (APM),[30, 31, 32].

1991: Kerr-lens modelocking, Spence et al. [33, 34, 35, 36, 37].
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Figure 1.16: Development of short pulse laser systems based on different laser

materials.

1993: Stretched pulse laser, Tamura et al [38].

1994: Chirped mirrors, Szipoecs et al. [39, 40]

1997: Double-chirped mirrors, Kaertner et al.[41]

2001: 5 fs, sub-two cycle pulses, octave spanning, Ell et al.[43]

2001: 250 as by High-Harmonic Generation,Hentschel et al.[7]

2008: 80 as, Goulielmakis et al.[45]

2010: Single-cycle pulse synthesis for Erbium doped fiber lasers, Krauss et

al.[46]
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1.6 Laser Materials

Laser

Materials

Absorption

Wavelength

Average

Emission 

Band

Width

Pulse

Width

Nd:YAG 808 nm 1064 nm 0.45 nm ∼ 6 ps
Nd:YLF 797 nm 1047 nm 1.3 nm ∼ 3 ps
Nd:LSB 808 nm 1062 nm 4 nm ∼ 1.6 ps
Nd:YVO4 808 nm 1064 nm 2 nm ∼ 4.6 ps
Nd:fiber 804 nm 1053 nm 22-28 nm ∼ 33 fs
Nd:glass 804 nm 1053 nm 22-28 nm ∼ 60 fs
Yb:YAG 940, 968 nm 1030 nm 6 nm ∼ 300 fs
Yb:glass 975 nm 1030 nm 30 nm ∼ 90 fs
Ti:Al2O3 480-540 nm 796 nm 200 nm ∼ 5 fs
Cr4+:Mg2SiO4: 900-1100 nm 1260 nm 200 nm ∼ 14 fs
Cr4+:YAG 900-1100 nm 1430 nm 180 nm ∼ 19 fs

Transition metals: (Cr3+, Ti3+, Ni2+, CO2+, etc.) (outer 3-electrons)

→ broadband

Rare earth: (Nd3+, Tm3+, Ho3+, Er3+, etc.) (shielded 4-electrons)

→ narrow band.
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Chapter 2

Linear Pulse Propagation

Classical electromagnetic phenomena are completely described by Maxwell’s

Equations. The simplest case we may consider is that of electrodynamics of

isotropic media

2.1 Maxwell’s Equations of HomogeneousMe-

dia

Maxwell’s Equations are

∇×  =
 


+  (2.1a)

∇× = −



 (2.1b)

∇ ·  =  (2.1c)

∇ ·  = 0 (2.1d)

The material equations accompanying Maxwell’s equations are:

 = 0  +   (2.2a)

 = 0
 +  (2.2b)

Here,  and  are the electric and magnetic field strength,  the electric flux

denisty,  the magnetic flux density,  the current density of free chareges,

 is the free charge density,  is the polarization, and  the magnetization.

25
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Note, it is Eqs.(2.2a) and (2.2b) which make electromagnetism an inter-

esting and always a hot topic with never ending possibilities. All advances in

engineering of artifical materials or finding of new material properties, such

as superconductivity, bring new life, meaning and possibilities into this field.

By taking the curl of Eq. (2.1b) and considering

∇×
³
∇×

´
= ∇

³
∇ · 

´
−∆

where ∇ is the Nabla operator and ∆ = ∇2 the Laplace operator, we obtain

∆ − 0




Ã
 + 0

 


+

 



!
=




∇× +∇

³
∇ · 

´
(2.3)

and henceµ
∆− 1

20

2

2

¶
 = 0

Ã



+

2

2


!
+




∇× +∇

³
∇ · 

´
 (2.4)

with the vacuum velocity of light

0 =

s
1

00
 (2.5)

For dielectric non magnetic media, which we often encounter in optics, with

no free charges and currents due to free charges, there is  = 0,  = 0,

 = 0 One can also show that the electric field can be decomposed into a

longitudinal and tranasversal component  and  , which are characterized

by [2]

∇× = 0 and ∇ ·  = 0 (2.6)

If there are no free charges, the longitudinal component is zero and only a

transversal component is left over. Therefore, for the purpose of this class

(and most of optics) the wave equation greatly simplifies toµ
∆− 1

20

2

2

¶
 = 0

2

2
  (2.7)

This is the wave equation driven by the polarization of the medium.
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2.1.1 Helmholtz Equation for Linear Media

In general, the polarization in dielectric media may have a nonlinear depen-

dence on the field. For linear, isotropic and local media the polarizability of

the medium at each point is described by the dielectric susceptibility function

 () and the dilectric constant in vaccum 0

 ( ) = 0

Z
0  (− 0)  ( 0)  (2.8)

which leads to a total dielectric response function or permittivity

 () = 0(() +  ()) (2.9)

with which the electric displacement field, ( ) in mediuam can be written

as

( ) = 0  ( 
0) +  ( ) =

Z
0  (− 0)  ( 0)  (2.10)

If the medium is linear and has only an induced polarization, completely

described in the time domain  () or in the frequency domain by its Fourier

transform, the complex susceptibility ̃() = ̃() − 1 with the relative
permittivity ̃() = ̃()0, we obtain in the frequency domain with the

Fourier transform relationship

e( ) = +∞Z
−∞

( )− (2.11)

e ( ) = 0̃()
e( ) (2.12)

where, the tildes denote the Fourier transforms in the following. Substituted

into (2.7) µ
∆+

2

20

¶ e() = −200̃()e() (2.13)

we obtain µ
∆+

2

20
(1 + ̃()

¶ e() = 0 (2.14)
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with the refractive index () and 1+ ̃() = 2() results in the Helmholtz

equation µ
∆+

2

2

¶ e() = 0 (2.15)

where () = 0() is the velocity of light in the medium. This equation

is the starting point for finding monochromatic wave solutions to Maxwell’s

equations in linear media, as we will study for different cases in the following.

Also, so far we have treated the susceptibility ̃() as a real quantity, which

may not always be the case as we will see later in detail.

2.1.2 Plane-Wave Solutions (TEM-Waves) and Com-

plex Notation

The wave equation (2.7) for the real electric field in a linear medium has real

monochromatic plane wave solutions 
( ), which can be be written most

efficiently in terms of the complex plane-wave solutions 
( ) according to

( ) =
1

2

h
( ) +

( )
∗
i
= <

n
( )

o
 (2.16)

with

( ) = 

j(−
·) () (2.17)

Note, we explicitly underlined the complex wave to indicate that this is a

complex quantity. Here, () is a unit vector indicating the direction of the

electric field which is also called the polarization of the wave, and  is

the complex field amplitude of the wave with wave vector . Substitution

of eq.(2.16) into the wave equation results in the dispersion relation, i.e. a

relationship between wave vector and frequency necessary to satisfy the wave

equation

||2 = 2

()2
= ()2 (2.18)

Thus, the dispersion relation is given by

() = ±

0
() (2.19)

with the wavenumber

 = 2 (2.20)
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where  is the wavelength of the wave in the medium with refractive index

,  the angular frequency,  the wave vector. Note, the natural frequency

 = 2. From ∇ ·  = 0, for all time, we see that  ⊥ . Substitution of

the electric field 2.16 into Maxwell’s Eqs. (2.1b) results in the magnetic field

( ) =
1

2

h
( ) +

( )
∗
i

(2.21)

with
( ) =  

j(−·) () (2.22)

This complex component of the magnetic field can be determined from the

corresponding complex electric field component using Faraday’s law

−j ×
³
 

j(−·) ()
´
= −j0 ( ) (2.23)

or

( ) =


0
j(−

·) ×  = 
j(−·) (2.24)

with

() =


|| × () (2.25)

and


=
||
0


=

1




 (2.26)

The characteristic impedance of the TEM-wave is the ratio between electric

and magnetic field strength

 = 0 =

r
0
0

=
1


0 (2.27)

with the refractive index  =
√
 and the free space impedance

0 =

r
0
0
≈ 377Ω (2.28)

Note that the vectors ,  and  form an orthogonal trihedral,

 ⊥   ⊥   ⊥  (2.29)
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Figure 2.1: Transverse electromagnetic wave (TEM) [1]

That is why we call these waves transverse electromagnetic (TEM) waves.

We consider the electric field of a monochromatic electromagnetic wave with

frequency  and electric field amplitude 0, which propagates in vacuum

along the z-axis, and is polarized along the x-axis, (Fig. 2.1), i.e.

|| = 

and () = . Then we obtain from Eqs.(2.16) and (2.17)

( ) = 0 cos(− )  (2.30)

and similiar for the magnetic field

( ) =
0

0

cos(− )  (2.31)

see Figure 2.1.Note, that for a backward propagating wave with ( ) =

 j+j
·  and ( ) =  j(+

)  there is a sign change for the

magnetic field

 = − ||
0

 (2.32)

so that the (  ) always form a right handed orthogonal system.

2.1.3 Poynting Vectors, Energy Density and Intensity

The table below summarizes the instantaneous eletric and magnetic energy

densities, the Poynting vector, Poynting theorm and intensity for an arbi-

trary electric field and the corresponding time averaged quantities for a time

harmonic field
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Quantity Real fields Complex fields

Electric and

magnetic energy

density

 =
1
2
 ·  = 1

2
0 

2

 =
1
2
 ·  = 1

2
0

2

 =  + 

hi = 1
4
0

¯̄̄

¯̄̄2

hi = 1
4
0

¯̄̄

¯̄̄2

hi = hi+ hi
Poynting vector  = ×  = 1

2
× 

∗

Poynting theorem div +  · + 

= 0

div + 1
2
 ·∗+

+2(hi− hi) = 0
Intensity  =

¯̄̄

¯̄̄
=   = Re{} =  hi

Table 2.1: Poynting vector and energy density in EM-fields

For a plane wave with a complex electric field ( ) = j(−)  we
obtain for the energy density in units of [J/m3]

 =
1

2
0||2 (2.33)

the complex Poynting vector

 =
1

2

||2  (2.34)

and the intensity in units of [W/m2]

 =
1

2

||2 = 1

2
 ||2 (2.35)

2.2 Classical Permittivity

In this section we want to get insight into propagation of an electromagnetic

wavepacket in an isotropic and homogeneous medium, such as a glass optical

fiber due to the interaction of radiation with the medium. The electromag-

netic properties of a dielectric medium is largely determined by the electric

polarization  () induced by an electric field in the medium. The polariza-

tion is defined as the total induced dipole moment per unit volume. If  is

the dipole moment of the elementary unit (atom, molecule, ...) constituting

the medium and  is density of elementary units, then the polirization is

 () =
dipole moment

volume
=  · () (2.36)
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In the frequency domain, i.e. after Fourier transformation we obtain

e () = dipole moment

volume
=  · e() = 0e()e() (2.37)

assuming again a linear plarizability proportional to the electric field. Or

expressed in a different way the dielectric suszeptibility is the frequency re-

sponse function of the polarization in a medium to an applied field

e() =  · e()
0
e()  (2.38)

Atoms and Molecules are composed of charge particles, such as a positively

charged nucleus and electrons bound to the nucleus by the Coulomb force.

As a first approximation towards the interaction of light and matter we con-

sider a simple model for matter, where the elementary units, the atoms or

molecules are modelled by a positively charge nucleus and an electron bound

to it by a force increasing linear with distance between nucleus and electron,

see Figure 2.2.

Pos.
Charge

Neg.
Charge

x

Figure 2.2: Classical harmonic oscillator model for radiation matter interac-

tion

As it turns out (justification later) this simple model correctly describes

many aspects of the interaction of light with matter at very low electric field

strength, i.e. the fields do not change the electron distribution in the atom

considerably or even ionize the atom. This model is called Lorentz model

after the famous physicist A. H. Lorentz (Dutchman) studying electromag-

netic phenomena at the turn of the 19th century. He also found the Lorentz
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Transformation and Invariance of Maxwell’s Equations with respect to these

transformation, which showed the path to Special Relativity.

The equation of motion for such a unit is the damped harmonic oscillator

driven by an electric field in one dimension,  At optical frequencies, the

distance of elongation, , is much smaller than an optical wavelength (atoms

have dimensions on the order of a tenth of a nanometer, whereas optical fields

have wavelength on the order of microns) and, therefore, we can neglect

the spatial variation of the electric field during the motion of the charges

within an atom (dipole approximation, i.e. ( ) = ( ) = (). The

equation of motion is then.


2

2
+ 2

Ω0






+Ω20 = −0() (2.39)

where () = ̃j Here,  is the mass of the electron assuming the that

the rest atom has infinite mass, 0 the charge of the electron, Ω0 is the

resonance frequency of the undamped oscillator and  the quality factor of

the resonance, which determines the damping of the oscillator. By using the

trial solution () = ̃j, we obtain for the complex amplitude of the dipole

moment ̃ with the time dependent response () = −0() = ̃j

̃ =

20


(Ω20 − 2) + 2jΩ0


̃ (2.40)

Note, that we included ad hoc a damping term in the harmonic oscillator

equation. At this point it is not clear what the physical origin of this damping

term is and we will discuss this at length later in chapter 4. For the moment,

we can view this term simply as a consequence of irreversible interactions of

the atom with its environment. The simplest damping mechanism is that an

accelerated electron radiates, i.e. radiation damping. We then obtain from

(2.37) for the susceptibility

e() = 
20

1
0

(Ω20 − 2) + 2jΩ0


(2.41)

or e() = 2

(Ω20 − 2) + 2jΩ0


 (2.42)
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where  is called the plasma frequency defined as 
2
 = 200. The

meaning of the plasma frequency will be further elucidated in recitations

and on problem sets. Figure 2.3 shows the real and imaginary part of the

resulting classical dielectric susceptibility, e() = e() + je(), (2.42),
normalized to the absolute value of the imaginary part at  = Ω0 which is

2 (2Ω
2
0).
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Figure 2.3: Real part (dashed line) and imaginary part (solid line) of the

susceptibility of the classical oscillator model for the dielectric polarizability.

Note, that there is a small resonance shift (almost invisible) due to the

loss. Off resonance, the imaginary part approaches zero very quickly. Not

so the real part, which approaches a constant value 2Ω
2
0 below resonance

for  → 0, and approaches zero far above resonance, but much slower than

the imaginary part. As we will see later, this is the reason why there are low

loss, i.e. transparent, media with refractive index very much different from

1, because as discussed above the real part of the dielectric susceptibility

contributes to the refractive index in a material. The negative imaginary

part describes absorption of the electromagnetic wave in the medium made

up of damped harmonic oscillators driven by the electric field of the electro-

magnetic wave. Strong absorption occurs when the driving frequency is on

resonance with the damped harmonic oscillator, i.e. the absorption resonance

of the medium.

After having a model for the dielectric susceptibility of a medium, we can

study how optical signals may propagate in such a medium, most importantly

optical pulses, such as those used in optical communications.
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2.3 Optical Pulses

Optical pulses are wave packets constructed by a continuous superposition

of monochromatic plane waves. Consider a TEM-wavepacket, i.e. a super-

position of waves with different frequencies, polarized along the x-axis and

propagating along the z-axis

( ) =

Z ∞

0

Ω

2
e(Ω)j(Ω−(Ω))  (2.43)

Correspondingly, the magnetic field is given by

( ) =

Z ∞

0

Ω

2 (Ω)
e(Ω)j(Ω−(Ω))  (2.44)

Again, the physical electric and magnetic fields are real and related to the

complex fields by

( ) =
1

2

³
( ) + ( )∗

´
(2.45)

( ) =
1

2

³
( ) + ( )∗

´
 (2.46)

Here, |̃(Ω)|j(Ω) is the complex wave amplitude of the electromagnetic wave
at frequency Ω and (Ω) = Ω(Ω) = (Ω)Ω0 the wavenumber, where,

̃(Ω) is again the refractive index of the medium

̃2(Ω) = 1 + ̃(Ω) (2.47)

 and 0 are the velocity of light in the medium and in vacuum, respectively.

The planes of constant phase propagate with the phase velocity  of the wave.

The wavepacket consists of a superposition of many frequencies with the

spectrum shown in Fig. 2.4. At a given point in space, for simplicity  = 0

the complex field of a pulse is given by (Fig. 2.4)

( = 0 ) =
1

2

Z ∞

0

̃(Ω)jΩΩ (2.48)

Optical pulses often have relatively small spectral width compared to the

center frequency of the pulse 0 as it is illustrated in the upper part of Figure

2.4. For example typical pulses used in optical communication systems for

10Gb/s transmission speed are 20 ps in length and have a center wavelength
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of  = 1550 nm. Thus the spectral width is only on the order of 50 GHz,

whereas the center frequency of the pulse is 200 THz, i.e. the bandwidth is

4000 smaller than the center frequency. In such cases it is useful to separate

the complex electric field in Eq. (2.48) into a carrier frequency 0 and an

envelope () and represent the absolute frequency as Ω = 0 + 

0



|E( )|̃

|A( )|̃


0

Figure 2.4: Spectrum of an optical wave packet described in absolute and

relative frequencies

We can then rewrite Eq.(2.48) as

( = 0 ) =
1

2

Z ∞

−0
̃(0 + )j(0+) (2.49)

=
1

2
j0

Z ∞

−0
̃(0 + )j

= ()j0 (2.50)

The envelope, see Figure 2.8, is given by

() =
1

2

Z ∞

−0→−∞
̃()j (2.51)

=
1

2

Z ∞

−∞
̃()j (2.52)
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where ̃() = ̃(0+) is the spectrum of the envelope with, ̃() = 0 for

 ≤ −0. To be physically meaningful, the spectral amplitude ̃() must be
zero for negative frequencies less than or equal to the carrier frequency, see

Figure 2.8. Note, that waves with zero frequency can not propagate, since

the corresponding wave vector is zero. The pulse and its envelope are shown

in Figure 2.5.

E(z=0,t) A(t)

t

Figure 2.5: Electric field and envelope of an optical pulse.

Table 2.2 shows pulse shape and spectra of some often used pulses as well

as the pulse width and time bandwidth products. The pulse width and band-

width are usually specified as the Full Width at Half Maximum (FWHM) of

the intensity in the time domain, |()|2  and the spectral density
¯̄̄
̃()

¯̄̄2
in

the frequency domain, respectively. Pulse shapes and corresponding spectra

to the pulses listed in Table 2.2 are shown in Figs 2.6 and 2.7
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Pulse Shape Fourier Transform
Pulse

Width

Time-Band-

width Product

() ̃() =
R∞
−∞ ()−j ∆ ∆ ·∆

Gaussian: e−
2

22
√
2e−

1
2
22 2

√
ln 2 0.441

Hyperbolic Secant:

sech( 

)


2
sech

¡

2

¢

1.7627  0.315

Rect-function:½
1 || ≤ 2

0 ||  2


sin(2)

2
 0.886

Lorentzian: 1

1+()2
2e−|| 1.287  0.142

Double-Exp.: e−|  | 

1+()2
ln2  0.142

Table 2.2: Pulse shapes, corresponding spectra and time bandwidth prod-

ucts.

Figure 2.6: Fourier transforms to pulse shapes listed in table 2.2 [14].
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Figure 2.7: Fourier transforms to pulse shapes listed in table 2.2 continued

[14].

2.4 Pulse Propagation

In many cases, mode locking of lasers can be most easily studied in the

time domain. Then mode locking becomes a nonlinear, dissipative wave
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propagation problem. In this chapter, we discuss the basic elements of pulse

propagation in linear media.

Having a basic model for the interaction of light and matter at hand,

via section 2.2, we can investigate what happens if an electromagnetic wave

packet, i.e. an optical pulse propagates through such a medium. We start

from Eqs.(2.43) to evaluate the wave packet propagation for an arbitrary

propagation distance 

( ) =
1

2

Z ∞

0

̃(Ω)j(Ω−(Ω))Ω (2.53)

Analogous to Eq. (2.49) for a pulse at a given position, we can separate an

optical pulse into a carrier wave at frequency 0 and a complex envelope

( )

( ) = ( )j(0−(0)) (2.54)

By introducing the offset frequency , the offset wavenumber () and spec-

trum of the envelope ̃()

 = Ω− 0 (2.55)

() = (0 + )−(0) (2.56)

̃() = ̃(Ω = 0 + ) (2.57)

we can rewrite Eq.(2.53) as

( ) =
1

2

Z ∞

−∞
̃()j(−()) j(0−(0)) (2.58)

Thus the envelope at propagation distance , see Fig.2.8, is expressed as

( ) =
1

2

Z ∞

−∞
̃()j(−()) (2.59)

with the same constraints on the spectrum of the envelope as before, i.e. the

spectrum of the envelope must be zero for negative frequencies beyond the

carrier frequency. In the frequency domain Eq.(2.59)) corresponds to

̃( ) = ̃( = 0 )−j() (2.60)

Depending on the dispersion relation (), (see Fig. 2.9),.the pulse will

be reshaped during propagation as discussed in the following section.
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E(z,t) A(z,t)

vg
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t

Figure 2.8: Electric field and pulse envelope in time domain.

A( )��

S
p

e
c
tr

u
m

D
is

p
e

rs
io

n
R

e
la

ti
o

n

Dispersion Relation K( )	

�O

Parabola

Frequency 	

Figure 2.9: Taylor expansion of dispersion relation at the center frequency

of the wave packet.

2.4.1 Dispersion

The dispersion relation (Ω) or differential propagation constant, () in-

dicates how much phase shift each frequency component experiences during

propagation. These phase shifts, if not linear with respect to frequency, will

lead to distortions of the pulse. If the dispersion relation (Ω) is only slowly

varying over the pulse spectrum, it is useful to represent it or by its Taylor
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expansion, see Fig. 2.9,

() = 0 +
00

2
2 +

(3)

6
3 +(4) (2.61)

If the refractive index depends on frequency, the dispersion relation is no

longer linear with respect to frequency, see Fig. 2.9 and the pulse propagation

according to (2.59) can be understood most easily in the frequency domain

̃( )


= −j()̃( ) (2.62)

Transformation of Eq.(2.62) into the time domain gives

( )


= −j

∞X
=1

()

!

µ
−j 



¶

( ) (2.63)

If we keep only the first term, the linear term, in Eq.(2.60), then we obtain

for the pulse envelope from (2.59)

̃( ) = ̃( = 0 )−j
0 (2.64)

According to the shift theorem for Fourier Transfroms, a linear phase over

the spectrum corresponds to a shift in the time domain,

( ) = (0 − 0) (2.65)

where we introduced the group velocity at frequency 0

0 = 1
0 =

µ
()



¯̄̄̄
=0

¶−1
=

Ã
(Ω)

Ω

¯̄̄̄
Ω=0

!−1
(2.66)

Thus the derivative of the dispersion relation at the carrier frequency deter-

mines the propagation velocity of the envelope of the wave packet or group

velocity, whereas the ratio between propagation constant and frequency de-

termines the phase velocity of the carrier

0 = 0(0) =

µ
(0)

0

¶−1
 (2.67)

To get rid of the trivial motion of the pulse envelope with the group velocity,

we introduce the retarded time 0 = − 0. With respect to this retarded
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time the pulse shape is invariant during propagation, if we approximate the

dispersion relation by the slope at the carrier frequency

( ) = (0 0) (2.68)

Note, if we approximate the dispersion relation by its slope at the carrier

frequency, i.e. we retain only the first term in Eq.(2.63), we obtain

( )


+
1

0

( )


= 0 (2.69)

and (2.68) is its solution. If, we transform this equation to the new coordinate

system

0 =  (2.70)

0 = − 0 (2.71)

with




=



0
− 1

0



0
 (2.72)




=



0
(2.73)

the transformed equation is

(0 0)
0

= 0 (2.74)

Thus we see that the pulse shape doesn’t change during propagation. The

propagation can be simply accounted for by introducting a retarded time

0 = − 0 Since  is equal to 
0 we keep  in the following.

If the spectrum of the pulse is broad enough or the propagation distance

long enough, so that the second order term in (2.61) becomes important, the

pulse will no longer keep its shape. When keeping in the dispersion relation

terms up to second order it follows from (2.63) and (2.70,2.71)

( 0)


= j
00

2

2( 0)
02

 (2.75)

This is the first non trivial term in the wave equation for the envelope.

Because of the superposition principle, the pulse can be thought of to be
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decomposed into wavepackets (sub-pulses) with different center frequencies.

Now, the group velocity depends on the spectral component of the pulse, see

Figure 2.10, which will lead to broadening or dispersion of the pulse.
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Figure 2.10: Decomposition of a pulse into wave packets with different center

frequency. In a medium with dispersion the wavepackets move at different

relative group velocity.

Fortunately, for a Gaussian pulse, the pulse propagation equation 2.75

can be solved analytically. The initial pulse is then of the form

( = 0 ) = ( = 0 )j0 (2.76)

( = 0  = 0) = 0 exp

∙
−1
2

02

 2

¸
(2.77)

Eq.(2.75) is most easily solved in the frequency domain since it transforms

to
̃( )


= −j

002

2
̃( ) (2.78)

with the solution

̃( ) = ̃( = 0 ) exp

∙
−j

002

2


¸
 (2.79)

The pulse spectrum aquires a parabolic phase. Note, that here  is the

Fourier Transform variable conjugate to 0 rather than . The Gaussian pulse
has the advantage that its Fourier transform is also a Gaussian

̃( = 0 ) = 0
√
2 exp

∙
−1
2
 22

¸
 (2.80)



2.4. PULSE PROPAGATION 45

Note, in the following we will often use the Gaussian Integral

1√
2

∞Z
−∞

−
2

2 − = −

2
2 for Re {} ≥ 0 (2.81)

In the spectral domain the solution at an arbitray propagation distance  is

̃( ) = 0
√
2 exp

∙
−1
2

¡
 2 + j00

¢
2
¸
 (2.82)

With the Gaussian integral (2.81) the inverse Fourier transform is

( 0) = 0

µ
 2

( 2 + j00)

¶12
exp

∙
−1
2

02

( 2 + j00)

¸
(2.83)

The exponent can be written as real and imaginary part and we finally obtain

( 0) = 0

µ
 2

( 2 + j00)

¶12
exp

"
−1
2

 202¡
 4 + (00)2

¢ + j1
2
00

02¡
 4 + (00)2

¢#
(2.84)

As we see from Eq.(2.84) during propagation the FWHM of the Gaussian

determined by

exp

"
−

2( 02)2¡
 4 + (00)2

¢ # = 05 (2.85)

changes from

 = 2
√
ln 2  (2.86)

at the start to

 0 = 2
√
ln 2 

s
1 +

µ
00
 2

¶2
(2.87)

= 

s
1 +

µ
00
 2

¶2
at  =  For large stretching this result simplifies to

 0 = 2
√
ln 2

¯̄̄̄
00


¯̄̄̄
for

¯̄̄̄
00
 2

¯̄̄̄
À 1 (2.88)
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The strongly dispersed pulse has a width equal to the difference in group

delay over the spectral width of the pulse.

Figure 2.11 shows the evolution of the magnitude of the Gaussian wave

packet during propagation in a medium which has no higher order dispersion

in normalized units, i.e. ([] =m [] =s [j] =s2m, j = 2). The pulse

spreads continuously..
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Figure 2.11: Magnitude of the complex envelope of a Gaussian pulse,

|( 0)| , in a dispersive medium.

As discussed before, the origin of this spreading is the group velocity

dispersion (GVD), 00 6= 0. The group velocity varies over the pulse spectrum
significantly leading to a group delay dispersion (GDD) after a propagation

distance  =  of 00 6= 0 for the different frequency components. This leads
to the build-up of chirp in the pulse during propagation. We can understand

this chirp by looking at the parabolic phase that develops over the pulse in

time at a fixed propagation distance. The phase is, see Eq.(2.84)

( =  0) = −1
2
arctan

∙
00
 2

¸
+
1

2
00

02¡
 4 + (00)2

¢  (2.89)
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Figure 2.12: (a) Phase and (b) instantaneous frequency of a Gaussian pulse

during propagation through a medium with positive or negative dispersion.

This parabolic phase, see Fig. 2.12 (a), can be understood as a localy

varying frequency in the pulse, i.e. the derivative of the phase gives the

instantaneous frequency shift in the pulse with respect to the center frequency

( =  0) =


0
( 0) =

00¡
 4 + (00)2

¢0 (2.90)

see Fig.2.12 (b). The instantaneous frequency indicates that for a medium

with positive GVD, ie. 00  0 the low frequencies are in the front of the

pulse, whereas the high frequencies are in the back of the pulse, since the

sub-pulses with lower frequencies travel faster than sub-pulses with higher

frequencies. The opposite is the case for negative dispersive materials.

It is instructive for later purposes, that this behaviour can be completely

understood from the center of mass motion of the sub-pulses, see Figure 2.10.



48 CHAPTER 2. LINEAR PULSE PROPAGATION

Note, we can choose a set of sub-pulses, with such narrow bandwidth, that

dispersion does not matter. In the time domain, these pulses are of course

very long, because of the time bandwidth relationship. Nevertheless, since

they all have different carrier frequencies, they interfere with each other in

such a way that the superposition is a very narrow pulse. This interference,

becomes destroyed during propagation, since the sub-pulses propagate at

different speed, i.e. their center of mass propagates at different speed.
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Figure 2.13: Pulse spreading by following the center of mass of sub-pulses

according to Fig. 2.10. For   1, the pulses propagate in a medium with

positive dispersion and for   1 in a medium with negative dispersion.

The differential group delay ∆() = 00 of a sub-pulse with its cen-
ter frequency  different from 0, is due to its differential group velocity

∆() = −0∆()0 = −2000 Note, that 0 = 0 This is illus-

trated in Figure 2.13 by ploting the trajectory of the relative motion of the

center of mass of each sub-pulse as a function of propagation distance, which

asymptotically approaches the formula for the pulse width of the highly dis-

persed pulse Eq.(2.88). If we assume that the pulse propagates through a

negative dispersive medium following the positive dispersive medium, the

group velocity of each sub-pulse is reversed. The sub-pulses propagate to-

wards each other until they all meet at one point (focus) to produce again

a short and unchirped initial pulse, see Figure 2.13. This is a very powerful
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technique to understand dispersive wave motion and is also the connection

between ray optics and physical optics.

2.4.2 Loss and Gain

If the medium considered has loss, described by the imaginary part of the

dielectric susceptibility, see (2.42) and Fig. 2.3, we can incorporate this loss

into a complex refractive index

̃(Ω) = (Ω) + j(Ω) (2.91)

via

̃(Ω) =
q
1 + e(Ω) (2.92)

For an optically thin medium (weakly absorbing gases), i.e. e ¿ 1 the

following approximation is very useful

̃(Ω) ≈ 1 + e(Ω)
2

 (2.93)

As one can show, the complex susceptibility (2.42) can be approximated close

to resonance, i.e. Ω ≈ Ω0 by the complex Lorentzian lineshape

e(Ω) = −j0
1 + jΩ−Ω0

Ω0

 (2.94)

where 0 = 
2
2Ω20

will turn out to be related to the peak absorption of the

resonance, which is proportional to the density of atoms. Ω0 is the center

frequency and ∆Ω = Ω0

is the half width half maximum (HWHM) linewidth

of the transition. The real and imaginary part of the complex Lorentzian are

e(Ω) =
−0 (Ω−Ω0)∆Ω

1 +
¡
Ω−Ω0
∆Ω

¢2  (2.95)

e(Ω) =
−0

1 +
¡
Ω−Ω0
∆Ω

¢2   (2.96)

In the derivation of the wave equation for the pulse envelope (2.63) in

section 2.4.1, there was no restriction to a real refractive index. Therefore,

the wave equation (2.63) also treats the case of a complex refractive index.
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If we assume a medium with the complex refractive index (2.93), then the

wavenumber is given by

̃(Ω) =
Ω

0

µ
1 +

1

2
(e(Ω) + je(Ω))¶  (2.97)

Since we introduced a complex wavenumber, we have to redefine the group

velocity as the inverse derivative of the real part of the wavenumber with

respect to frequency. At line center, we obtain

−1 =
(Ω)

Ω

¯̄̄̄
Ω0

=
1

0

µ
1− 0

2

Ω0

∆Ω

¶
 (2.98)

Thus, for a narrow absorption line, 0  0 and Ω0
∆Ω

À 1, the absolute value

of the group velocity can become much larger than the velocity of light in

vacuum. The opposite is true for an amplifying medium, 0  0. There is

nothing wrong with this finding, since the group velocity only describes the

motion of the peak of a Gaussian wave packet, which is not a causal wave

packet. A causal wave packet is identical to zero for some earlier time   0,

in some region of space. A Gaussian wave packet fills the whole space at any

time and can be reconstructed by a Taylor expansion at any time. Therefore,

the motion of the peak of such a signal with a speed greater than the speed

of light does not contradict special relativity.

The imaginary part in the wave vector (2.97) leads with  = Ω
0
to ab-

sorption

(Ω) = −
2
e(Ω) (2.99)

In the envelope equation (2.62) for a wavepacket with carrier frequency 0 =

Ω0 and wave number 0 =
Ω0
0
the loss leads to a term of the form

̃( )



¯̄̄̄
¯
()

= −(Ω0 + )̃( ) =
−002

1 +
¡


∆Ω

¢2 ̃( ) (2.100)

In the time domain, we obtain up to second order in the inverse linewidth

for 
∆Ω

 1

( 0)


¯̄̄̄
()

= −00

2

µ
1 +

1

∆Ω2
2

2

¶
( 0) (2.101)
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which corresponds to a parabolic approximation of the line shape at line

center, (Fig. 2.3). As we will see later, for an amplifying optical transition

we obtain a similar equation. We only have to replace the loss by gain

( 0)


¯̄̄̄
()

= 

µ
1 +

1

Ω2

2

2

¶
( 0) (2.102)

where  = −00

2
is the peak gain at line center per unit length and Ω is

the HWHM linewidth of a transition providing gain.

2.5 Sellmeier Equation and Kramers-Kroenig

Relations

The linear susceptibility is the frequency response or impulse response of a

linear system to an applied electric field, see Eq.(2.40). For a real physical

system this response is causal, and therefore real and imaginary parts obey

Kramers-Kroenig Relations

(Ω) =
2



∞Z
0

()

2 −Ω2
 = 2(Ω)− 1 (2.103)

(Ω) = −2


∞Z
0

Ω()

2 −Ω2
 (2.104)

For optical media these relations have the consequence that the refractive

index and absorption of a medium are not independent, which can often

be exploited to compute the index from absorption data or the other way

around. The Kramers-Kroenig Relations also give us a good understanding

of the index variations in transparent media, which means the media are used

in a frequency range far away from resonances. Then the imaginary part of

the susceptibility related to absorption can be approximated by

(Ω) =
X


 ( − )  (2.105)

i.e. the absorption lines are approximated by delta-functions, and the Kramers-

Kroenig relation results in the following Sellmeier Equation for the refractive
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index

2(Ω) = 1 +
X






2 −Ω2
= 1 +

X





2 − 2
 (2.106)

This formula is very useful in fitting the refractive index of various media

over a large frequency range with relatively few coefficients. For example

Table 2.3 shows the Sellmeier coefficients for fused quartz and sapphire.

Fused Quartz Sapphire

a1 0.6961663 1.023798

a2 0.4079426 1.058364

a3 0.8974794 5.280792

21 4.679148·10−3 3.77588·10−3
22 1.3512063·10−2 1.22544·10−2
23 0.9793400·102 3.213616·102

Table 2.3: Table with Sellmeier coefficients for fused quartz and sapphire.

In general, each absorption line contributes a corresponding index change

to the overall optical characteristics of a material, see Fig. 2.14.
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Figure 2.14: Each absorption line must contribute to an index change via

the Kramers-Kroenig relations.
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A typical situation for a material having resonances in the UV and IR,

such as glass, is shown in Fig. 2.15. As Fig. 2.15 shows, due to the Lorentzian

line shape, outside of an absorption line the refractive index is always decreas-

ing as a function of wavelength. In the classcial optics terminology, where

transparet materials are used for refraction of light, for example in prisms,

this behavior is called normal dispersion. The opposite behaviour, i.e. an in-

crease of refractive index with wavelength that occurs within the absorption

lines is called anomalous dispersion.

Classical Optics

½



 0 : normal dispersion (blue refracts more than red)



 0 : anomalous dispersion

As we have seen in the previous section, in ultrafast optics we are more

concerned with the group velocity dispersion of the material ”, which is

related to the second order derivative of the index, 00 ∼ 2

2
, as summarized

in table 2.4

Ultrafast Optics

⎧⎪⎪⎨⎪⎪⎩
2

2
 0 : normal dispersion

short wavelengths slower than long wavelengths
2

2
 0 : anomalous dispersion

short wavelengths faster than long wavelengths

This behavior is also responsible for the mostly positive group delay disper-

sion, i.e. normal dispersion, over the transparency range of a material at the

longwavelength side of an absorption line, and the mostly negative group de-

lay dispersion, i.e. anomalus dispersion, when approaching a resonance from

the short wavelength sidetypical absorption and refractive index as a func-

tion of wavelength for media that are transparent in the visible, like glasses.

Therefore, glasses with their typical absorption lines in the UV and IR show

positive dispersion in the visible and change to negative dispersion in the

IR with a zero dispersion wavelength somewhere between 1 and 2 micron

wavelength.
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Figure 2.15: Typcial distribution of absorption lines in a medium transparent

in the visible.

Fig.2.16 shows the transparency range of some often used media.

Magnesium fluoride MgF2

2Calcium fluoride CaF

2Barium Fluoride BaF

2Quarz SiO

2UV fused silicia SiO
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Figure 2.16: Transparency range of some materials according to Saleh and

Teich, Photonics p. 175.
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GVD and GDD are defined as the variation of the inverse group velocity

or group delay as a function of frequency, see Eqs.(2.66) , i.e.

 =
2()

2

¯̄̄̄
=0

=




1

()

¯̄̄̄
=0

=
−1

2()

()



¯̄̄̄
=0

(2.107)

 =
2()

2

¯̄̄̄
=0

 =






()

¯̄̄̄
=0

=



()|=0 (2.108)

where () = () is the group delay of a wave packet with relative

center frequency  Often theses quantities need to be calculated from the

refractive index given by the Sellmeier equation, i.e. () The corresponding

quantities are listed in Table 2.4. The computations are done by substituting

the frequency with the wavelength.

Dispersion Characteristic Definition Comp. from ()

medium wavelength: 




()

medium wavenumber: 
2


2

()

phase velocity: 



0
()

group velocity: 


;  = −2

20
 0



¡
1− 





¢−1
group velocity dispersion:  2

2
3

220

2

2

group delay:  =


= 






=

()



0

¡
1− 





¢


group delay dispersion: 


=

2()

2
3

220

2

2


Table 2.4: Table with important dispersion characteristics and how to

compute them from the wavelength dependent refractive index () using

|| = 202||.

2.6 Summary

Starting from Maxwell’s Equations in an isotropic linear medium, we found

that there exist TEM-plane wave solutions, where the eletric, magnetic and

propagation vector of the wave build a right handed system. The magnitude

of the electric and magnetic field vector are connected via the characteristic

impedance of the medium or the refractive index. An often encounterned

expression for the refractive index in a medium or the dielectric suszepti-

bility can be derived from the harmonic oscillator model for an electronic
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transition in a medium. Lossy media can be treated by a complex refractive

index. Causality of the response of the medium to an external field requires

that the real part and imaginary part of the dielectric suszeptibility fully

fill Kramers-Kroenig relations. Optical pulses are electromagnetic wavepack-

ets. The dynamics of optical pulses propagating through a linear medium

is most easily treated in the frequency domain and are completely described

by the complex wave vector or complex refractive index. Besides the group

delay, the pulse may suffer dispersion and loss or gain which may depend on

frequency.
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Chapter 3

Nonlinear Pulse Propagation

There are many nonlinear pulse propagation problems worthwhile of being

considered in detail. A comprehensive discussion of various nonlinear pulse

propagation phenomena can be found in [1]. In this chapter we discuss the

nonlinear pulse dynamics due to the Kerr-effect which is most important for

understanding pulse propagation problems in optical communications, short

pulse generation and pulse compression.

3.1 The Optical Kerr-effect

In a homogeneous medium, which has an inversion symmertry at the mole-

cular level, or in an isotropic medium, to lowest order, the refractive index

of such a medium can only depend quadratically on the field, i.e. on the

intensity [26]

 = ( ||2) ≈ 0() + 2||2 (3.1)

Here, we assume, that the pulse envelope  is normalized such that ||2 is
the intensity of the pulse. This is the optical Kerr effect and 2 is called

the intensity dependent refractive index coefficient. Note, the nonlinear in-

dex depends on the polarization of the field and without going further into

details, we assume that we treat a linearily polarized electric field. For most

transparent materials the intensity dependent refractive index is positive.
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Material Refractive index  2[
2 ]

Sapphire (Al2O3) 1.76 @ 850 nm 3·10−16
Fused Quarz 1.45 @ 1064 nm 2.46·10−16
Glass (LG-760) 1.5 @ 1064 nm 2.9·10−16
YAG (Y3Al5O12) 1.82 @ 1064 nm 6.2·10−16
YLF (LiYF4), n 1.47 @ 1047 nm 1.72·10−16
Si 3.3 @ 1550 nm 4·10−14

Table 3.1: Nonlinear refractive index coefficients for different materials. In

the literature most often the electro-statitic unit system is in use. The con-

version is n2[
2 ] = 419 · 10−32[]0

3.2 Self-Phase Modulation (SPM)

In a purely one dimensional propagation problem, the intensity dependent

refractive index imposes an additional self-phase shift on the pulse envelope

during propagation, which is proportional to the instantaneous intensity of

the pulse

( )


= −02|( )|2( ) = −|( )|2( ) (3.2)

where  = 02 is the self-phase modulation coefficient. Self-phase modu-

lation (SPM) leads only to a phase shift in the time domain. Therefore, the

intensity profile of the pulse does not change only the spectrum of the pulse

changes, as discussed in the class on nonlinear optics. Figure (3.1) shows

the spectrum of a Gaussian pulse subject to SPM during propagation (for

 = 2 and normalized units). New frequency components are generated by

the nonlinear process via four wave mixing (FWM). If we look at the phase of

the pulse during propagation due to self-phase modulation, see Fig. 3.2 (a),

we find, that the pulse redistributes its energy, such that the low frequency

contributions are in the front of the pulse and the high frequencies in the

back of the pulse, similar to the case of normal dispersion.
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Figure 3.1: Spectrum |̂(  = 2)|2 of a Gaussian pulse subject to self-
phase modulation.



62 CHAPTER 3. NONLINEAR PULSE PROPAGATION

(a)

Time  t

Intensity

Front Back

Time  t
Phase(b)

(c) Instantaneous
Frequency

Time  tTime  t

Figure 3.2: (a) Intensity, (b) phase and (c) instantaneous frequency of a

Gaussian pulse during propagation through a medium with positive self-

phase modulation.
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3.3 The Nonlinear Schrödinger Equation

If both effects, dispersion and self-phase modulation, act simultaneously on

the pulse, the field envelope obeys the equation


( )


= −2

2

2
+ ||2 (3.3)

This equation is called the Nonlinear Schrödinger Equation (NLSE) - if we

put the imaginary unit on the left hand side -, since it has the form of a

Schrödinger Equation. Its called nonlinear, because the potential energy

is derived from the square of the wave function itself. As we have seen

from the discussion in the last sections, positive dispersion and positive self-

phase modulation lead to a similar redistribution of the spectral components.

This enhances the pulse spreading in time. However, if we have negative

dispersion, i.e. a wave packet with high carrier frequency travels faster than

a wave packet with a low carrier frequency, then, the high frequency wave

packets generated by self-phase modulation in the front of the pulse have

a chance to catch up with the pulse itself due to the negative dispersion.

The opposite is the case for the low frequencies. This arrangement results

in pulses that do not disperse any more, i.e. solitary waves. That negative

dispersion is necessary to compensate the positive Kerr effect is also obvious

from the NLSE (3.3). Because, for a positive Kerr effect, the potential energy

in the NLSE is always negative. There are only bound solutions, i.e. bright

solitary waves, if the kinetic energy term, i.e. the dispersion, has a negative

sign, 2  0.

3.3.1 The Solitons of the NLSE

In the following, we study different solutions of the NLSE for the case of

negative dispersion and positive self-phase modulation. We do not intend

to give a full overview over the solution manyfold of the NLSE in its full

mathematical depth here, because it is not necessary for the following. This

can be found in detail elsewhere [4, 10, 1, 11].

Without loss of generality, by normalization of the field amplitude  =
́


q
22


, the propagation distance  = ́ ·  22, and the time  = ́ ·  ,

the NLSE (3.3) with negative dispersion can always be transformed into the
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normalized form


́(́ )

́
=

2́

́2
+ 2|́|2́ (3.4)

This is equivalent to set 2 = −1 and  = 2. For the numerical simulations,

which are shown in the next chapters, we simulate the normalized eq.(3.4)

and the axes are in normalized units of position and time.

3.3.2 The Fundamental Soliton

We look for a stationary wave function of the NLSE (3.3), such that its

absolute square is a self-consistent potential. A potential of that kind is well

known from Quantum Mechanics, the sech2-Potential [3], and therefore the

shape of the solitary pulse is a sech

( ) = 0sech

µ




¶
− (3.5)

where  is the nonlinear phase shift of the soliton

 =
1

2
20 (3.6)

The soltion phase shift is constant over the pulse with respect to time in

contrast to the case of self-phase modulation only, where the phase shift is

proportional to the instantaneous power. The balance between the nonlinear

effects and the linear effects requires that the nonlinear phase shift is equal

to the dispersive spreading of the pulse

 =
|2|
 2

 (3.7)

Since the field amplitude ( ) is normalized, such that the absolute square

is the intensity, the soliton energy fluence is given by

 =

Z ∞

−∞
|( )|2 = 220  (3.8)

From eqs.(3.6) to (3.8), we obtain for constant pulse energy fluence, that the

width of the soliton is proportional to the amount of negative dispersion

 =
4|2|


 (3.9)
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Note, the pulse area for a fundamental soliton is only determined by the

dispersion and the self-phase modulation coefficient

Pulse Area =

Z ∞

−∞
|( )| = 0 = 

r
2|2|


 (3.10)

Thus, an initial pulse with a different area can not just develope into a pure

soliton.
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Figure 3.3: Propagation of a fundamental soliton.

Figure 3.3 shows the numerical solution of the NLSE for the fundamental

soliton pulse. The distance, after which the soliton acquires a phase shift of

4, is called the soliton period, for reasons, which will become clear in the

next section.

Since the dispersion is constant over the frequency, i.e. the NLSE has

no higher order dispersion, the center frequency of the soliton can be cho-

sen arbitrarily. However, due to the dispersion, the group velocities of the

solitons with different carrier frequencies will be different. One easily finds

by a Gallilei tranformation to a moving frame, that the NLSE possesses the

following general fundamental soliton solution

( ) = 0sech(( ))
−() (3.11)
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with

 =
1


(− 2|2|0 − 0) (3.12)

and a nonlinear phase shift

 = 0(− 0) + |2|
µ
1

 2
− 20

¶
 + 0 (3.13)

Thus, the energy fluence  or amplitude 0, the carrier frequency 0, the

phase 0 and the origin 0, i.e. the timing of the fundamental soliton are

not yet determined. Only the soliton area is fixed. The energy fluence and

width are determined if one of them is specified, given a certain dispersion

and SPM-coefficient.

3.3.3 Higher Order Solitons

The NLSE has constant dispersion, in our case anomalous (or negative) dis-

persion. That means the group velocity depends linearly on frequency. We

assume, that two fundamental soltions are far apart from each other, so that

they do not interact. Then this linear superpositon is for all practical pur-

poses another solution of the NSE. If we choose the carrier frequency of the

soliton, starting at a later time, higher than the one of the soliton in front,

the later soliton will catch up with the leading soliton due to the negative

dispersion and the pulses will collide.

Figure 3.4 shows this situation. Obviously, the two pulses recover com-

pletely from the collision, i.e. the NSE has true soliton solutions. The solitons

have particle like properties. A solution, composed of several fundamental

solitons, is called a higher order soliton. If we look closer to Figure 3.4, we

recognize, that the soliton at rest in the local time frame, and which follows

the t = 0 line without the collision, is somewhat pushed forward due to the

collision. A detailed analysis of the collision would also show, that the phases

of the solitons have changed [4]. The phase changes due to soliton collisions

are used to built all optical switches [5], using backfolded Mach-Zehnder in-

terferometers, which can be realized in a self-stabilized way by Sagnac fiber

loops.
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Figure 3.4: A soliton with high carrier frequency collides with a soliton of

lower carrier frequency. After the collison both pulses recover completely.
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Figure 3.5: (a) Amplitude and, (b) Spectrum of a higher order soliton com-

posed of two fundamental solitons with the same carrier frequency
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The NLSE also shows higher order soliton solutions, that travel at the

same speed, i.e. they posses the same carrier frequency, the so called breather

solutions. Figures 3.5(a) and (b) show the amplitude and spectrum of such

a higher order soliton solution, which has twice the area of the fundamental

soliton. The simulation starts with a sech-pulse, that has twice the area of

the fundamental soliton, shown in Fig. 3.3. Due to the interaction of the two

solitons, the temporal shape and the spectrum exhibits a complicated but

periodic behaviour. This period is the soliton period  = 4, as mentioned

above. As can be seen from Figures 3.5(a) and 3.5(b), the higher order soliton

dynamics leads to an enormous pulse shortening after half of the soliton

period. This process has been used by Mollenauer, to build the soliton laser

[9]. In the soliton laser, the pulse compression, that occures for a higher order

soliton as shown in Fig. 3.5(a), is exploited for modelocking. Mollenauer

pioneered soliton propagation in optical fibers[9], as proposed by Hasegawa

and Tappert [8], with the soliton laser, which produced the first picosecond

pulses at 1.55 m. A detailed account on the soliton laser is given by Haus

[7].

So far, we have discussed the pure soliton solutions of the NLSE. But,

what happens if one starts propagation with an input pulse that does not

correspond to a fundamental or higher order soliton?

3.3.4 Inverse Scattering Theory

Obviously, the NLSE has solutions, which are composed of fundamental soli-

tons. Thus, the solutions obey a certain superposition principle which is

absolutely surprising for a nonlinear system. Of course, not arbitrary super-

positions are possible as in a linear system. The deeper reason for the solution

manyfold of the NLSE can be found by studying its physical and mathemat-

ical properties. The mathematical basis for an analytic formulation of the

solutions to the NLSE is the inverse scattering theory [12, 13, 4, 14]. It is a

spectral tranform method for solving integrable, nonlinear wave equations,

similar to the Fourier transform for the solution of linear wave equations [15].
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Figure 3.6: Fourier transformmethod for the solution of linear, time invariant

partial differential equations.
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Figure 3.7: Schematic representation of the inverse scattering theory for the

solution of integrable nonlinear partial differential equations.

Let’s remember briefly, how to solve an initial value problem for a linear

partial differential equation (p.d.e.), like eq.(2.63), that treats the case of a

purely dispersive pulse propagation. The method is sketched in Fig. 3.6.

We Fourier tranform the initial pulse into the spectral domain, because, the

exponential functions are eigensolutions of the differential operators with
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constant coefficients. The right side of (2.63) is only composed of powers of

the differntial operator, therefore the exponentials are eigenfunctions of the

complete right side. Thus, after Fourier transformation, the p.d.e. becomes

a set of ordinary differential equations (o.d.e.), one for each partial wave.

The excitation of each wave is given by the spectrum of the initial wave.

The eigenvalues of the differential operator, that constitutes the right side of

(2.63), is given by the dispersion relation, (), up to the imaginary unit. The

solution of the remaining o.d.e is then a simple exponential of the dispersion

relation. Now, we have the spectrum of the propagated wave and by inverse

Fourier transformation, i.e. we sum over all partial waves, we find the new

temporal shape of the propagated pulse.

As in the case of the Fourier transform method for the solution of linear

wave equations, the inverse scattering theory is again based on a spectral

transform, (Fig.3.7). However, this transform depends now on the details

of the wave equation and the initial conditions. This dependence leads to

a modified superposition principle. As is shown in [11], one can formulate

for many integrable nonlinear wave equations a related scattering problem

like one does in Quantum Theory for the scattering of a particle at a poten-

tial well. However, the potential well is now determined by the solution of

the wave equation. Thus, the initial potential is already given by the ini-

tial conditions. The stationary states of the scattering problem, which are

the eigensolutions of the corresponding Hamiltonian, are the analog to the

monochromatic complex oscillations, which are the eigenfunctions of the dif-

ferential operator. The eigenvalues are the analog to the dispersion relation,

and as in the case of the linear p.d.e’s, the eigensolutions obey simple linear

o.d.e’s.

A given potential will have a certain number of bound states, that cor-

respond to the discrete spectrum and a continuum of scattering states. The

characteristic of the continuous eigenvalue spectrum is the reflection coef-

ficient for waves scatterd upon reflection at the potential. Thus, a certain

potential, i.e. a certain initial condition, has a certain discrete spectrum and

continuum with a corresponding reflection coefficient. From inverse scatter-

ing theory for quantum mechanical and electromagnetic scattering problems,

we know, that the potenial can be reconstructed from the scattering data,

i.e. the reflection coefficient and the data for the discrete spectrum [14].

This is true for a very general class of scattering potentials. As one can

almost guess now, the discrete eigenstates of the initial conditions will lead

to soliton solutions. We have already studied the dynamics of some of these
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soliton solutions above. The continuous spectrum will lead to a dispersive

wave which is called the continuum. Thus, the most general solution of the

NLSE, for given arbitrary initial conditions, is a superposition of a soliton,

maybe a higher order soliton, and a continuum contribution.

The continuum will disperse during propagation, so that only the soliton

is recognized after a while. Thus, the continuum becomes an asympthotically

small contribution to the solution of the NLSE. Therefore, the dynamics of

the continuum is completely discribed by the linear dispersion relation of the

wave equation.

The back transformation from the spectral to the time domain is not as

simple as in the case of the Fourier transform for linear p.d.e’s. One has to

solve a linear integral equation, the Marchenko equation [16]. Nevertheless,

the solution of a nonlinear equation has been reduced to the solution of two

linear problems, which is a tremendous success.
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Figure 3.8: Solution of the NSE for an unchirped and rectangular shaped

initial pulse.
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To appreciate these properties of the solutions of the NLSE, we solve the

NLSE for a rectangular shaped initial pulse. The result is shown in Fig. 3.8.

The scattering problem, that has to be solved for this initial condition,

is the same as for a nonrelativistic particle in a rectangular potential box

[31]. The depth of the potential is chosen small enough, so that it has only

one bound state. Thus, we start with a wave composed of a fundamental

soliton and continuum. It is easy to recognize the continuum contribution,

i.e. the dispersive wave, that separates from the soliton during propagation.

This solution illustrates, that soliton pulse shaping due to the presence of

dispersion and self-phase modulation may have a strong impact on pulse

generation [17]. When the dispersion and self-phase modulation are properly

adjusted, soliton formation can lead to very clean, stable, and extremly short

pulses in a modelocked laser.

3.4 Universality of the NLSE

Above, we derived the NSE in detail for the case of disperison and self-phase

modulation. The input for the NLSE is surprisingly low, we only have to

admitt the first nontrivial dispersive effect and the lowest order nonlinear

effect that is possible in an isotropic and homogeneous medium like glass,

gas or plasmas. Therefore, the NLSE and its properties are important for

many other effects like self-focusing [18], Langmuir waves in plasma physics,

and waves in proteine molecules [19]. Self-focusing will be treated in more

detail later, because it is the basis for Kerr-Lens Mode Locking.

3.5 Soliton Perturbation Theory

From the previous discussion, we have full knowledge about the possible

solutions of the NLSE that describes a special Hamiltonian system. However,

the NLSE hardly describes a real physical system such as, for example, a real

optical fiber in all its aspects [20, 21]. Indeed the NLSE itself, as we have

seen during the derivation in the previous sections, is only an approximation

to the complete wave equation. We approximated the dispersion relation

by a parabola at the assumed carrier frequency of the soliton. Also the

instantaneous Kerr effect described by an intensity dependent refractive index

is only an approximation to the real (3)-nonlinearity of a Kerr-medium [22,
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23]. Therefore, it is most important to study what happens to a soliton

solution of the NLSE due to perturbing effects like higher order dispersion,

finite response times of the nonlinearites, gain and the finite gain bandwidth

of amplifiers, that compensate for the inevitable loss in a real system.

The investigation of solitons under perturbations is as old as the solitons

itself. Many authors treat the perturbing effects in the scattering domain

[24, 25]. Only recently, a perturbation theory on the basis of the linearized

NLSE has been developed, which is much more illustrative then a formulation

in the scattering amplitudes. This was first used by Haus [26] and rigorously

formulated by Kaup [27]. In this section, we will present this approach as

far as it is indispensible for the following.

A system, where the most important physical processes are dispersion and

self-phase modulation, is described by the NLSE complimented with some

perturbation term 

( )


= −

∙
|2|

2

2
+ ||2

¸
+  (∗ ) (3.14)

In the following, we are interested what happens to a solution of the full

equation (3.14) which is very close to a fundamental soliton, i.e.

( ) =

∙
(




) +∆( )

¸
− (3.15)

Here, () is the fundamental soliton according to eq.(3.5)

(



) = 0 sech(




) (3.16)

and

 =
1

2
20 (3.17)

is the phase shift of the soliton per unit length, i.e. the soltion wave vector.

A deviation from the ideal soliton can arise either due to the additional

driving term  on the right side or due to a deviation already present in

the initial condition. We use the form (3.15) as an ansatz to solve the NSE

to first order in the perturbation ∆, i.e. we linearize the NSE around the

fundamental soliton and obtain for the perturbation

∆


= −

∙µ
2

2
− 1
¶
∆+ 2sech2() (2∆+∆∗)

¸
+ (∗ ) (3.18)
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where  =  . Due to the nonlinearity, the field is coupled to its complex

conjugate. Thus, eq.(3.18) corresponds actually to two equations, one for

the complex field amplitude and one for its complex conjugate. Note, we

could also use the real and imaginary part of the complex field amplitude.

Therefore, we introduce the vector notation

∆A =

µ
∆

∆∗

¶
 (3.19)

We further introduce the normalized propagation distance 0 =  and the

normalized time  =  . The linearized perturbed NLSE is then given by



0
∆A = L∆A+

1


F(∗ )

0
(3.20)

Here, L is the operator which arises from the linearization of the NLSE

L = −σ3
∙
(
2

2
− 1) + 2 sech2()(2 + σ1)

¸
 (3.21)

where σ  = 1 2 3 are the Pauli matrices

σ1 =

µ
0 1

1 0

¶
σ2 =

µ
0 −
 0

¶
σ3 =

µ
1 0

0 −1
¶
 (3.22)

For a solution of the inhomogeneous equation (3.20), we need the eigenfunc-

tions and the spectrum of the differential operator L. We found in section

3.3.2, that the fundamental soliton has four degrees of freedom, four free

parameters. This gives already four known eigensolutions and mainsolutions

of the linearized NSE, respectively. They are determined by the derivatives

of the general fundamental soliton solutions according to eqs.(3.11) to (3.13)

with respect to free parameters. These eigenfunctions are

f() =
1


(1−  tanh)()

µ
1

1

¶
 (3.23)

f() = −()
µ

1

−1
¶
 (3.24)

f() = − ()
µ

1

−1
¶
 (3.25)

f() =
1


tanh() ()

µ
1

1

¶
 (3.26)
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and they describe perturbations of the soliton energy, phase, carrier frequency

and timing. One component of each of these vector functions is shown in Fig.

3.9.

Figure 3.9: Perturabations in soliton amplitude (a), phase (b), frequency (c),

and timing (d).

The action of the evolution operator of the linearized NSE on these soliton

perturbations is

Lf =
1


f (3.27)

Lf = 0 (3.28)

Lf = −2 2f (3.29)

Lf = 0 (3.30)
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Equations (3.27) and (3.29) indicate, that perturbations in energy and

carrier frequency are converted to additional phase and timing fluctuations

of the pulse due to SPM and GVD. This is the base for soliton squeezing in

optical fibers [26]. The timing and phase perturbations can increase without

bounds, because the system is autonomous, the origin for the Gordon-Haus

effect, [28] and there is no phase reference in the system. The full continuous

spectrum of the linearized NSE has been studied by Kaup [27] and is given

by

Lf = f (3.31)

 = (2 + 1) (3.32)

f() = −
µ
( − tanh)2

sech2

¶
 (3.33)

and

Lf̄ = ̄ f̄ (3.34)

̄ = −(2 + 1) (3.35)

f̄ = 1f (3.36)

Our definition of the eigenfunctions is slightly different from Kaup [27], be-

cause we also define the inner product in the complex space as

 u|v =
1

2

Z +∞

−∞
u+()v() (3.37)

Adopting this definition, the inner product of a vector with itself in the

subspace where the second component is the complex conjugate of the first

component is the energy of the signal, a physical quantity.

The operator L is not self-adjoint with respect to this inner product. The

physical origin for this mathematical property is, that the linearized system

does not conserve energy due to the parametric pumping by the soliton.

However, from (3.21) and (3.37), we can easily see that the adjoint operator

is given by

L+ = −3L3 (3.38)

and therefore, we obtain for the spectrum of the adjoint operator

L+f
(+)

 = 
(+)

 f
(+)

  (3.39)


(+)

 = − (2 + 1) (3.40)

f
(+)

 =
1

(2 + 1)2
3f (3.41)
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and

L+f̄
(+)

 = ̄
(+)

 f̄
(+)

  (3.42)

̄
(+)

 = (2 + 1) (3.43)

f̄
(+)

 =
1

(2 + 1)2
3f̄ (3.44)

The eigenfunctions to L and its adjoint are mutually orthogonal to each

other, and they are already properly normalized

 f
(+)

 |f0  = ( − 0)  f̄
(+)

 |̄f0 = ( − 0)

 f̄
(+)

 |f0  =  f
(+)

 |̄f0 = 0
This system, which describes the continuum excitations, is made complete

by taking also into account the perturbations of the four degrees of freedom

of the soliton (3.23) - (3.26) and their adjoints

f (+) () = 23f() = 2()

µ
1

1

¶
 (3.45)

f
(+)

 () = −23f()
=
−2


(1−  tanh)()

µ
1

−1
¶
 (3.46)

f (+) () = −2


3f() =
2


tanh()

µ
1

−1
¶
 (3.47)

f
(+)
 () =

2


3f() =

2 2


()

µ
1

1

¶
 (3.48)

Now, the unity can be decomposed into two projections, one onto the con-

tinuum and one onto the perturbation of the soliton variables [27]

(− 0) =

Z ∞

−∞

h
|f  f (+) |+ |f̄  f̄ (+) |

i
+ |f  f (+) |+ |f  f (+) | (3.49)

+ |f  f (+) |+ |f  f (+) |
Any deviation∆ can be decomposed into a contribution that leads to a soli-

ton with a shift in the four soliton paramters and a continuum contribution



∆A(0) = ∆(0)f +∆(0)f +∆(0)f +∆(0)f + a(
0) (3.50)
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Further, the continuum can be written as

a =

Z ∞

−∞

£
()f() + ̄()f̄()

¤
 (3.51)

If we put the decomposition (3.50) into (3.20) we obtain

∆

0
f +

∆

0
f +

∆

0
f +

∆

0
f +



0
a =

L (∆(0)f +∆(0)f + a(
0)) +

1


F(∗ 0)−

0
 (3.52)

By building the scalar products (3.37) of this equation with the eigensolutions

of the adjoint evolution operator (3.39) to (3.44) and using the eigenvalues

(3.27) to (3.36), we find



0
∆ =

1


 f (+) |F0  (3.53)



0
∆ =

∆


+
1


 f

(+)

 |F0  (3.54)



0
∆ =

1


 f (+) |F0  (3.55)



0
∆ = 2∆+

1


 f

(+)
 |F0  (3.56)



0
() = (1 + 2)() +

1


 f

(+)

 |F(∗ 0)0   (3.57)

Note, that the continuum a has to be in the subspace defined by

1a = a
∗
  (3.58)

The spectra of the continuum () and ̄() are related by

̄() = (−)∗ (3.59)

Then, we can directly compute the continuum from its spectrum using (3.33),

(3.51) and (3.58)

 = −
2()

2
+ 2 tanh()

()


− tanh2()() +∗()sech2() (3.60)
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where () is, up to the phase factor 
0
, Gordon’s associated function [32].

It is the inverse Fourier transform of the spectrum

() =

Z ∞

−∞
()  (3.61)

Since () obeys eq.(3.57), Gordon’s associated function obeys a pure dis-

persive equation in the absence of a driving term F

(0 )
0

= −
µ
1 +

2

2

¶
(0 ) (3.62)

It is instructive to look at the spectrum of the continuum when only one

continuum mode with normalized frequency 0 is present, i.e. () = ( −
0). Then according to eqs. (3.60) and (3.61) we have

() =
£
20 − 20 tanh()− 1

¤
−0 + 2sech2() cos() (3.63)

The spectrum of this continuum contribution is

̃() = 2(20 − 1)( − 0) + 20 

Ã
2

 − 0
+



sinh
¡

2
( − 0)

¢!
+ 

 − 0

sinh
¡

2
( − 0)

¢ + 
 + 0

sinh
¡

2
( + 0)

¢  (3.64)

3.6 Soliton Instabilities by Periodic Pertur-

bations

Periodic perturbations of solitons are important for understanding ultrashort

pulse lasers as well as ong distance optical communication systems [29, 30].

Along a long distance transmission system, the pulses have to be periodi-

cally amplified. In a mode-locked laser system, most often the nonlinearity,

dispersion and gain occur in a lumped manner. The solitons propagating in

these systems are only average solitons, which propagate through discrete

components in a periodic fashion, as we will see later.

The effect of this periodic perturbations can be modelled by an additional

term  in the perturbed NLSE according to Eq.(3.14)

 (∗ ) = 

∞X
=−∞

( − )( ) (3.65)
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The periodic kicking of the soliton leads to shedding of energy into continuum

modes according to Eq.(3.57)




() = (1 + 2)()+  f

(+)

 |F(∗ )   (3.66)

 f
(+)

 |F(∗ ) = 

∞X
=−∞

( − )
1

2
· (3.67)Z +∞

−∞

1

(2 + 1)2


µ
( + tanh)2

−sech2
¶
·
µ
1

1

¶
0 sech 

= 

∞X
=−∞

( − ) · (3.68)Z +∞

−∞

0

2(2 + 1)2


¡
2 + 2 tanh− 1¢ ·sech 

Note, 

sech = −sech tanh and therefore after partial integration we

obtain

 f
(+)

 |F(∗ ) = −
∞X

=−∞
( − ) ·Z +∞

−∞

0

2(2 + 1)
·sech

= −
∞X

=−∞
( − )

0

4(2 + 1)
sech

µ


2

¶
 (3.69)

Using
P∞

=−∞ ( − ) =
1


P∞
=−∞ 

 2



we obtain




() = (1 + 2)()− 



∞X
=−∞


 2


 0

4(2 + 1)
sech

µ


2

¶
 (3.70)

Eq.(3.70) is a linear differential equation with constant coefficients for the

continuum amplitudes () which can be solved by variation of constants

with the ansatz

( ) = ( )(1+
2) (3.71)
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and initial conditions ( = 0) = 0 we obtain




( ) = − 



∞X
=−∞

0

4(2 + 1)
sech

µ


2

¶

−

(1+

2)− 2




 (3.72)

or

( ) = − 



0

4(2 + 1)
sech

µ


2

¶
·

∞X
=−∞

Z 

0


(−(1+2)+ 2


)


( ) = − 



0

4(2 + 1)
sech

µ


2

¶
· (3.73)

∞X
=−∞


(−(1+2)+ 2


) − 1

 2

− (1 + 2)



There is a resonant denominator, which blows up at certain normalized fre-

quencies  for  →∞ Those frequencies are given by


2


− (1 + 2) = 0 (3.74)

or  = ±
s

 2



− 1 (3.75)

Removing the normalization by setting  =   = |2|  2 and introducing
the nonlinear phase shift of the soliton acquired over one periode of the

perturbation 0 =  we obtain a handy formula for the location of the

resonant sidebands

 = ±1


s
2

0
− 1 (3.76)

and the coefficients

( ) = − 



0

4(()
2
+ 1)

sech
³
2

´
(3.77)

·
∞X

=−∞



(−(1+()2)+ 2


) − 1

2− 0(1 + ()
2
)


The coefficients stay bounded for frequencies not equal to the resonant condi-

tion and they grow linearly with propagation distance  at resonance, which
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Figure 3.10: Phasematching between soliton and continuum due to periodic

perturbations leads to resonant sideband generation. The case shown is for

0 = 2

leads to a destruction of the pulse. To stabilize the soliton against this growth

of resonant sidebands, the resonant frequencies have to stay outside the spec-

trum of the soliton, see Fig. 3.10, which feeds the continuum, i.e.  À 1



This condition is only fulfilled if 0 ¿ 4 This condition requires that the

soliton period is much longer than the period of the perturbation. As an ex-

ample Fig. 3.10 shows the resonant sidebands observed in a fiber laser. For

optical communication systems this condition requires that the soliton energy

has to be kept small enough, so that the soliton periode is much longer than

the distance between amplifiers, which constitute periodic perturbations to

the soliton.These sidebands are often called Kelly-Sidebands, according to

the person who first described its origin properly [29].

To illustrate its importance we discuss the spectrum observed from the

long cavity Ti:sapphire laser system illustrated in Fig. 3.11 and described

in full detail in [36]. Due to the low repetition rate, a rather large pulse

energy builts up in the cavity, which leads to a large nonlinear phase shift

per roundtrip. Figure 3.12 shows the spectrum of the output from the laser.

The Kelly sidebands are clearly visible. It is this kind of instability, which

limits further increase in pulse energy from these systems operating in the

soliton pulse shaping regime. Energy is drained from the main pulse into
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the sidebands, which grow at the expense of the pulse. At some point the

pulse shaping becomes unstable because of conditions to be discussed in later

chapters.
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Figure 3.11: Schematic layout of a high pulse energy laser cavity. All shaded

mirrors are (Double-chirped mirrors) DCMs. The standard 100 MHz cavity

with arms of 45 cm and 95 cm extends from the OC to M6 for the short

and long arms respectively. The multiple pass cavity (MPC) is enclosed in

the dotted box. The pump source is a frequency doubled Nd:Vanadate that

produces up to 10W at 532 nm [36].
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3.7 Pulse Compression

So far we have discussed propagation of a pulse in negative dispersive media

and positive self-phase modulation. Then for large enough pulse energy a

soliton can form, because the low and high frequency components generated

by SPM in the front and the back of the pulse are slow and fast, and therefore,

slow down or catch up to stay together with the generating pulse. What

happens if the dispersion is positive? Clearly, the low and high frequency

components generated by SPM in the front and back of the pulse are fast

and slow and move away from the pulse in a continuous fashion. This leads

to highly chirped pulse, but the chirp is mostly linear. Thus the pulse can be

compressed after the nonlinear propagation by sending it through a dispersive

medium or prism pair or grating pair generating the corresponding negative

chirp. In that way, pulses can be compressed by large factors of 3 to 20. This

pulse compression process can be formulated in a more general way.

3.7.1 General Pulse Compression Scheme

The general scheme for pulse compression of optical pulses was independently

proposed by Gires and Tournois in 1964 [37] and Giordmaine et al. in 1968

[38]. The input pulse is first spectrally broadened by a phase modulator. The

phase over the generated spectrum is hopefully in a form that can be con-

veniently removed afterwards, i.e. all spectral components can be rephased

to generate a short as possible pulse in the time domain. To compress fem-

tosecond pulses an ultrafast phase modulator has to be used, that is the pulse

has to modulate its phase itself by self-phase modulation. In 1969 Fisher et

al. [39] proposed that picosecond pulses can be compressed to femtosecond

duration using the large positive chirp produced around the peak of a short

pulse by SPM in an optical Kerr liquid. In the same year Laubereau [40] used

several cells containing CS2 and a pair of diffraction gratings to compress, by

approximately ten times, 20-ps pulses generated by a mode-locked Nd:glass

laser.

As discussed in section 3.2, the optical Kerr effect in a medium gives

rise to an intensity dependent change of the refractive index ∆ = 2(),

where 2 is the nonlinear-index coefficient and () is the optical inten-

sity. The self-induced intensity-dependent nonlinear phase shift experienced

by an optical field during its propagation in a Kerr medium of length  is

given by ∆() = −(0)2() where 0 is the carrier frequency of the
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Figure 3.13: Intensity profile, spectrum, instantaneous frequency, optimum

quadratic compression and ideal compression for two cases: top row for a

short fiber, i.e. high nonlinearity and low dispersion; bottom row optimum

nonlinearity and dispersion.[41]

pulse. The induced frequency sweep over the pulse can be calculated from

∆ = ∆ see Fig. 3.13. Around the central part of the pulse, where

most of the energy is concentrated, the phase is parabolic, leading to an

approximately linear chirp in frequency. The region with linear chirp can

be enlarged in the presence of positive dispersion in a Kerr medium of the

same sign [41]. To compress the spectrally broadened and chirped pulse,

a dispersive delay line can be used, characterized by a nearly linear group

delay (). Or if the chirp generated over the newly generated spectrum

is nonlinear this chirp needs to be removed by a correspondingly nonlinear

group delay () Figure 3.13 shows that in the case SPM and positive

GDD a smoother spectrum with more linear chirp is created and therefore

the final compressed pulse is of higher quality, i.e. a higher percentage of the

total pulse energy is really concentrated in the short pulse and not in a large

uncompressed pulse pedestal.

For a beam propagating in a homogenous medium, unfortunately the non-

linear refractive index does not only lead to a temporal phase modulation but

also to a spatial phase modulation, which leads to self-focusing or defocus-
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ing and small-scale instabilities [42]. Therefore, a fundamental requirement

for pulse compression is that the Kerr effect is provided by a guiding non-

linear medium so that a spatially uniform spectral broadening is obtained.

In 1974 Ippen et al. reported the first measurement of SPM in the absence

of self-trapping and self-focusing by using a guiding multimode optical fiber

filled with liquid CS2 [43]. In 1978 Stolen and Lin reported measurements of

SPM in single-mode silica core fibers [44]. The important advantage of the

single-mode fiber is that the phase modulation can be imposed over the entire

transverse profile of the beam, thus removing the problem of unmodulated

light in the wings of the beam [43]. In 1981 Nakatsuka et al. [41] performed

the first pulse compression experiment using fibers as a Kerr medium in the

positive dispersion region.

3.7.2 Spectral Broadening with Guided Modes

The electric field of a guided mode can be written as [51]:

(r ) = ( ) ( ) exp[()] (3.78)

where( ) is the mode-amplitude for a given frequency component,  ( )

is the mode-transverse field distribution and () is the mode-propagation

constant. The propagation equation for the guided field splits into two equa-

tions for amplitude ( ) and field pattern  ( ). In first order pertur-

bation theory a perturbation ∆ = ̄2||2 of the refractive index, which is
much smaller than the index step that defines the mode, does not change the

modal distribution  ( ), while the mode propagation constant ̄() can

be written as ̄() = () +∆ , where the perturbation ∆ is given by

∆ =
(0)

R R
∆| ( )|2R R | ( )|2  (3.79)

As shown by Eq.(3.79), the perturbation ∆, which includes the effect due

to the fiber nonlinearity, is related to a spatial average on the fiber trans-

verse section of the perturbation ∆. In this way, spatially uniform SPM is

realized.

Using regular single mode fibers and prism-grating compressors, pulses as

short as 6 fs at 620 nm were obtained in 1987 from 50-fs pulses generated by

a colliding-pulse mode-locking dye laser [45] see Figure 3.14. More recently,

13-fs pulses from a cavity-dumped Ti:sapphire laser were compressed to 4.5
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Figure 3.14: Fiber-grating pulse compressor to generate femtosecond pulses

[52]

fs with the same technique using a compressor consisting of a quartz 45◦-
prism pair, broadband chirped mirrors and thin-film Gires-Tournois dielectric

interferometers [46, 53]. The use of a single-mode optical fiber limits the pulse

energy to a few nanojoule.

In 1996, using a phase modulator consisting of a hollow fiber (leaky

waveguide) filled with noble gas, a powerful pulse compression technique

has been introduced, which handles high-energy pulses [47]. The implemen-

tation of the hollow-fiber compression technique using 20-fs seed pulses from

a Ti:sapphire system and chirped-mirrors that form a dispersive delay line

has led to the generation of pulses with duration down to 4.5 fs [48] and en-

ergy up to 0.55 mJ [49]. This technique presents the advantages of a guiding

element with a large-diameter mode and of a fast nonlinear medium with

high damage threshold.

The possibility to take advantage of the ultrabroadband spectrum which

can be generated by the phase modulation process, is strictly related to the

development of dispersive delay lines capable of controlling the frequency-

dependent group delay over such bandwidth.

3.7.3 Dispersion Compensation Techniques

The pulse frequency sweep (chirp) imposed by the phase modulation is ap-

proximately linear near the peak of the pulse, where most of the energy is

concentrated. In the presence of dispersion in the phase modulator the chirp

becomes linear over almost the whole pulse. Therefore, optimum temporal

compression requires a group delay, () = , characterized by a
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nearly linear dependence on frequency in the dispersive delay line. Since in

the case of SPM the nonlinear index 2 is generally positive far from reso-

nance, a negative group delay dispersion ( = ) is required in

the compressor. In order to generate the shortest pulses, the pulse group de-

lay after the phase modulator and the compressor must be nearly frequency

independent. () can be expanded into a Taylor series around the central

frequency 0:

() = 0(0) + 00(0)∆ +
1

2
000(0)∆2 +

1

3!
0000(0)∆3 + · · · (3.80)

where ∆ =  − 0, and 00(0), 
000(0), and 0000(0) are the second-, the

third-, and the fourth-order-dispersion terms, respectively. Critical values of

these dispersion terms above which dispersion causes a significant change of

the pulse are given by a simple scaling expression: () =  , where 
() is

the nth-order dispersion term and   is the pulse duration. For example,

a second order dispersion with 00 =  2 results in a pulse broadening by

more than a factor of two. Therefore dispersion-induced pulse broadening

and distortion become increasingly important for decreasing pulse durations.

Equation (3.80) shows that to compress a pulse to near the transform limit

one should eliminate these high order dispersion terms. For instance, assum-

ing a transform-limited input pulse to the phase modulator, the condition

for third-order-dispersion-compensated compression is the following:

00(0) = 00 + 00 = 0 (3.81)

000(0) = 000 + 000 = 0 (3.82)

Several compressor schemes have been developed so far that included such

components as: diffraction gratings, Brewster-cut prism pairs, combination

of gratings and prisms, thin prisms and chirped mirrors, and chirped mirrors

only, etc. In the following we will briefly outline the main characteristics of

these compressor schemes.

Grating and Prism Pairs

In 1968 Treacy demonstrated for the first time the use of a pair of diffraction

gratings to achieve negative GDD [54]. In 1984 Fork et al. obtained negative

GDDwith pairs of Brewster-angled prisms [55]. Prism pairs have been widely

used for dispersion control inside laser oscillators since they can be very low



90 CHAPTER 3. NONLINEAR PULSE PROPAGATION

loss in contrast to grating pairs. In both optical systems the origin of the

adjustable dispersion is the angular dispersion that arises from diffraction

and refraction, respectively. The dispersion introduced by these systems can

be easily calculated, by calculating the phase accumulated between the input

and output reference planes [77]. To understand the main properties of these

systems, we will refer to Fig. 3.15. The first element scatters the input beam

with wave vector k and input path vector l into the direction k. The

beam passes between the first and the second element and is scattered back

into its original direction.

γ
α

l

γ

kout

kin

D

Figure 3.15: Optical path difference in a two-element dispersive delay line

[105]

The phase difference by the scattered beam and the reference beam with-

out the grating is: () = k() · l. Considering free-space propagation
between the two elements, we have |k| = , and the accumulated phase

can be written as

() =



|l| cos[ − ()] =







cos()
cos[ − ()] (3.83)

where:  is the angle between the incident wave vector and the normal

to the first element;  is the angle of the outgoing wave vector, which is

a function of frequency;  is the spacing between the scattering elements

along a direction parallel to their normal. In the case of a grating pair the
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frequency dependence of the diffraction angle  is governed by the grating

law, that in the case of m-th-order diffraction is given by:


2


= [sin()− sin ] (3.84)

where  is the groove spacing of the grating. From the grating condition

Eq.(3.84), we find

cos()



= −2

2
 (3.85)

Using Eq.(3.83) and Eqs.(3.84,3.85), it is possible to obtain analytic expres-

sions for the GDD and the higher-order dispersion terms for a single pass

through the grating pair:

00() = − 42

32 cos3 ()
2 (3.86)

000() =
122

42 cos3 ()

µ
1 +

2 sin()

 cos2 ()

¶
3 (3.87)

It is evident from Eq.(3.86) that grating pairs give negative dispersion. 

is the distance between the gratings. A disadvantage of the grating pair is

the diffraction loss. For a double-pass configuration the loss is typically 75%.

Also the bandwidth for efficient diffraction is limited.

In the case of a Brewster-angled prism pair
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Figure 3.16: Prism pair for dispersion compensation. The blue wavelengths

have less material in the light path then the red wavelengths. Therefore, blue

wavelengths are less delayed than red wavelength

Eq.(3.83) reduces to the following expression (for single pass) [55]:

() =



 cos() (3.88)

where  is the distance between prism apices and () is the angle between

the refracted ray at frequency  and the line joining the two apices. The

second and third order dispersion can be expressed in terms of the optical

path  () =  cos():

00() =
3

22
2

2
(3.89)

000() = − 4

423

µ
3
2

2
+ 

3

3

¶
(3.90)

with the following derivatives of the optical path with respect to wavelength

evaluated at Brewster’s angle:

2

2
= 2[00 + (2− −3)(0)2] sin − 4(0)2 cos (3.91)



3.7. PULSE COMPRESSION 93

3

3
= [6(0)3(−6 + −4 − 2−2 + 42) + 12000(2− −3)(3.92)

+2000] sin + 12[(
−3 − 2)(0)3 − 000] cos  (3.93)

where  is the refractive index of the prism material; 0, 00 and 000 are
respectively, the first-, second- and third-order derivatives of , with respect

to wavelength. The prism-compressor has the advantage of reduced losses.

Using only fused silica prisms for dispersion compensation, sub-10-fs light

pulses have been generated directly from an oscillator in 1994 [78]. In 1996,

pulses with tens of microjoules energy, spectrally broadened in a gas-filled

hollow fiber were compressed down to 10 fs using a prism compressor [47].

Both in the case of grating and prism pairs, negative GDD is associated with

a significant amount of higher-order dispersion, which cannot be lowered or

adjusted independently of the desired GDD, thus limiting the bandwidth

over which correct dispersion control can be obtained. This drawback has

been only partially overcome by combining prism and grating pairs with

third-order dispersion of opposite sign. In this way pulses as short as 6 fs

have been generated in 1987 [45], and less than 5 fs in 1997 [46], by external

compression. This combination cannot be used for few-optical-cycle pulse

generation either in laser oscillators, due to the high diffraction losses of the

gratings, or in external compressors at high power level, due to the onset of

unwanted nonlinearities in the prisms.

3.7.4 Dispersion Compensating Mirrors

Chirped mirrors are used for the compression of high energy pulses, because

they provide high dispersion with little material in the beam path, thus

avoiding nonlinear effects in the compressor.

Grating and prism compressors suffer from higher order dispersion. In

1993 Robert Szipoecs and Ferenc Krausz [79] came up with a new idea,

so called chirped mirrors. Laser mirrors are dielectric mirrors composed of

alternating high and low index quarter wavelenth thick layers resulting in

strong Bragg-reflection. In chirped mirrors the Bragg wavelength is chirped

so that different wavelength penetrate different depth into the mirror upon

reflection giving rise to a wavelength dependent group delay. It turns out

that the generation of few-cycle pulses via external compression [94] as well

as direct generation from Kerr lens mode-locked lasers [57] relies heavily on

the existence of chirped mirrors [56, 82, 58] for dispersion compensation.
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There are two reasons to employ chirped mirrors. First the high-reflectivity

bandwidth, ∆ of a standard dielectric Bragg-mirror is determined by the

Fresnel reflectivity  of the high,   and low,  index materials used for

the dielectric mirror

 =
∆


=

 − 

 + 
(3.94)

where  is again the center frequency of the mirror. Metal mirrors are

in general too lossy, especially when used as intracavity laser mirrors. For

material systems typically used for broadband optical coatings such as Silicon

Dioxide and Titanium Dioxide with 2 = 148 and 2 = 24, (these

indexes might vary depending on the deposition technique used), a fractional

bandwidth ∆ = 023 can be covered. This fractional bandwidth is only

about a third of an octave spanning mirror ∆ = 23 Furthermore, the

variation in group delay of a Bragg-mirror impacts already pulses that fill

half the spectral range ∆ = 023 A way out of this dilemma was found

by introducing chirped mirrors [56], the equivalent of chirped fiber Bragg

gratings, which at that time were already well developed components in fiber

optics [59]. When the Bragg wavelength of the mirror stack is varied slowly

enough and no limitation on the number of layer pairs exists, an arbitrary

high reflectivity range of the mirror can be engineered. The second reason

for using chirped mirrors is based on their dispersive properties due to the

wavelength dependent penetration depth of the light reflected from different

positions inside the chirped multilayer structure. Mirrors are filters, and in

the design of any filter, the control of group delay and group delay dispersion

is difficult. This problem is further increased when the design has to operate

over wavelength ranges up to an octave or more.

The matching problem Several designs for ultra broadband dispersion

compensating mirrors have been developed over the last years. For disper-

sion compensating mirrors which do not extend the high reflectivity range

far beyond what a Bragg-mirror employing the same materials can already

achieve, a multi-cavity filter design can be used to approximate the desired

phase and amplitude properties [60, 61]. For dispersion compensating mir-

rors covering a high reflectivity range of up to ∆ = 04 the concept of

double-chirped mirrors (DCMs) has been developed [82][80]. It is based on

the following observations. A simple chirped mirror provides high-reflectivity

over an arbitrary wavelength range and, within certain limits, a custom des-

ignable average group delay via its wavelength dependent penetration depth
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Figure 3.17: a) Standard Bragg mirror; (b) Simple chirped mirror, (c)

Double-chirped mirror with matching sections to avoid residual reflections

causing undesired oscillations in the GD and GDD of the mirror.

[72] (see Fig. 3.17 (a) and (b) ). However, the group delay as a function of

frequency shows periodic variations due to the impedance mismatch between

the ambient medium and the mirror stack, as well as within the stack (see

Figure 3.17 b and Figure 3.18). A structure that mitigates these mismatches

and gives better control of the group delay dispersion (GDD) is the double-

chirped mirror (DCM) (Fig. 3.17 c), in a way similar to that of an apodized

fiber Bragg grating [63].

Figure 3.18 shows the reflectivity and group delay of several Bragg and

chirped mirrors composed of 25 index steps, with  = 25 and  = 15

similar to the refractive indices of TiO2 and SiO2, which result in a Fresnel

reflectivity of  = 025. The Bragg-mirror can be decomposed in symmetric

index steps [82]. The Bragg wavenumber is defined as  = ( +

), where  and  are the thicknesses of the low and high index layer,

respectively. The Bragg wavenumber describes the center wavenumber of

a Bragg mirror composed of equal index steps. In the first case, (Figure

3.18, dash-dotted line) only the Bragg wave number is linearly chirped from

68−1    11−1 over the first 20 index steps and held constant over
the last 5 index steps. The reflectivity of the structure is computed assuming
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Figure 3.18: Comparison of the reflectivity and group delay of chirpedmirrors

with 25 layer pairs and refractive indices  = 25 and  = 15The upper

portion shows the enlarged top one percent of the reflectivity. The dotted

curves show the result for a simple chirped mirror. The dashed and solid

curves show the result for double-chirped mirrors where in addition to the

chirp in the Bragg wave number  the thickness of the high-index layers is

also chirped over the first 12 layer pairs from zero to its maximum value for a

linear chirp, i.e.  = 1, (dashed curves) and for a quadratic chirp, i.e.  = 2

(solid curves). [82].

the structure imbedded in the low index medium. The large oscillations

in the group delay are caused by the different impedances of the chirped

grating and the surrounding low index material causing a strong reflection at

the interface of the low index material and the grating stack. By adiabatic

matching of the grating impedance to the low index material this reflection

can be avoided. This is demonstrated in Fig. 3.18 by the dashed and solid

curves, corresponding to an additional chirping of the high index layer over

the first 12 steps according to the law  = (12)12(4) with  = 1,

and 2, for linear and quadratic adiabatic matching. The argument m denotes

the m-th index step and 12 = 0740. The strong reduction of the

oscillations in the group delay by the double-chirp technique is clearly visible.
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Quadratic tapering of the high index layer, and therefore, of the grating

already eliminates the oscillations in the group delay completely, which can

also be shown analytically by coupled mode analysis [80]. Because of the

double chirp a high transmission window at the short wavelength end of the

mirror opens up which is ideally suited for the pumping of Ti:sapphire lasers.

So far, the double-chirped mirror is only matched to the low index material

of the mirror. Ideally, the matching can be extended to any other ambient

medium by a properly designed AR-coating. However, this AR-coating has

to be of very high quality, i.e. very low residual reflectivity ideally a power

reflectivity of 10−4, i.e. an amplitude reflectivity of  = 10−2 is required.
The quality of the AR-coating can be relaxed, if the residual reflection is

directed out of the beam path. This is achieved in so called tilted front-side

or back-side coated mirrors [64], [65], (Fig. 3.19 (a) and (b)). In the back-

side coated mirror the ideal DCM structure, which is matched to the low

index material of the mirror is deposited on the back of a substrate made

of the same or at least very similar low index material. The AR-coating is

deposited on the front of the slightly wedged substrate, so that the residual

reflection is directed out of the beam and does not affect the dispersion

properties. Thus the task of the AR-coating is only to reduce the Fresnel

losses of the mirror at the air-substrate interface, and therefore, it is good

enough for some applications, if the residual reflection at this interface is of

the order of 0.5%. However, the substrate has to be very thin in order to

keep the overall mirror dispersion negative, typically on the order of 200-500

m. Laser grade quality optics are hard to make on such thin substrates

and the stress induced by the coating leads to undesired deformation of

the substrates. The front-side coated mirror overcomes this shortcoming

by depositing the ideal DCM-structure matched to the index of the wedge

material on a regular laser grade substrate. A 100-200 m thin wedge is

bonded on top of the mirror and the AR-coating is then deposited on this

wedge. This results in stable and octave spanning mirrors, which have been

successfully used in external compression experiments [68]. Both structures

come with limitations. First, they introduce a wedge into the beam, which

leads to an undesired angular dispersion of the beam. This can partially be

compensated by using these mirrors in pairs with oppositely oriented wedges.

The second drawback is that it seems to be impossible to make high quality

AR-coatings over one or more than one octave of bandwidth, which have less

than 0.5% residual reflectivity [67], i.e. on one reflection such a mirror has at

least 1% of loss, and, therefore, such mirrors cause high losses inside a laser.
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(C) Brewster Angle Mirror

(A) Tilted-Front-Interface Mirror (B) Back-Side Coated Mirror

Sub-
strate
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Figure 3.19: Schematic structure of proposed broadband dispersion compen-

sating mirror system avoiding the matching to air: (a) tilted-front-interface

mirror; (b) back-side coated mirror and (c) Brewster-angle mirror.
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For external compression these losses are acceptable. A third possibility for

overcoming the AR-coating problem is given by using the ideal DCM under

Brewster-angle incidence, (Fig. 3.19) [66]. In that case, the low index layer

is automatically matched to the ambient air. However, under p-polarized

incidence the index contrast or Fresnel reflectivity of a layer pair is reduced

and more layer pairs are necessary to achieve high reflectivity. Also the

penetration depth into the mirror increased, so that scattering and other

losses in the layers become more pronounced. On the other hand, such a

mirror can generate more dispersion per bounce due to the higher penetration

depth. For external compression such mirrors might have advantages because

they can cover bandwidths much wider than one octave. This concept is

difficult to apply to the fabrication of curved mirrors. There is also a spatial

chirp of the reflected beam, which may become sizeable for large penetration

depth and has to be removed by back reflection or an additional bounce on

another Brewster-angle mirror, that recombines the beam. For intracavity

mirrors a way out of this dilemma is found by mirror pairs, which cancel the

spurious reflections due to an imperfect AR-coating and matching structure

in the chirped mirror [75]. Also this design has its drawbacks and limitations.

It requires a high precision in fabrication and depending on the bandwidth

of the mirrors it may be only possible to use them for a restricted range of

angles of incidence.

Double-chirped mirror pairs

There have been several proposals to increase the bandwidth of laser mirrors

by mutual compensation of GDD oscillations [69, 70, 71] using computer

optimization. These early investigations resulted in a rather low reflectivity

of less than 95% over almost half of the bandwidth considered. The ideas

leading to the DCMs help us to show analytically that a design of DCM-

pairs covering one octave of bandwidth, i.e. 600 nm to 1200 nm, with high

reflectivity and improved dispersion characteristics is indeed possible [75].

Use of these mirror pairs in a Ti:sapphire laser system resulted in 5 fs pulses

with octave spanning spectra directly from the laser [57]. Yet, the potential

of these pairs is by no means fully exploited.

A DCM-Pair, see Fig. 3.20, consists of a mirror M1 and M2. Each is

composed of an AR-coating and a low-index matched double-chirped back-

mirror MB with given wavelength dependent penetration depth. The high

reflectivity range of the back-mirror can be easily extended to one octave by
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Figure 3.20: DCM-Pair M1 (a) and M2 (b). The DCM M1 can be decom-

posed in a double-chirped back-mirror MB matched to a medium with the

index of the top most layer. In M2 a layer with a quarter wave thickness

at the center frequency of the mirror and an index equivalent to the top

most layer of the back-mirror MB is inserted between the back-mirror and

the AR-coating. The new back-mirror comprising the quarter wave layer can

be reoptimized to achieve the same phase as MB with an additional -phase

shift over the whole octave of bandwidth.
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Figure 3.21: Decomposition of a DCM into a double-chirped backmirror MB

and an AR-coating.

simply chirping slowly enough and using a sufficient number of layer pairs.

However, the smoothness of the resulting GDD strongly depends on the qual-

ity of matching provided by the AR-coating and the double-chirped section.

Figure 3.21 indicates the influence of the AR-coating on the GDD of the

total DCM-structure. The AR-coating is represented as a two - port with

two incoming waves 1 2 and two outgoing waves 2 1. The connection

between the waves at the left port and the right port is described by the

transfer matrixµ
1
1

¶
= 

µ
2
2

¶
with  =

µ
1


∗
∗




1
∗

¶
(3.95)

where we assumed that the multilayer AR-coating is lossless. Here,  and 

are the complex coefficients for reflection and transmission at port 1 assuming

reflection free termination of port 2. The back-mirror MB, is assumed to be

perfectly matched to the first layer in the AR-coating, has full reflection over

the total bandwidth under consideration. Thus its complex reflectivity in the

range of interest is given by

 = () (3.96)

The phase () is determined by the desired group delay dispersion

 = −2()2 (3.97)

up to an undetermined constant phase and group delay at the center fre-

quency of the mirror, . All higher order derivatives of the phase are

determined by the desired dispersion of the mirror. Analytic formulas for

the design of DCMs, showing custom designed dispersion properties without
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considering the matching problem to the ambient air, can be found in [72].

The resulting total mirror reflectivity including the AR-coating follows from

(3.95)

 =


∗

1− ∗
1− 

(3.98)

For the special case of a perfectly reflecting back-mirror according to Eq.

(3.96) we obtain

 =


∗
()

1− ∗

1− 
 with  = () (3.99)

The new reflectivity is again unity but new contributions in the phase of the

resulting reflectivity appear due to the imperfect transmission properties of

the AR-coating. With the transmission coefficient of the AR-coating

 = || (3.100)

The total phase of the reflection coefficient becomes

 = 2 + () +  (3.101)

with

 = 2arctan

∙
{}

1 +{}
¸

(3.102)

Here,  is the phase of the transmission coefficient and  is the phase due

to the Gire-Tournois interferometer created by the non-perfect AR-coating,

i.e.  6= 0 and the back-mirror MB, (Figure 3.21). The phase  of a

good AR-coating, i.e. ||  01 is linear and, therefore, does not introduce

undesired oscillations into the GD and GDD. However, the phase  is

rapidly varying since () varies over several 2 over the frequency range

of interest due to the monotonic group delay of the back-mirror. The size

of these oscillations scale with the quality of the AR-coating, i.e. with ||.
Thus, the GDD oscillations are reduced with smaller residual reflectivity of

the AR-coating. Assuming, that the reflectivity  is real and smaller or equal

to 01 the oscillations in the group delay and group delay dispersion are easily

estimated by

 =



≈ −() cos[()] (3.103)
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with

() = −()
 =

2
2

≈ 
¡
 2() sin[()]− cos[()]

¢ (3.104)

The GTI-reflections add up coherently when multiple reflections on chirped

mirrors occur inside the laser over one round-trip, leading to pre- and post

pulses if the mode-locking mechanism is not strong enough to suppress them

sufficiently. Experimental results indicate that a residual reflection in the

AR-coating of   0.01 and smaller, depending on the number of reflections

per round-trip, is required so that the pre- and post pulses are sufficiently

suppressed. This corresponds to an AR-coating with less than 10−4 residual
power reflectivity, which can only be achieved over a very limited range, as

discussed above.

Over a limited wavelength range of 350 nm centered around 800 nm low

residual power reflectivities as small as 10−4 have been achieved effectively
after reoptimization of the AR-coating section and the double-chirped section

to form a combined matching section of higher matching quality. For even

larger bandwidth, approaching an octave, a residual power reflectivity of

10−4 is no longer possible [67]. A way out of this limitation is offered by the
observation, that a coherent subtraction of the pre- and post-pulses to first

order in  is possible by reflections on a mirror pair M1 and M2, see Figure

3.20 (a) and (b). A series of two reflections on a mirror with reflectivity

(3.99) and on a similar mirror with an additional phase shift of  between

the AR-coating and the back-mirror, having a reflectivity (3.99) where  is

replaced by − leads to a coherent subtraction of the first order GTI-effects.
The resulting total reflectivity of the two reflections is given by the product

of the individual complex reflectivities assuming the same AR-coating

2 = −
µ


∗

¶2
2()

1− ∗2

1− 2
(3.105)

Now, the GTI-effects scale like the power reflectivity of the AR-coating 2

instead of the amplitude reflectivity  which constitutes a tremendous im-

provement, since it is possible to design AR-coatings to the low index material

Si02 of the mirror with a residual power reflectivity between 0.001 and 0.01

while covering one octave of bandwidth [67]. However, there does not exist

a single physical layer which generates a phase shift of 2 during one pas-

sage for all frequency components contained in an octave. Still, a layer with
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Figure 3.22: Reflectivity of the mirror with pumpwindow shown as thick solid

line with scale to the left. The group delay design goal for perfect dispersion

compensation of a prismless Ti:sapphire laser is shown as thick dash-dotted

line with scale to the right. The individual group delay of the designed

mirrors is shown as thin line and its average as a dashed line, which is almost

identical with the design goal over the wavelength range form 650-1200 nm.

The measured group delay, using white light interferometry, is shown as the

thick solid line from 600-1100 nm. Beyond 1100nm the sensitivity of Si-

detector used prevented further measurements.

a quarter wave thickness at the center frequency is a good starting design.

Then the back-mirror MB in the Mirror M2 can be reoptimized to take care

of the deviation from a quarter wave thickness further away from the center

frequency, because the back-mirror acts as a highly dispersive medium where

the phase or group delay can be designed at will.

Figure 3.23 shows in the top graph the designed reflectivity of both mir-

rors of the pair in high resolution taking into account the absorption in the

layers. The graph below shows the reflectivity of the mirror, which has in ad-

dition high transmission between 510-550 nm for pumping of the Ti:sapphire

crystal. Each mirror consists of 40 layer pairs of SiO2 and TiO2 fabricated
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using ion-beam sputtering [73, 74]. Both mirror reflectivities cover more than

one octave of bandwidth from 580 nm to 1200 nm or 250 to 517 THz, with

an average reflectivity of about 99.9% including the absorption in the lay-

ers. In addition, the mirror dispersion corrects for the second and higher

order dispersion of all intracavity elements such as the Ti:sapphire crystal

and the thin, small angle, BaF2 wedges, for fine adjustment of the dispersion

from 650 nm to 1200 nm within the 12 bounces occurring in one roundtrip.

The choice for the lower wavelength boundary in dispersion compensation

is determined and limited by the pump window of Ti:sapphire. The disper-

sion measurement was performed using white light interferometry [76], up

to about 1100 nm because of the silicon detector roll-off. However, in the

average group delay of both mirrors the oscillations are ideally suppressed

due to cancellation by more than a factor of ten. Therefore, the effective

residual reflectivity of the mirror pair covering one octave, 2, is even smaller

than that of conventional DCMs.

Methods for active dispersion compensation

Various schemes for active pulse compression have been developed based

on the use of liquid-crystal modulators (LCM), acousto-optic modulators

(AOM), and mechanically deformable mirrors.

Dispersion compensation using liquid crystal modulators A pulse

shaping technique [83] based on the use of a LCM for pulse compression offers

the advantage of a large bandwidth (300-1500 nm) and in situ adaptive phase

control, see Figure3.23. In 1997 Yelin et al. [84] demonstrated an adaptive

method for femtosecond pulse compression based on LCM. Strongly chirped

80-fs pulses generated by an oscillator were sent in a 4-f pulse shaper com-

posed of a pair of thin holographic transmission gratings. A programmable

one-dimensional LCM, placed in the Fourier plane of the shaper, was used

as an updatable filter for pulse spectral manipulation. Pulses as short as

11 fs (transform-limited duration: 9 fs) have been obtained, employing an

optimization algorithm for adaptive compression based on a search in the

two-dimensional space of second- and third-order dispersion coefficients. In

2001, Karasawa et al. [85] demonstrated pulse compression, down to 5 fs, of

broadband pulses from an argon-filled hollow fiber, using only a LCM for

phase compensation. More recently [50], pulses as short as 3.8 fs have been

achieved through a closed-loop combination of a liquid-crystal spatial light
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Figure 3.23: Grating Pair and LCM pulse shaper according to Weiner and

Heritage [87]. To shape amplitude and phase two pulse shapers with an

amplitude and phase mask each are necessary.

modulator for adaptive pulse compression and spectral-phase interferome-

try for direct electric-field reconstruction (SPIDER) [86] measurements as

feedback signal.

One problem of the method is pixelization in the Fourier plane owing

to the technology of the liquid-crystal active matrix. Diffraction on pixel

edges and absorption by the black matrix introduce parasitic effects. The re-

quirement that the actual spectral modulation should approximate a smooth

function despite the fixed, finite size of the individual modulator elements,

limits the temporal range over which pulse compression can be achieved [87].

Other problems are related to the optical damage of the LCM, which limits

the maximum pulse energy, and to the high losses introduced by the device.

Various nonpixelated devices have been proposed: Dorrer et al. have re-

ported on an optically addressed LCM (liquid crystal light valve) [88]. The

light valve consists of two continuous transparent electrodes and continuous

layers of a nematic twisted liquid crystal and of photoconductive Bi12SiO20
(BSO). A local variation of illumination of the BSO layer (in the blue green

spectral region) induces a change in conductivity. When a voltage is applied

between the two electrodes, the variation of the BSO conductivity results

in a change in the voltage drop across the liquid crystal layer. As the bire-

fringence of the liquid crystal is voltage dependent, a local variation of the

refractive index is created, which translates into a variation of the optical
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phase of the local spectral component. The light valve is addressed by using

a display device. Pixelation effects are avoided because the light valve itself

is a continuous device. The control of the light valve is more complicated

than for the electrically addressed LCM. Moreover, due to its limited spatial

frequency response, the spectral resolution is limited.

Dispersion compensation using acousto-optic modulators

In 1997 Tournois proposed an acousto-optic programmable dispersive filter

(AOPDF), to provide large dispersion-compensation ranges[90]. The device

is based on a collinear acousto-optic interaction in a birefringent uniaxial

crystal, see Figure 3.24. The acoustic frequency is a variable function of time

and provides control over the group delay of the diffracted optical pulse. At

the same time, the spectral amplitude of the diffracted pulse is driven by

the intensity of the acoustic signal. As demonstrated in Ref. [90], the optical

output () of the AOPDF is proportional to the convolution of the optical

input, (), and the scaled acoustic signal:

() ∝ ()⊗ () (3.106)

where the scaling factor  = ∆() is the ratio of the speed of sound

to the speed of light times the index difference between the ordinary and

the extraordinary waves. Therefore, by generating the proper function (),

it is possible to generate any arbitrary convolution with a temporal reso-

lution given by the inverse of the filter bandwidth. Such device have been

used in kilohertz chirped-pulse amplification laser chains compensating for

gain narrowing and residual phase errors with the AOPDF, resulting in the

generation of 17-fs transform-limited pulses [91]. The total throughput is 10-

50%, depending on the bandwidth of the device. Devices approaching one

octave in bandwidth are possible.

Dispersion compensation using deformable mirrors

Mechanically deformable mirrors can be used for active dispersion control,

as proposed by Heritage et al. [92]. More recently, pulse compression has

been achieved using an electrostatically deformable, gold-coated, silicon ni-

tride membrane mirror, placed in the Fourier plane of a 4 zero-dispersion

stretcher [93]. The membrane was suspended over an array of 39 actuator

electrodes. The potential applied to each actuator generates an electrostatic
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Figure 3.24: Acousto-optic programable pulse shaper. One element can shape

amplitude and phase of the pulse.

attraction between the membrane and the electrode, thus inducing a defor-

mation of the mirror surface, which translates into a modulation of the phase

of the spectral components of the input pulse. The total phase difference is

 = 2(2)∆, where ∆ is the deflection of the mirror. The minimum

radius of curvature of the mirror membrane is given by  =  , where 

is the membrane tension and  is the maximum electrostatic pressure. This

limitation of the membrane curvature restricts the possibility of the mir-

ror correction of higher-order phases. The main advantages of this method

are the following: the phase modulation is smoothly varying; reduced losses

due to the high reflectivity (97%) of the mirror; relatively high actuator den-

sity. Experiments have been performed with a mode-locked Ti:sapphire laser,

where the deformable mirror recompressed a 15 fs pulse, previously stretched

to 90 fs by dispersion in glass, back to approximately the bandwidth limit

[93].

Recently, dispersion control over a bandwidth of ∼ 220 THz has been

demonstrated by A. Baltuška et al. [94] using a compressor consisting of

a pair of chirped mirrors and a grating dispersion line with a computer-

controlled flexible mirror positioned in the focal plane. The total throughput

of the pulse shaper was less than 12% because of the low diffraction efficiency

of the grating. Using this compressor, the visible-near-IR pulses, generated

by optical parametric amplification, were compressed to a 4-fs duration.
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3.7.5 Hollow Fiber Compression Technique

Single mode fiber only allows compression of low energy pulses. In 1996 the

group of DeSilvestri in Milan [47] developed a technique that enables the

generation of few-cycle light pulses with energies in the millijoule range. The

technique is based on propagation of laser pulses in a hollow fiber filled with

noble gases (hollow fiber compression technique), see Fig. 3.25.The modes of

the hollow fiber are leaky modes, i.e. they experience radiation loss. However,

there is one mode, the EH11mode, which has considerably less loss than the

higher order modes. This mode is used for pulse compression. The nonlinear

index in the fiber can be controlled with the gas pressure. Typical fiber

diameters are 100-500  and typical gas pressures are in the range of 0.1-

3bar. As in the case of fiber compression it is important to consider the

optimization of nonlinear interaction and dispersion. Both the medium and

waveguide dispersion has to be taken into account. For more detail see ref.

[105].

hollow waveguide
25 fs

5 fs

0.11 TW

Chirped-mirror

compressor

Argon p=0.5 bar

Figure 3.25: Hollow fiber compression technique [47]

For the time being, the hollow fiber compression technique is the only

way to generate sub-10fs millijoule pulses. This will change soon with the

advent of parametric chirped pulse amplification.
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3.8 Summary

We found, that the lowest order reversible linear effect, GVD, together with

the lowest order reversible nonlinear effect in a homogeneous and isotropic

medium, SPM, leads to the Nonlinear Schrödinger Equation for the envelope

of the wave. This equation describes a Hamiltonian system. The equation

is integrable, i.e., it does possess an infinite number of conserved quantities.

The equation has soliton solutions, which show complicated but persistent os-

cillatory behavior. Especially, the fundamental soliton, a sech-shaped pulse,

shows no dispersion which makes them ideal for long distance optical commu-

nication. Due to the universality of the NSE, this dynamics is also extremely

important for modelocked lasers once the pulses become so short that the

spectra experience the dispersion and the peak powers are high enough that

nonlinear effects become important. In general, this is the case for sub-

picosecond pulses. Further, we found a perturbation theory, which enables

us to decompose a solution of the NSE close to a fundamental soliton as a

fundamental soliton and continuum radiation. We showed that periodic per-

turbations of the soliton may lead to side-band generation, if the nonlinear

phase shift of the soliton within a period of the perturbation becomes com-

parable to 4. Soliton perturbation theory will also give the frame work for

studying noise in mode-locked lasers later.

A medium with positive dispersion and self-phase modulation with the

same sign can be used for pulse compression. The major problem in pulse

compression is to find a compressor that can that exactly inverts the group

delay caused by spectral broadening. Depending on bandwith this can be

achieved by gratings, prisms, chirped mirrors, puls shapers, AOPDFs or a

combination thereof.

3.9 Appendix: Sech-Algebra

The hyperbolic secant is defined as

sech() =
1

cosh()
(3.107)

See Figure 3.26
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Figure 3.26: Hyperbolic functions

cosh2()− sinh2() = 1 (3.108)

sech2() = 1− tanh2() (3.109)


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Chapter 4

Laser Dynamics

Before starting to look into the dynamics of lasers, we need to better under-
stand the nature of laser gain media. Therefore, we review the most simple
model of an atomic system that can provide gain to an optical field, the
two-level model. We study first the interaction with a coherent laser field
via the Block Equations and rederive step by step the classical susceptibility
model including possible inversion of the medium. This model will provide
a physical basis for the most important parameters of a gain medium. This
will prepare us for thel study of "single-mode" dynamics of a laser. The term
”single-mode” is set in apostrophes, since it doesn’t have to be really single-
mode. There can be several longitudinal modes running, for example due to
spatial holeburning and other effects, but in an incoherent fashion, so that
only the average power of the beam matters. For a more detailed account
on single-mode laser dynamics and Q-Switching the following references are
recommended. [5][7][16][8][9].

4.1 Two-Level Atoms and Bloch Equations

The most basic microscopic model for a medium is the two-level model. For
an indepth discussion the reader is refered to the book of Allen and Eberly
[2].
Atoms in low concentration show line spectra as found in gas-, dye- and

some solid-state laser media. Usually, there are infinitely many energy eigen-
states in an atomic, molecular or solid-state medium and the spectral lines
are associated with allowed transitions between two of these energy eigen-
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states. For many physical considerations it is already sufficient to take only
two of the possible energy eigenstates into account, for example those which
are related to the laser transition. The pumping of the laser can be described
by phenomenological relaxation processes into the upper laser level and out
of the lower laser level. The resulting simple model is often called a two-level
atom, which is mathematically also equivalent to a spin 1/2 particle in an
external magnetic field, because the spin can only be parallel or anti-parallel
to the field, i.e. it has two energy levels and energy eigenstates in the mag-
netic field. The interaction of the two-level atom or the spin with the electric
or magnetic field is described by the Bloch equations.

4.1.1 The Two-Level Model

An atom with only two energy eigenvalues is described by a two-dimensional
state space spanned by the two energy eigenstates |ei and |gi. The two
states constitute a complete orthonormal system. The corresponding energy
eigenvalues are Ee and Eg, see Fig. 4.1.

Figure 4.1: Two-level atom

In the position-, i.e. x-representation, these states correspond to the wave
functions

ψg(x) = hx |gi , and ψe(x) = hx |ei . (4.1)

The Hamiltonian operator of the two-level atom is in the energy representa-
tion given by

HA = Ee |ei he|+Eg |gi hg| . (4.2)
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The states |ei and |gi build an orthormal system in this two-dimensional
state space

he| ei = hg| gi = 1 and hg| ei = he| gi∗ = 0 (4.3)

and the unity matrix can be expressed as

1 = |ei he|+ |gi hg| , (4.4)

An arbitrary state of the two level system is a superposition state

|ψi = cg |gi+ ce |ei . (4.5)

It is convenient to separate off from the Hamiltonian (4.1) the term (Ee +

Eg)/2 ·1 , where 1 denotes the unity matrix, we rescale the energy values
correspondingly and obtain for the Hamiltonian of the two-level system

HA =
1

2
~ωegσz, (4.6)

with the transition frequency

ωeg =
1

~
(Ee −Eg). (4.7)

The Shroedinger equation of the free two level system is then given by

j~
d

dt
|ψi = HA |ψi . (4.8)

or after projecting out with the corresponding bra-vectors we find
d

dt
ce = −jωeg

2
ce, (4.9)

d

dt
cg = +j

ωeg

2
cg. (4.10)

Thus the coefficients of ground and excited state undergo harmonic oscilla-
tions in its phases

ce(t) = e−j
ωeg
2

tce(0), (4.11)

cg(t) = e+j
ωeg
2

tcg(0), (4.12)

however their individual magnitudes don’t change, i.e. the probabilities that
we find the two-level atom in the excited or ground state stay constant and
with it the inversion of the two level systems defined as

w = |ce|2 − |cg|2 = const. (4.13)

stays constant. If we consider an ensemble of N atoms the total inversion
would be W = N hψ|σz |ψi.
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4.1.2 The Atom-Field Interaction In Dipole Approxi-
mation

The dipole moment of an atom �d is determined by the position operator �x
via

�d = −e0�x. (4.14)

Then the expectation value for the dipole moment of an atom in state (4.5)
is

hψ| �d |ψi = −e0(|ce|2 he|�x |ei+ cec
∗
g hg|�x |ei (4.15)

+cgc
∗
e he|�x |gi+ |cg|2 hg|�x |gi).

For simplicity, we may assume that the medium is an atomic gas. The atoms
posses inversion symmetry, therefore, energy eigenstates must be symmetric
or anti-symmetric, i.e. he|�x |ei = hg|�x |gi = 0. We obtain

�d = hψ| �d |ψi = −e0 (cec∗g hg|�x |ei+ cgc
∗
e hg|�x |ei∗). (4.16)

Note, this means there is no permanent dipole moment in an atom, which
is in an energy eigenstate. This might not be the case in a solid. The
atoms consituting the solid are oriented in a lattice, which may break the
symmetry. If so, there are permanent dipole moments and consequently the
matrix elements he|�x |ei and hg|�x |gi would not vanish.
An atom does only exhibit a dipole moment, if the product cec∗g 6= 0, i.e.

the state of the atom is in a superposition of states |ei and |gi. With the
dipole matrix elements

�M = he| �d |gi = −e0 he|�x |gi (4.17)

the expectation value for the dipole moment can be written as

�d = hψ| �d |ψi = cgc
∗
e
�M + cec

∗
g
�M∗. (4.18)

This is true for an arbitrary superposition state, therefore the dipole operator
is represented by the dyadic products

�d = �M |ei hg|+ �M∗ |gi he|). (4.19)

The energy of a classical electric dipole with dipole moment �d in an electric
field is

HA−F = −�d · �E(�xA, t). (4.20)
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We assume that the electric field is due to a monochromatic electromagntic
wave. Then the electric field at the position of the atom, �xA, can be written
as

�E(�xA, t) = �E(t) =
1

2

¡
E0e

jωt �ep +E∗0e
−jωt �e∗p

¢
, (4.21)

where E0 denotes the complex electric field amplitude at the position of the
atom and �ep is the polarization vector of the wave. The atom-field interaction
Hamiltonian operator is then

HA−F = −�d · �E(t) (4.22)

The Shroedinger equation of the two level system driven by the classical field
is then given by

j~
d

dt
|ψi = (HA +HA−F ) |ψi .

and again after projecting out the equations of motion for the coefficients by
multiplying from the right with the bra-vectors we obtain

d

dt
ce = −jωeg

2
ce + j

�M · �E(t)
~

cg, (4.23)

d

dt
cg = +j

ωeg

2
cg + j

�M∗ · �E(t)
~

ce. (4.24)

4.1.3 Rabi-Oscillations

If the incident light has a constant field amplitude, E0, and if the light
frequency is close to resonance to the atomic transition frequency ω ≈ ωeg,
Eqs. (4.23) and (4.24) can be solved and we observe an oscillation in the
population difference, the Rabi-oscillation [1]. To show this we introduce the
detuning between field and atomic resonance

∆ =
ωeg − ω

2
(4.25)

and the new probability amplitudes

Ce = cee
jω
2
t, (4.26)

Cg = cge
−jω

2
t. (4.27)
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This leads to the new system of equations with constant coefficients

d

dt
Ce = −j∆Ce + j

Ω∗r
2
Cg, (4.28)

d

dt
Cg = +j∆Cg + j

Ωr

2
Ce. (4.29)

with the Rabi-frequency Ωrdefined as

Ωr =
�M∗ · �ep
~

¡
E0 +E∗0 e

−j2ωt¢ . (4.30)

If the Rabi-frequency is small |Ωr| << ωeg ≈ ω, the Rotating-Wave Ap-
proximation (RWA) [4], can be used, where we only keep the slowly varying
components in the interaction, i.e.

Ωr ≈
�M∗
eg · �e
~

E0 = const.. (4.31)

Note, that Eqs. (4.28) and (4.29) are then identical to coupled mode equa-
tions describing the energy exchange between two waveguide modes. But
now the coupling is between modes in time, i.e. resonances. The modes are
electronic ones instead of photonic modes. But otherwise the dynamics is
exactly the same. For the case of vanishing detuning it is especially easy to
eliminate one of the variables and we arrive at

d2

dt2
Ce = − |Ωr|2

4
Ce (4.32)

d2

dt2
Cg = − |Ωr|2

4
Cg. (4.33)

The solution to this set of equations are population oscillations. If the atom is
at time t = 0 in the ground-state, i.e. Cg(0) = 1 and Ce(0) = 0, respectively,
we arrive at

Cg(t) = cos

µ |Ωr|
2

t

¶
(4.34)

Ce(t) = −j sin
µ |Ωr|
2

t

¶
. (4.35)
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Then, the probabilities for finding the atom in the ground or excited state
are

|cb(t)|2 = cos2
µ |Ωr|
2

t

¶
(4.36)

|ca(t)|2 = sin2
µ |Ωr|
2

t

¶
, (4.37)

as shown in Fig. 4.2. For the expectation value of the dipole operator under
the assumption of a real dipole matrix element �M = �M∗ we obtain

�d = hψ| �d |ψi = �Mcgc
∗
e + c.c. (4.38)

= − �M sin (|Ωr| t) sin (ωegt) . (4.39)

Figure 4.2: Evolution of occupation probabilities of ground and excited state
and the average dipole moment of a two-level atom in resonant interaction
with a coherent classical field.

The coherent external field drives the population of the atomic system
between the two available states with a period Tr = 2π/Ωr. Applying the field
only over half of this period leads to a complete inversion of the population.
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Applying the field only over half of this period leads to a complete inversion
of the population. The population inversion is defined as

w = Pe − Pg = |ce|2 − |cg|2 (4.40)

These Rabi-oscillations have been observed in various systems ranging
from gases to semiconductors. Interestingly, the light emitted from the co-
herently driven two-level atom is not identical in frequency to the driving
field. If we look at the Fourier spectrum of the polarization according to
Eq.(4.39), we obtain lines at frequencies ω± = ωeg ± |Ωr| . This is clearly a
nonlinear output and the sidebands are called Mollow-sidebands [3]. Most
important for the existence of these oscillations is the coherence of the atomic
system over at least one Rabi-oscillation. If this coherence is destroyed before
significant population between the levels is exchanged, the Rabi-oscillations
cannot happen and it is then impossible to generate inversion in a two-level
system by interaction with light. This is the case for a large class of situations
in light-matter interaction and especially for typical laser materials. So we
are interested in finding out what happens in the case of loss of coherence in
the atomic system due to additional interaction of the atoms with its environ-
ment. These non energy preserving processes can not be easily included in
the Schroedinger Equation formalism. However, we can treat these processes
phenomenologically in the equations of motion for the expectation values of
the dipol moment and the population inversion, which are of interest because
those qunatities feed back into Maxwell’s Equations as a driving term.
From the equations of motion for the coefficients of the wave function

Eqs. (4.23) and (4.24) we derive equations of motion for the complex slowly
varying dipole moment defined as

d = c∗ecge
−jωt = C∗eCg. (4.41)

and by applying the product rule we find

d

dt
d =

µ
d

dt
C∗e

¶
Cg + C∗e

µ
d

dt
Cg

¶
(4.42)

= j∆C∗eCg − jΩr

2
C∗gCg + j∆C∗eCg + j

Ωr

2
C∗eCe (4.43)

= j2∆d+ j
Ωr

2
· w (4.44)
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and

d

dt
w =

µ
d

dt
Ce

¶
C∗e .−

µ
d

dt
Cg

¶
C∗g + c.c. (4.45)

=

µ
−j∆CeC

∗
e + j

Ω∗r
2
CgC

∗
e − j∆CgC

∗
g − j

Ωr

2
CeC

∗
g

¶
+ c.c. (4.46)

= +jΩ∗rd+ c.c (4.47)

For the monochromatic wave of Eq.(4.21) and neglecting terms varying at
twice the optical frequency, we find

d

dt
d = j (ωeg − ω) d+ jΩr · w (4.48)

d

dt
w = +jΩ∗rd+ c.c (4.49)

4.1.4 Energy- and Phase-Relaxation

In reality it is extremely difficult to completely isolate an atom from its
environment. Indeed in the case of laser active media, we are interested
in radiating atoms, i.e. atoms that have a dipole interaction with the field.
These atoms do then not only interact with the driving field, but for example
also with all the electromagnetic modes of the environment. The environment
can be considered as a large box, the universe, which contains the atom. We
are interested in the equations of motion for the expectation value of the
dipole moment and the population inversion of an atom that interacts in an
uncontrolled fashion with the modes of the universe. Without derivation,
the quantum mechanical treatment of interaction of the atom with these free
space modes leads to spontaneous emission of photons into these modes, i.e.
energy decay in the two-level system.The coupling with the infinitely many
modes of the free field leads already to spontaneous emission, an irreversible
process. We could treat this process by using the Hamiltonian

H = HA +HF +HA−F . (4.50)

Here, HA is the Hamiltonian of the atom, HF of the free field in thermal
equilibrium at temperature T, and HA−F describes the interaction between
them. A complete treatment along these lines would be straight forward
using the techniques we learned so far, however it is beyond the scope of this
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class. The result of this calculation leads to damping of inversion and with
it the polarization. For the case of a two-level atom in thermal equilibrium
with its electromagnetic envirionment there is a change in the excited state
population due to induced and spontaneous emission with the rate Γe and
an increase of excited states by absorption of thermal photons

d

dt
|ce(t)|2 = −Γe|ce(t)|2 + Γa|cg(t)|2 (4.51)

with the abbreviations

Γe =
1

τ sp
(nth + 1), (4.52)

Γa =
1

τ sp
nth. (4.53)

see Figure 4.3.

E
pe

Eg

Ee

pg

Figure 4.3: Two-level atom with transistion rates due to induced and spon-
taneous emission and absorption.

Here nth is the number of thermally excited photons in the modes of the
free field with frequency ωeg, nth = 1/(exp(~ωeg/kT )−1), at temperature T .
The total probability of being in the excited or the ground state has to

be maintained, that is

d

dt
|cg(t)|2 = − d

dt
|ce(t)|2 = Γe|ce(t)|2 − Γa|cg(t)|2. (4.54)

If the populations decay, the polarization does also decay, since d = c∗ecge
−jωt.

It turns out that the polarization dynamics according to Eq.(4.48), besides
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the coherent oscillation, also aquires a decay process due to the finite lifetime
of the excited state

d

dt
d = j (ωeg − ω) d− Γe + Γa

2
d. (4.55)

Thus the absorption as well as the emission processes are destructive to the
phase. Therefore, the corresponding rates add up in the phase decay rate.
In total the equation for the dipole moment d = dr+jdi and the inversion

w can be written as

ḋ = (j (ωeg − ω)− 1

T2
)d, (4.56)

ẇ = |ce(t)|2 − |cg(t)|2 = −w − w0

T1
, (4.57)

with the time constants

1

T1
=
2

T2
= Γe + Γa =

2nth + 1

τ sp
(4.58)

and the equilibrium inversion w0, due to the thermal excitation of the atom
by the thermal field

w0 =
Γa − Γe

Γa + Γe
=

−1
1 + 2nth

= − tanh
µ
~ωeg

2kT

¶
. (4.59)

The time constant T1 denotes the energy relaxation in the two-level system
and T2 the phase relaxation. T2 is the correlation time between amplitudes
ce and cg. The coherence between the excited and the ground state described
by the dipole moment is destroyed by the interaction of the two -level system
with the environment.
In this basic model, the energy relaxation is half the phase relaxation rate

or
T2 = 2T1. (4.60)

The atoms in a laser medium do not only interact with the electromagnetic
field, but also with phonons, i.e. acoustic vibrations of the host lattice in solid
state laser material. Atoms might collide with each other in a gas laser and so
on. All these processes must be considered when determining the energy and
phase relaxation rates. Thus it might be not only radiative transistions that
lead to a finite energy relaxation time T1. Some of the processes are elastic,
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i.e. there is no energy relaxation but only the phase is influenced during the
collision. Therefore, these processes reduce T2 but have no influence on T1.

In real systems the phase relaxation time is most often much shorter than
twice the energy relaxation time.

T2 ≤ 2T1. (4.61)

If the inversion deviates from its equilibrium value, w0, it relaxes back into
equilibrium with a time constant T1. Eq. (4.59) shows that for all tempera-
tures T > 0 the inversion is negative, i.e. the lower level is stronger populated
than the upper level. Thus with incoherent thermal light, inversion in a two-
level system cannot be achieved. Inversion can only be achieved by pumping
with incoherent light, if there are more levels and subsequent relaxation pro-
cesses into the upper laser level. Due to these relaxation processes the rate Γa
deviates from the equilibrium expression (4.53), and it has to be replaced by
the pump rate Λ. If the pump rate Λ exceeds Γe, the inversion corresponding
to Eq. (4.59) becomes positive,

w0 =
Λ− Γe

Λ+ Γe
. (4.62)

If we allow for artificial negative temperatures, we obtain with T < 0 for the
ratio of relaxation rates

Γe

Γa
=
1 + n̄

n̄
= e

~ωeg
kT < 1. (4.63)

Thus the pumping of the two-level system drives the system far away from
thermal equilibrium. Now, we have a correct description of an ensemble of
atoms in thermal equilibrium with its environment, which is a much more
realistic description of media especially of typical laser media.

4.1.5 The Bloch Equations

Thus, the total dynamics of the two-level system including the pumping and
dephasing processes from Eqs.(4.56) and (4.57) is given by

ḋ = −( 1
T2
− j (ωeg − ω))d+ j

Ωr

2
w, (4.64)

ẇ = −w − w0

T1
+ jΩ∗r d− jΩr d

∗. (4.65)
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These equations are called the Bloch Equations. They describe the dynamics
of a statistical ensemble of two-level atoms interacting with a classical electric
field. Together with the Maxwell-Equations, where the polarization of the
medium is related to the expectation value of the dipole moment of the
atomic ensemble these result in the Maxwell-Bloch Equations.

4.1.6 Dielectric Susceptibility and Saturation

The Bloch Equations are nonlinear. However, for moderate field strength
E0, i.e. the magnitude of the Rabi-frequency is much smaller than the optical
frequency, |Ωr| << ω, the inversion does not change much within an optical
cycle of the field. We assume that the inversion w of the atom will only be
slowly changing and it adjusts itself to a steady state value ws. Similarly the
complexe slowly varying dipolmoment will reach the steady state

ds =
j

2~

³
�M∗ · �ep

´
ws

1/T2 + j(ω − ωeg)
E0 (4.66)

ws =
w0

1 + T1
~2

1/T2 | �M∗·�ep|2
(1/T2)2+(ωeg−ω)2 |E0|2

. (4.67)

We introduce the normalized lineshape function, which is in this case a
Lorentzian,

L(ω) =
(1/T2)

2

(1/T2)2 + (ωeg − ω)2
, (4.68)

and connect the square of the field |E0|2 to the intensity I of a propagating
plane wave, according to Eq. (2.35), I = 1

2ZF
|E0|2,

ws =
w0

1 + I
Is
L(ω)

. (4.69)

Thus the stationary inversion depends on the intensity of the incident light.
Therefore, w0 is called the unsaturated inversion, ws the saturated inversion
and Is,with

Is =

∙
2T1T2ZF

~2
| �M∗ · �ep|2

¸−1
, (4.70)

is the saturation intensity. The expectation value of the dipole operator
(4.14) is then given by D

d̃
E
= �Mdejωt + �Md∗e−jωt. (4.71)
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Multiplication with the number of atoms per unit volume, N, relates the
dipole moment of the atom to the polarization �P . As the electric field, the
polarization can be written in terms of complex quantities, �P of the medium,
and therefore to the susceptibility according to

�P (t) =
1

2

³
�P 0e

jωt + �P
∗
0e
−jωt

´
(4.72)

= N( �Mdejωt + �Md∗e−jωt) (4.73)

or

�P 0 = 2N
�Md, (4.74)

�P 0 = �0χ(ω)�epE0. (4.75)

From the definitions (4.74), (4.75) and Eq. (4.66) we obtain for the linear
susceptibility of the medium

χ(ω) = �M �M+ jN

~�0
ws

1/T2 + j(ω − ωeg)
, (4.76)

which is a tensor. In the following we assume that the direction of the
atom is random, i.e. the alignment of the atomic dipole moment, �M, and the
electric field is random. Therefore, we have to average over the angle enclosed
between the electric field of the wave and the atomic dipole moment, which
results in⎛⎝ MxMx MxMy MxMz

MyMx MyMy MyMz

MzMx MzMy MzMz

⎞⎠ =

⎛⎝ M2
x 0 0

0 M2
y 0

0 0 M2
z

⎞⎠ =
1

3
| �M |2 1. (4.77)

Thus, for homogeneous and isotropic media the susceptibility tensor shrinks
to a scalar

χ(ω) =
1

3
| �M |2 jN

~�0
ws

1/T2 + j(ω − ωeg)
. (4.78)

Real and imaginary part of the susceptibility

χ(ω) = χ0(ω) + jχ00(ω) (4.79)
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are then given by

χ0(ω) = − |
�M |2NwsT

2
2 (ωeg − ω)

3~�0
L(ω), (4.80)

χ00(ω) =
| �M |2NwsT2

3~�0
L(ω). (4.81)

If the incident radiation is weak, i.e.

I

Is
L(ω))¿ 1 (4.82)

we obtain ws ≈ w0. For optical transitions there is no thermal excitation of
the excited state and w0 = −1. For an inverted system, w0 > 0, the real and
imaginary parts of the susceptibility are shown in Fig. 4.4.

The shape of the susceptibility computed quantum mechanically com-
pares well with the classical susceptibility (2.42) derived from the harmonic
oscillator model close to the transistion frequency ωeg for a transition with
reasonably high Q = T2ωeg. Note, the quantum mechanical susceptibility is
identical to the complex Lorentzian introduced in Eq.(2.94). There is an
appreciable deviation, however, far away from resonance. Far off resonance
the rotating wave approximation should not be used.

The physical meaning of the real and imaginary part of the susceptibility
is of course identical to section 2.4.2. The propagation constant k of a TEM-
wave in such a medium is related to the susceptibility by

k = ω
p
μ0�0(1 + χ(ω)) ≈ k0

µ
1 +

1

2
χ(ω)

¶
, with k0 = ω

√
μ0�0 (4.83)

for |χ| ¿ 1. Under this assumption we obtain

k = k0(1 +
χ0

2
) + jk0

χ00

2
. (4.84)
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Figure 4.4: Real and imaginary part of the complex susceptibility for an
inverted medium ws > 0. The positive imaginary susceptibility indicates
exponential growth of an electromagnetic wave propagating in the medium.

The real part of the susceptibility contributes to the refractive index n =
1 + χ0/2. In the case of χ00 < 0, the imaginary part leads to an exponential
damping of the wave. For χ00 > 0 amplification takes place. Amplification of
the wave is possible for w0 > 0, i.e. an inverted medium.
The phase relaxation rate 1/T2 of the dipole moment determines the width

of the absorption line or the bandwidth of the amplifier. The amplification
can not occur forever, because the amplifier saturates when the intensity
reaches the saturation intensity. This is a strong deviation from the linear
susceptibility we derived from the classical oscillator model. The reason for
this saturation is two fold. First, the light can not extract more energy
from the atoms then there is energy stored in them, i.e. energy conservation
holds. Second the induced dipole moment in a two-level atom is limited by
the maximum value of the matrix element. In contrast the induced dipole
moment in a classical oscillator grows proportionally to the applied field
without limits.

4.1.7 Rate Equations and Cross Sections

In many cases the fastest process in the atom-field interaction dynamics is
the dephasing of the dipole moment, i. e. T2 → 0. For example, in semi-
conductors T2 < 50fs. In those cases the magnitude of the dipole moment
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relaxes instantaneously into the steady state and follows the slowly varying
field envelope E0(t) electromagntic field, which evolves on a much slower time
scale. We obtain with the quasi steady state solution for the dipole moment
(4.66), which may now have a slow time dependence due to the slowly varying
field envelope E0(t), for the time dependent inversion in the atomic system

ẇ = −w(t)− w0

T1
− w(t)

T1Is
L(ω)I(t), (4.85)

where I(t) = |E0(t)|2 /(2ZF ) is the intensity of the electromagntic wave in-
teracting with the two-level atom. In this limit the Bloch Equations became
simple rate equations. We only take care of the counting of population dif-
ferences due to spontaneous and stimulated emissions.
The interaction of an atom with light at a given transition with the stream

of photons on resonance, i.e. ω = ωeg is often discribed by the mass action
law. That is, the number of induced transistions from the excited to the
ground state, is proportional to the product of the number of atoms in the
excited state and the photon flux density Iph = I/~ωeg

ẇ|induced = −σwIph = −
w

T1Is
I. (4.86)

This defines an interaction cross section σ that can be expressed in terms of
the saturation intensity as

σ =
~ωeg

T1Is
(4.87)

=
2ωegT2ZF

~
| �M∗ · �ep|2. (4.88)

In this chapter, we have introduced the most important spectroscopic
quantities that characterize an atomic transition, which are the lifetime of
the excited state or often called upper-state lifetime or longitudinal lifetime
T1, the phase relaxation time or transverse relaxation time T2 which is the
inverse half-width at half maximum of the line and the interaction cross-
section σ that only depends on the dipole matrix element and the linewidth
of the transition.
The imaginary part of the suszeptibility, which indicates gain or loss is

proportional to the inversion in the atomic system, see Eq.(4.76), which also
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depends on the field strength or intensity according to the rate equation
(4.85)

∂g(z, t)

∂t
= −g − g0

τL
− g

|I(z, t)|2
EL

. (4.89)

Here, EL = IsτL is called the saturation fluence of the gain medium and τL
the upper state life time of the gain medium.

4.2 Laser Rate Equations

After having derived the quantum mechanically correct expression for the
gain in an inverted atomic system, we can use the two-level model to study
the laser and its dynamics. After discussing the laser concept briefly we will
discuss the dynamics of lasers, threshold behavior, steady state behavior,
relaxation oscillations and Q-switching.

As we discussed before inversion can not be achieved in a two level system
by optical pumping. The coherent regime is typically inaccesible by typcial
optical pump sources. Inversion by optical pumping can only be achieved
when using a three or four-level system, see Figures 4.5 and 4.6
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Figure 4.5: Three-level laser medium.
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Figure 4.6: Four-level laser medium.

If the medium is in thermal equilibrium, typically only the ground state is
occupied. By optical pumping with an intense lamp (flash lamp) or another
laser one can pump a significant fraction of the atoms from the ground state
with population N0 into the excited state N3 both for the three level laser
operating according to the scheme shown in figure 140 (a) or N4 in the
case of the four level laser, see Figure 4.6. If the relaxation rate γ10 is
very fast compared to γ21, where the laser action should occur inversion can
be achieved, i.e. N2 > N1. For the four level laser the relaxation rate γ32
should also be fast in comparison to γ21. These systems are easy to analyze
in the rate equation approximation, where the dipole moments are already
adiabatically eliminated. For example, for the three level system in Figure
4.5 a). we obtain the rate equations of the three level system in analogy to
the two-level system

d

dt
N2 = −γ21N2 − σ21 (N2 −N1) Iph +Rp (4.90)

d

dt
N1 = −γ10N1 + γ21N2 + σ21 (N2 −N1) Iph (4.91)

d

dt
N0 = γ10N1 −Rp (4.92)

Here, σ21 is the cross section for stimulated emission between the levels 2 and
1 and Iph is the photon flux at the transition frequency f21.In most cases,
there are any atoms available in the ground state such that optical pumping
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can never deplete the number of atoms in the ground state N0. That is why
we can assume a constant pump rate Rp. If the relaxation rate γ10 is much
faster than γ21 and the number of possible stimulated emission events that
can occur σ21 (N2 −N1) Iph, then we can set N1 = 0 and obtain only a rate
equation for the upper laser level

d

dt
N2 = −γ21

µ
N2 − Rp

γ21

¶
− σ21N2 · Iph. (4.93)

This equation is identical to the equation for the inversion of the two-level
system, see Eq.(4.85). Here, Rp

γ21
is the equilibrium upper state population in

the absence of photons, γ21 =
1
τL
is the inverse upper state lifetime due to

radiative and non radiative processes.
Note, a similar analysis can be done for the three level laser operating

according to the scheme shown in Figure 4.5 (b). Then the relaxation rate
from level 3 to level 2, which is now the upper laser level has to be fast. But
in addition the optical pumping must be so strong that essentially all the
ground state levels are depleted. Undepleted groundstate populations will
lead to absorption of laser radiation.

For the following, we assume a homogenously broadend laser medium
(four level with depeleted lower laser level) and only one cavity mode is
able to lase. We want to derive the equations of motion for the population
inversion, or population in the upper laser level Eq.(4.93) and the photon
number in that mode, see Figure 4.7.

Figure 4.7: Rate equations for a laser with two-level atoms and a linear
resonator.
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The intensity I in a mode propagating at group velocity vg in one direction
with a mode volume V is related to the number of photons NL stored in the
mode with volume V by

I = hfL
NL

2∗V
vg =

1

2∗
hfLnLvg, (4.94)

where hfL is the photon energy. 2∗ = 2 for a linear laser resonator (then
only half of the photons are going in one direction), and 2∗ = 1 for a ring
laser. In this first treatment we consider the case of space-independent rate
equations, i.e. we assume that the laser is oscillating on a single mode and
pumping and mode energy densities are uniform within the laser material.
With the interaction cross section σ defined as

σ =
hfL

IsτL
, (4.95)

we rewrite the rate equation Eq. (4.93) for the inversion or upper state
population

d

dt
N2 = −N2

T1
− σvg

V
N2NL +Rp (4.96)

Note, vgNL/V is the photon flux, thus σ is the stimulated emission cross
section between the atoms and the photons. Rp is the pumping rate into
the upper laser level. A similar rate equation can be derived for the photon
density

d

dt
NL = −NL

τ p
+

σvg

V
N2 (NL + 1) (4.97)

Here, τp is the photon lifetime in the cavity or cavity decay time. The 1
in the term (NL + 1) in Eq.(4.97) accounts for spontaneous emission which
is equivalent to stimulated emission induced by one photon occupying the
mode. For a laser cavity with a semi-transparent mirror with transmission
T , producing a small power loss 2l = − ln(1−T ) ≈ T (for small T ) per round-
trip in the cavity, the cavity decay time is τ p = TR /2l, if TR = 2∗L/vg is the
roundtrip-time in linear cavity with length 2L or a ring cavity with length L.
Internal losses can be treated in a similar way and contribute to the cavity
decay time. Note, the decay rate for the inversion in the absence of a field,
1/T1, is not only due to spontaneous emission, but is also a result of non
radiative decay processes. For a laser gain medium we usually denote T1 as
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the upperstate lifetime τL

d

dt
N2 = −N2

τL
− σvgN2nL +Rp (4.98)

d

dt
NL = −NL

τ p
+

σvg

V
N2 (NL + 1) . (4.99)

Experimentally, the photon number and the inversion in a laser resonator are
not the quantities directly measured. We therefore introduce the circulating
intracavity power and the roundtrip gain

P = I ·Aeff = hfL
NL

TR
, (4.100)

g =
σvg

2V
N2TR. (4.101)

The intracavity power is directly proportional to the output power from the
laser

Pout = T · P. (4.102)

From Eqs.(4.98) and (4.99) for inversion and photon number, we obtain

d

dt
g = −g − g0

τL
− gP

Esat

(4.103)

d

dt
P = − 1

τ p
P +

2g

TR
(P + Pvac) , (4.104)

with

Esat =
hfLV

σvgTR
=
1

2∗
IsAeffτL (4.105)

Psat = Esat/τL (4.106)

Pvac = hfL/TR (4.107)

g0 = 2∗
Rp

2Aeff

στL, (4.108)

Note, the factor of two in front of gain and loss is due to the fact, that
we defined g and l as gain and loss with respect to amplitude. Eq.(4.108)
elucidates that the figure of merit that characterizes the small signal gain
achievable in a laser connected with the spectroscopic parameters of the
laser gain medium is the σ · τL-product. The larger this product the larger
is the small signal gain g0 achievable with a certain laser material. Table 4.1



4.3. BUILT-UPOFLASEROSCILLATIONANDCONTINUOUSWAVEOPERATION145

Laser Medium
Wave-
length
λ0(nm)

Cross
Section
σ (cm2)

Upper-St.
Lifetime
τL (μs)

Linewidth
∆fFWHM
2
T2
(THz)

Typ
Refr.
index
n

Nd3+:YAG 1,064 4.1 · 10−19 1,200 0.210 H 1.82
Nd3+:LSB 1,062 1.3 · 10−19 87 1.2 H 1.47
Nd3+:YLF 1,047 1.8 · 10−19 450 0.390 H 1.82
Nd3+:YVO4 1,064 2.5 · 10−19 50 0.300 H 2.19
Nd3+:glass 1,054 4 · 10−20 350 3 H/I 1.5
Er3+:glass 1,55 6 · 10−21 10,000 4 H/I 1.46
Ruby 694.3 2 · 10−20 1,000 0.06 H 1.76
Ti3+:Al2O3 660-1180 3 · 10−19 3 100 H 1.76
Cr3+:LiSAF 760-960 4.8 · 10−20 67 80 H 1.4
Cr3+:LiCAF 710-840 1.3 · 10−20 170 65 H 1.4
Cr3+:LiSGAF 740-930 3.3 · 10−20 88 80 H 1.4
He-Ne 632.8 1 · 10−13 0.7 0.0015 I ∼1
Ar+ 515 3 · 10−12 0.07 0.0035 I ∼1
CO2 10,600 3 · 10−18 2,900,000 0.000060 H ∼1
Rhodamin-6G 560-640 3 · 10−16 0.0033 5 H 1.33
semiconductors 450-30,000 ∼ 10−14 ∼ 0.002 25 H/I 3 - 4

Table 4.1: Wavelength range, cross-section for stimulated emission, upper-
state lifetime, linewidth, typ of lineshape (H=homogeneously broadened,
I=inhomogeneously broadened) and index for some often used solid-state
laser materials, and in comparison with semiconductor and dye lasers.

4.3 Built-up of Laser Oscillation and Contin-
uous Wave Operation

In many technical applications, where the dimensions of the laser is large
compared to the wavelength and Pvac ¿ P ¿ Psat = Esat/τL, we can neglect
the spontaneous emission, i.e. Pvac. If the laser power is initially small, on the
order of Pvac, and the gain is unsaturated, g = g0, we obtain from Eq.(4.104),

dP

P
= 2 (g0 − l)

dt

TR
(4.109)

or
P (t) = P (0)e

2(g0−l) t
TR . (4.110)
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The laser power builts up from vaccum fluctuations, once the small signal
gain surpasses the laser losses, g0 > gth = l, see Figure ??, until it reaches
the saturation power. Saturation sets in within the built-up time

TB =
TR

2 (g0 − l)
ln

Psat

Pvac

=
TR

2 (g0 − l)
ln

AeffTR

στL
. (4.111)

Some time after the built-up phase the laser reaches steady state, with the
saturated gain and steady state power resulting from Eqs.(4.103-4.104), ne-
glecting in the following the spontaneous emission, and for d

dt
= 0 :

gs =
g0

1 + Ps
Psat

= l (4.112)

Ps = Psat

³g0
l
− 1
´
, (4.113)

Figure 4.8: Built-up of laser power from spontaneous emission noise.

Figure 4.9 shows output power and gain as a function of small signal gain
g0, which is proportional to the pump rate Rp. Below threshold, the output
power is zero and the gain increases linearly with in crease pumping. After
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Figure 4.9: Output power and gain of a laser as a function of pump power.

reaching threshold the gain stays clamped at the threshold value determined
by gain equal loss and the output power increases linearly. The threshold
condition is again

gth = l, (4.114)

Rp,th =
2lAeff

2∗στL
. (4.115)

Thus the pump rate to reach threshold is proportional to the optical loss of
the mode per roundtrip, the mode cross section (in the gain medium) and
inverse proportional to the σ · τL−product.

4.4 Stability and Relaxation Oscillations

How does the laser reach steady state, once a perturbation has occured?

g = gs +∆g (4.116)

P = Ps +∆P (4.117)
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Substitution into Eqs.(4.103-4.104) and linearization leads to

d∆P

dt
= +2

Ps

TR
∆g (4.118)

d∆g

dt
= − gs

Esat

∆P − 1

τ stim
∆g (4.119)

where 1
τstim

= 1
τL

¡
1 + Ps

Psat

¢
is the stimulated lifetime. The perturbations

decay or grow like µ
∆P

∆g

¶
=

µ
∆P0
∆g0

¶
est. (4.120)

which leads to the system of equations (using gs = l)

A

µ
∆P0
∆g0

¶
=

Ã
−s 2 Ps

TR

− TR
Esat2τp

− 1
τstim

− s

!µ
∆P0
∆g0

¶
= 0. (4.121)

There is only a solution, if the determinante of the coefficient matrix vanishes,
i.e.

s

µ
1

τ stim
+ s

¶
+

Ps

Esatτ p
= 0, (4.122)

which determines the relaxation rates or eigen frequencies of the linearized
system

s1/2 = − 1

2τ stim
±
sµ

1

2τ stim

¶2
− Ps

Esatτ p
. (4.123)

Introducing the pump parameter r = 1 + Ps
Psat

, which tells us how often we
pump the laser over threshold, the eigen frequencies can be rewritten as

s1/2 = − 1

2τ stim

Ã
1± j

s
4 (r − 1)

r

τ stim

τ p
− 1
!
, (4.124)

= − r

2τL
± j

s
(r − 1)
τLτ p

−
µ

r

2τL

¶2
(4.125)

There are several conclusions to draw:

• (i): The stationary state (0, g0) for g0 < l and (Ps, gs) for g0 > l are
always stable, i.e. Re{si} < 0.
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• (ii): For lasers pumped above threshold, r > 1, and long upper state
lifetimes, i.e. r

4τL
< 1

τp
, the relaxation rate becomes complex, i.e. there

are relaxation oscillations

s1/2 = − 1

2τ stim
± jωR. (4.126)

with frequency ωR equal to the geometric mean of inverse stimulated
lifetime and photon life time

ωR =

s
1

τ stimτ p
. (4.127)

• If the laser can be pumped strong enough, i.e. r can be made large
enough so that the stimulated lifetime becomes as short as the cavity
decay time, relaxation oscillations vanish.

The physical reason for relaxation oscillations and later instabilities is,
that the gain reacts to slow on the light field, i.e. the stimulated lifetime is
long in comparison with the cavity decay time.

Example: diode-pumped Nd:YAG-Laser

λ0 = 1064 nm, σ = 4 · 10−20cm2, Aeff = π (100μm× 150μm) , r = 50
τL = 1.2 ms, l = 1%, TR = 10ns

From Eq.(4.95) we obtain:

Isat =
hfL

στL
= 3.9

kW

cm2
, Psat = IsatAeff = 1.8 W, Ps = 91.5W

τ stim =
τL

r
= 24μs, τ p = 1μs, ωR =

s
1

τ stimτ p
= 2 · 105s−1.

Figure 4.10 shows the typically observed fluctuations of the output of a solid-
state laser with long upperstate life time of several 100 μs in the time and
frequency domain.
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One can also define a quality factor for the relaxation oscillations by the
ratio of imaginary to real part of the complex eigen frequencies 4.125

Q =

s
4τL

τ p

(r − 1)
r2

,

which can be as large a several thousand for solid-state lasers with long
upper-state lifetimes in the millisecond range.

Figure 4.10: Typically observed relaxation oscillations in time and frequency
domain.
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4.5 Laser Efficiency

An important measure for a laser is the efficiency with which pump power
is converted into laser output power. To determine the efficiency we must
review the important parameters of a laser and the limitations these param-
eters impose.
From Eq.(4.113) we found that the steady state intracavity power Ps of

a laser is

Ps = Psat

µ
2g0

2l
− 1
¶
, (4.128)

where 2g0 is the small signal round-trip power gain, Psat the gain saturation
power and 2l is the power loss per round-trip. Both parameters are expressed
in Eqs.(4.105)-(4.108) in terms of the fundamental pump parameter Rp, στL-
product and mode cross section Aeff of the gain medium. For this derivation
it was asummed that all pumped atoms are in the laser mode with constant
intensity over the beam cross section

2g0 = 2∗
Rp

Aeff

στL, (4.129)

Psat =
hfL

2∗στL
Aeff (4.130)

The power losses of lasers are due to the internal losses 2lint and the trans-
mission T through the output coupling mirror. The internal losses can be a
significant fraction of the total losses. The output power of the laser is

Pout = T · Psat

µ
2g0

2lint + T
− 1
¶

(4.131)

The pump power of the laser is given by

Pp = RphfP , (4.132)

where hfP is the energy of the pump photons. In discussing the efficiency of
a laser, we consider the overall efficiency

η =
Pout

Pp

(4.133)
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which approaches the differential efficiency ηD if the laser is pumped many
times over threshold, i.e. r = 2g0/2l→∞

ηD =
∂Pout

∂Pp

= η(r→∞) (4.134)

=
T

2lint + T
Psat

2∗

AeffhfP
στL (4.135)

=
T

2lint + T
· hfL
hfP

. (4.136)

Thus the efficiency of a laser is fundamentally limited by the ratio of output
coupling to total losses and the quantum defect in pumping. Therefore,
one would expect that the optimum output coupling is achieved with the
largest output coupler, however, this is not true as we considered the case of
operating many times above threshold.

4.6 Q-Switching

The energy stored in the laser medium can be released suddenly by increasing
the Q-value of the cavity so that the laser reaches threshold. This can be
done actively, for example by quickly moving one of the resonator mirrors in
place or passively by placing a saturable absorber in the resonator [5, 16].
Hellwarth was first to suggest this method only one year after the invention of
the laser. As a rough orientation for a solid-state laser, the following relation
for the relevant time scales is generally valid

τL À TR À τp. (4.137)
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Figure 4.11: Gain and loss dynamics of a Q-switched laser.

Fig. 4.11 shows the principle dynamics of a Q-switched laser. The laser
is pumped by a pump pulse with a length on the order of the upper-state
lifetime, while the intracavity losses are kept high enough, so that the laser
can not reach threshold. Therefore, the laser medium acts as an energy
storage. The energy only relaxes by spontenous and nonradiative transitions.
Then suddenly the intracavity loss is reduced, for example by a rotating
cavity mirror or by sudden saturation of the intracavity losses. The laser is
pumped way above threshold and the light field builts up exponentially with
the net gain until the pulse energy comes close to the saturation energy of
the gain medium. The gain saturates and is extracted, so that the laser is
shut off by the pulse itself.
A typical Q-switched pulse is asymmetric: The rise time is proportional

to the net gain after the Q-value of the cavity is switches to a high value.
The light intensity growths proportional to 2g0/TR. When the gain is de-
pleted, the fall time mostly depends on the cavity decay time τ p. For short
Q-switched pulses a short cavity length, high gain and a large change in the
cavity Q is necessary. If the Q-switching is not fast, the pulse width may be
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limited by the speed of the switch. Typical switching times for electro-optical
and acousto-optical active switches are 10 ns and 50 ns, respectively

0 20161284
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Figure 4.12: Asymmetric actively Q-switched pulse.

For example, with a diode-pumped Nd:YAG microchip laser [10] using an
electro-optical switch based on LiTaO3 Q-switched pulses as short as 270 ps
at repetition rates of 5 kHz, peak powers of 25 kW at an average power of
34 mW, and pulse energy of 6.8 μJ have been generated (Figure ??).
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Figure 4.13: Q-switched microchip laser using an electro-optic switch. The
pulse is measured with a sampling scope [12]

Similar results were achieved with Nd:YLF [11] and the corresponding
setup is shown in Fig. 4.14.
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Figure 4.14: Set-up of an actively Q-switched laser.
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4.6.1 Single-Frequency Q-Switched Pulses

Q-switched lasers only deliver stable output if they oscillate single frequency.
Usually this is not automatically achieved. One method to achieve this is by
seeding with a single-frequency laser during Q-switched operation, so that
there is already a population in one of the longitudinal modes before the
pulse is building up. This mode will extract all the energy before the other
modes can do, see Figure 4.15
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Figure 4.15: Output intenisity of a Q-switched laser without a) and with
seeding b).
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Mirror Mirror

Axial Modes
Gain

Frequency

Figure 4.16: In a microchip laser the resonator can be so short, that there is
only one longitudinal mode within the gain bandwidth.

Another possibility to achieve single-mode output is either using an etalon
in the cavity or making the cavity so short, that only one longitudinal mode
is within the gain bandwidth (Figure 4.16). This is usually only the case if
the cavity length is on the order of a view millimeters or below.The microchip
laser [10][15][14] can be combined with an electro-optic modulator to achieve
very compact high peak power lasers with sub-nanosecond pulsewidth (Figure
??).
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4.6.2 Active Q-Switching

We want to get some insight into the pulse built-up and decay of the actively
Q-switched pulse. We consider the ideal situation, where the loss of the laser
cavity can be instantaneously switched from a high value to a low value, i.e.
the quality factor is switched from a low value to a high value, respectively
(Figure: 4.17)

Figure 4.17: Active Q-Switching dynamics assuming an instantaneous
switching [16].

Pumping Interval:

During pumping with a constant pump rate Rp, proportional to the small
signal gain g0, the inversion is built up. Since there is no field present, the
gain follows the simple equation:

d

dt
g = −g − g0

τL
, (4.138)

or

g(t) = g0(1− e−t/τL), (4.139)
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Pulse Built-up-Phase:

Assuming an instantaneous switching of the cavity losses we look for an
approximate solution to the rate equations starting of with the initial gain
or inversion gi = hfLN2i/(2Esat) = hfLNi/(2Esat), we can savely leave the
index away since there is only an upper state population. We further assume
that during pulse built-up the stimulated emission rate is the dominate term
changing the inversion. Then the rate equations simplify to

d

dt
g = − gP

Esat

(4.140)

d

dt
P =

2(g − l)

TR
P, (4.141)

resulting in

dP

dg
=
2Esat

TR

µ
l

g
− 1
¶
. (4.142)

We use the following inital conditions for the intracavity power P (t = 0) = 0
and initial gain g(t = 0) = gi = r · l. Note, r means how many times
the laser is pumped above threshold after the Q-switch is operated and the
intracavity losses have been reduced to l. Then 4.142 can be directly solved
and we obtain

P (t) =
2Esat

TR

µ
gi − g(t) + l ln

g(t)

gi

¶
. (4.143)

From this equation we can deduce the maximum power of the pulse, since
the growth of the intracavity power will stop when the gain is reduced to the
losses, g(t)=l, (Figure 4.17)

Pmax =
2lEsat

TR
(r − 1− ln r) (4.144)

=
Esat

τ p
(r − 1− ln r) . (4.145)

This is the first important quantity of the generated pulse and is shown
normalized in Figure 4.18.
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Figure 4.18: Peak power of emitted pulse as function of pump parameter.

Next, we can find the final gain gf , that is reached once the pulse emission
is completed, i.e. that is when the right side of (4.143) vanishesµ

gi − gf + l ln

µ
gf

gi

¶¶
= 0 (4.146)

Using the pump parameter r = gi/l, this gives as an expression for the ratio
between final and initial gain or between final and initial inversion

1− gf

gi
+
1

r
ln

µ
gf

gi

¶
= 0, (4.147)

1− Nf

Ni

+
1

r
ln

µ
Nf

Ni

¶
= 0, (4.148)

which depends only on the pump parameter. Assuming further, that there
are no internal losses, then we can estimate the pulse energy generated by

EP = (Ni −Nf)hfL. (4.149)

This is also equal to the output coupled pulse energy since no internal losses
are assumed. Thus, if the final inversion gets small all the energy stored in
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Figure 4.19: Energy extraction efficiency as a function of pump power.

the gain medium can be extracted. We define the energy extraction efficiency
η

η =
Ni −Nf

Ni

, (4.150)

that tells us how much of the initially stored energy can be extracted using
eq.(4.148)

η +
1

r
ln (1− η) = 0. (4.151)

This efficiency is plotted in Figure 4.19.
Note, the energy extraction efficiency only depends on the pump param-

eter r. Now, the emitted pulse energy can be written as

EP = η(r)NihfL. (4.152)

and we can estimate the pulse width of the emitted pulse by the ratio between
pulse energy and peak power using (4.145) and (4.152)

τPulse =
EP

2lPpeak

= τ p
η(r)

(r − 1− ln r)
NihfL

2lEsat

= τ p
η(r)

(r − 1− ln r)
gi

l

τ p
η(r) · r

(r − 1− ln r) . (4.153)
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Figure 4.20: Normalized pulse width as a function of pump parameter.

The pulse width normalized to the cavity decay time τ p is shown in Figure
4.20.

4.6.3 Passive Q-Switching

In the case of passive Q-switching the intracavity loss modulation is per-
formed by a saturable absorber, which introduces large losses for low inten-
sities of light and small losses for high intensity.

Relaxation oscillations are due to a periodic exchange of energy stored in
the laser medium by the inversion and the light field. Without the saturable
absorber these oscillations are damped. If for some reason there is two much
gain in the system, the light field can build up quickly. Especially for a low
gain cross section the backaction of the growing laser field on the inversion is
weak and it can grow further. This growth is favored in the presence of loss
that saturates with the intensity of the light. The laser becomes unstabile,
the field intensity grows as long as the gain does not saturate below the net
loss, see Fig.4.21.



4.6. Q-SWITCHING 163

Loss

Pulse

Gain

Figure 4.21: Gain and loss dynamics of a passively Q-switched laser

Now, we want to show that the saturable absorber leads to a destabiliza-
tion of the relaxation oscillations resulting in the giant pulse laser.
We extend our laser model by a saturable absorber as shown in Fig. 4.22

T       =2lout

τ , E  LL τ , E  A A
A eff,L A eff,A

g q

P-

P+ P
+

P  = P--

Figure 4.22: Simple laser model described by rate equations. We assume
small output coupling so that the laser power within one roundtrip can be
considered position independent. Neglecting standing wave effects in the
cavity, the field density is related to twice the circulating power P+ or P−.

Rate equations for a passively Q-switched laser

We make the following assumptions: First, the transverse relaxation times
of the equivalent two level models for the laser gain medium and for the
saturable absorber are much faster than any other dynamics in our system,
so that we can use rate equations to describe the laser dynamics. Second, we
assume that the changes in the laser intensity, gain and saturable absorption
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are small on a time scale on the order of the round-trip time TR in the cavity,
(i.e. less than 20%). Then, we can use the rate equations of the laser as
derived above plus a corresponding equation for the saturable loss q similar
to the equation for the gain.

TR
dP

dt
= 2(g − l − q)P (4.154)

TR
dg

dt
= −g − g0

TL
− gTRP

EL

(4.155)

TR
dq

dt
= −q − q0

TA
− qTRP

EA

(4.156)

where P denotes the laser power, g the amplitude gain per roundtrip, l the
linear amplitude losses per roundtrip, g0 the small signal gain per roundtrip
and q0 the unsaturated but saturable losses per roundtrip. The quanti-
ties TL = τL/TR and TA = τA/TR are the normalized upper-state life-
time of the gain medium and the absorber recovery time, normalized to
the round-trip time of the cavity. The energies EL = hνAeff,L/2

∗σL and
EA = hνAeff,A/2

∗σA are the saturation energies of the gain and the ab-
sorber, respectively. .
For solid state lasers with gain relaxation times on the order of τL ≈ 100

μs or more, and cavity round-trip times TR ≈ 10 ns, we obtain TL ≈ 104.
Furthermore, we assume absorbers with recovery times much shorter than
the round-trip time of the cavity, i.e. τA ≈ 1 − 100 ps, so that typically
TA ≈ 10−4 to 10−2. This is achievable in semiconductors and can be en-
gineered at will by low temperature growth of the semiconductor material
[24, 34]. As long as the laser is running cw and single mode, the absorber will
follow the instantaneous laser power. Then, the saturable absorption can be
adiabatically eliminated, by using eq.(4.156)

q =
q0

1 + P/PA

with PA =
EA

τA
, (4.157)

and back substitution into eq.(4.154). Here, PA is the saturation power of
the absorber. At a certain amount of saturable absorption, the relaxation
oscillations become unstable and Q-switching occurs. To find the stability
criterion, we linearize the system

TR
dP

dt
= 2(g − l − q(P ))P (4.158)

TR
dg

dt
= −g − g0

TL
− gTRP

EL

. (4.159)
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Stationary solution

As in the case for the cw-running laser the stationary operation point of the
laser is determined by the point of zero net gain

gs = l + qs
g0

1 + Ps/PL

= l +
q0

1 + Ps/PA

. (4.160)

The graphical solution of this equation is shown in Fig. 4.23

g

l+q

l

P

g  =l+q  

o

o

sg

l+qs

s s

Figure 4.23: Graphical solution of the stationary operating point.

Stability of stationary operating point or the condition for Q-
switching

For the linearized system, the coefficient matrix corresponding to Eq.(4.121)
changes only by the saturable absorber [27]:

TR
d

dt

µ
∆P0
∆g0

¶
= A

µ
∆P0
∆g0

¶
, with A =

µ −2 dq

dP

¯̄
cw
Ps 2Ps

−gsTR
EL

− TR
τstim

¶
(4.161)
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The coefficient matrix A does have eigenvalues with negative real part, if and
only if its trace is negative and the determinante is positive, which results in
two conditions

−2P dq

dP

¯̄̄̄
cw

<
r

TL
with r = 1 +

P

PL

and PL =
EL

τL
, (4.162)

and

dq

dP

¯̄̄̄
cw

r

TL
+ 2gs

r − 1
TL

> 0. (4.163)

After cancelation of TL we end up with

¯̄̄̄
dq

dP

¯̄̄̄
cw

¯̄̄̄
<

¯̄̄̄
dgs

dP

¯̄̄̄
cw

¯̄̄̄
. (4.164)

For a laser which starts oscillating on its own, relation 4.164 is automatically
fulfilled since the small signal gain is larger than the total losses, see Fig.
4.23. Inequality (4.162) has a simple physical explanation. The right hand
side of (4.162) is the relaxation time of the gain towards equilibrium, at a
given pump power and constant laser power. The left hand side is the decay
time of a power fluctuation of the laser at fixed gain. If the gain can not
react fast enough to fluctuations of the laser power, relaxation oscillations
grow and result in passive Q-switching of the laser.

As can be seen from Eq.(4.160) and Eq.(4.162), we obtain

−2TLP dq

dP

¯̄̄̄
cw

= 2TLq0

P
χPL³

1 + P
χPL

´2
¯̄̄̄
¯̄̄
cw

< r with χ =
PA

PL

, (4.165)

where χ is an effective ”stiffness” of the absorber against cw saturation. The
stability relation (4.165) is visualized in Fig. 4.24.
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Figure 4.24: Graphical representation of cw-Q-switching stability relation for
different products 2q0TL. The cw-stiffness used for the the plots is χ = 100.

The tendency for a laser to Q-switch increases with the product q0TL and
decreases if the saturable absorber is hard to saturate, i.e. χÀ 1. As can be
inferred from Fig. 4.24 and eq.(4.165), the laser can never Q-switch, i.e. the
left side of eq.(4.165) is always smaller than the right side, if the quantity

MDF =
2q0TL

χ
< 1 (4.166)

is less than 1. The abbreviation MDF stands for mode locking driving force,
despite the fact that the expression (4.166) governs the Q-switching instabil-
ity. We will see, in the next section, the connection of this parameter with
mode locking. For solid-state lasers with long upper state life times, already
very small amounts of saturable absorption, even a fraction of a percent,
may lead to a large enough mode locking driving force to drive the laser
into Q-switching. Figure 4.25 shows the regions in the χ − P/PL - plane
where Q-switching can occur for fixed MDF according to relation (4.165).
The area above the corresponding MDF-value is the Q-switching region. For
MDF < 1, cw-Q-switching can not occur. Thus, if a cw-Q-switched laser has
to be designed, one has to choose an absorber with a MDF >1. The fur-
ther the operation point is located in the cw-Q-switching domain the more
pronounced the cw-Q-switching will be. To understand the nature of the
instability we look at the eigen solution and eigenvalues of the linearized
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Figure 4.25: For a given value of the MDF, cw-Q-switching occurs in the area
above the corresponding curve. For a MDF-value less than 1 cw-Qswitching
can not occur.

equations of motion 4.161

d

dt

µ
∆P0(t)

∆g0(t)

¶
= s

µ
∆P0(t)

∆g0(t)

¶
(4.167)

which results in the eigenvalues

sTR =
A11 +A22

2
± j

s
A11A22 −A12A21 −

µ
A11 +A22

2

¶2
. (4.168)

With the matrix elements according to eq.(4.161) we get

s =
− 2

TR

dq

dP

¯̄
cw
Ps − 1

τstim

2
± jωQ (4.169)

ωQ =

vuut− 2

TR

dq

dP

¯̄̄̄
cw

Ps

r

τL
+

r − 1
τ pτL

−
Ã
− 2

TR

dq

dP

¯̄
cw
Ps − 1

τstim

2

!2
.(4.170)

where the pump parameter is now defined as the ratio between small signal
gain the total losses in steady state, i.e. r = g0/(l + qs). This somewhat
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lengthy expression clearly shows, that when the system becomes unstable,
−2 dq

dP

¯̄
cw
Ps >

TR
τstim

, with τL À τ p, there is a growing oscillation with fre-
quency

ωQ ≈
s

r − 1
τ pτL

≈
s

1

τ pτ stim
. (4.171)

That is, passive Q-switching can be understood as a destabilization of the
relaxation oscillations of the laser. If the system is only slightly in the instable
regime, the frequency of the Q-switching oscillation is close to the relaxation
oscillation frequency. If we define the growth rate γQ, introduced by the
saturable absorber as a prameter, the eigen values can be written as

s =
1

2

µ
γQ −

1

τ stim

¶
± j

vuutγQ
r

τL
+

r − 1
τ pτL

−
Ã
γQ − 1

τstim

2

!2
. (4.172)

Figure 4.26 shows the root locus plot for a system with and without a sat-
urable absorber. The saturable absorber destabilizes the relaxation oscilla-
tions. The type of bifurcation is called a Hopf bifurcation and results in an
oscillation.

Figure 4.26: Root locus plot for the linearized rate equations. a) Without
saturable absorber as a function of the pump parameter r; b) With saturable
absorber as a function of γQ .
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As an example, we consider a laser with the following parameters: τL =
250μs, TR = 4ns, 2l0 = 0.1, 2q0 = 0.005, 2g0 = 2, PL/PA = 100. The rate
equations are solved numberically and shown in Figures4.27 and 4.28.

Figure 4.27: Phase space plot of the rate equations. It takes several oscilla-
tions, until the steady state limit cycle is reached.

Figure 4.28: Solution for gain and output power as a function of time.
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4.7 Example: Single Mode CW-Q-Switched
Microchip Lasers

Q-switched microchip lasers are compact and simple solid-state lasers, which
can provide a high peak power with a diffraction limited output beam. Due to
the extremely short cavity length, typically less than 1 mm, single-frequency
Q-switched operation with pulse widths well below a ns can be achieved.
Pulse durations of 337 ps and 218 ps have been demonstrated with a passively
Q-switched microchip laser consisting of a Nd:YAG crystal bonded to a thin
piece of Cr4+:YAG [12, 13]. Semiconductor saturable absorbers were used to
passively Q-switch a monolithic Nd:YAG laser producing 100 ns pulses [42].

4.7.1 Set-up of the Passively Q-Switched Microchip
Laser

Figure 4.29(a) shows the experimental set-up of the passively Q-switched
microchip laser and Fig. 4.29(b) the structure of the semiconductor sat-
urable absorber [16, 17]. The saturable absorber structure is a so called anti-
resonant Fabry-Perot saturable absorber (A-FPSA), because in a microchip
laser the beam size is fixed by the thermal lens that builds up in the laser
crystal, when pumped with the diode laser. Thus, one can use the top reflec-
tor of the A-FPSA to scale the effective saturation intensity of the absorber
with respect to the intracavity power. The 200 or 220 μm thick Nd:YVO4 or
Nd:LaSc3(BO3)4, (Nd:LSB) laser crystal [43] is sandwiched between a 10%
output coupler and the A-FPSA. The latter is coated for high reflection at
the pump wavelength of 808 nm and a predesigned reflectivity at the laser
wavelength of 1.062 μ m, respectively. The laser crystals are pumped by a
semiconductor diode laser at 808 nm through a dichroic beamsplitter, that
transmits the pump light and reflects the output beam at 1.064 μm for the
Nd:YVO4 or 1.062 μm for the Nd:LSB laser. To obtain short Q-switched
pulses, the cavity has to be as short as possible. The highly doped laser
crystals with a short absorption length of only about 100μm lead to a short
but still efficient microchip laser [17]. The saturable absorber consists of a
dielectric top mirror and 18 pairs of GaAs/InGaAs Multiple Quantum Wells
(MQWs) grown on a GaAs/AlAs Bragg-mirror. The total optical thickness
of the absorber is on the order of 1 μm. Therefore, the increase of the cavity
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Figure 4.29: (a) Experimental set-up of the cw-passively Q-switched
Nd:YVO4 microchip-laser. (b) Structure of the anti-resonant Fabry-Perot
semiconductor saturable absorber [41].
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Figure 4.30: Single-Mode Q-switched pulse achieved with Nd:YVO4 mi-
crochip laser.

length due to the absorber is negligible. For more details see [16, 17]. Pulses
as short as 56 ps, Fig. (4.30), have been achieved with Nd:LSB-crystals.

4.7.2 Dynamics of a Q-Switched Microchip Laser

The passively Q-switched microchip laser, shown in Fig. 4.29(a), is perfectly
modeled by the rate equations (4.154) to (4.156). To understand the basic
dependence of the cw-Q-switching dynamics on the absorber parameters, we
performed numerical simulations of the Nd:LSB microchip laser, as shown
in Fig. 4.29. The parameter set used is given in Table 4.2. For these
parameters, we obtain according to eq.(4.160) a mode locking driving force
of MDF = 685. This laser operates clearly in the cw-Q-switching regime as
soon as the laser is pumped above threshold. Note, the Q-switching condition
(4.166) has only limited validity for the microchip laser considered here,
because, the cavity length is much shorter than the absorber recovery time.
Thus the adiabatic elimination of the absorber dynamics is actually no longer
justified. Figures 4.31 and 4.32 show the numerical solution of the set of rate
equations (4.154) to (4.156) on a microsecond timescale and a picosecond
timescale close to one of the pulse emission events.
No analytic solution to the set of rate equations is known. Therefore,

optimization of Q-switched lasers has a long history [8, 9], which in general
results in complex design criteria [9], if the most general solution to the rate
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parameter value
2 g0 0.7
2 q0 0.03
2 l 0.14
TR 2.7 ps
τL 87 μs
τA 24 ps
EL 20 μJ
EA 7.7 nJ

Table 4.2: Parameter set used for the simulation of the dynamics of the
Q-switched microchip laser.
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Figure 4.31: Dynamics of the Q-switched microchip laser by numerical solu-
tion of the rate equatioins on a microsecond timescale.
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Figure 4.32: Dynamics of the Q-switched microchip laser by numerical solu-
tion of the rate equatioins on a picosecond timescale.

equations is considered. However, a careful look at the simulation results
leads to a set of very simple design criteria, as we show in the following.
As seen from Fig. 4.31, the pulse repetition time Trep is many orders of
magnitude longer than the width of a Q-switched pulse. Thus, between two
pulse emissions, the gain increases due to pumping until the laser reaches
threshold. This is described by eq.(4.155), where the stimulated emission
term can be neglected. Therefore, the pulse repetition rate is determined by
the relation that the gain has to be pumped to threshold again gth = l + q0,
if it is saturated to the value gf after pulse emission. In good approximation,
gf = l− q0, as long as it is a positive quantity. If Trep < τL, one can linearize
the exponential and we obtain

gth − gf = g0
Trep

τL
(4.173)

Trep = τL
gth − gf

g0
= τL

2q0

g0
. (4.174)

Figure 4.32 shows that the power increases because the absorber saturates
faster than the gain. To obtain a fast raise of the pulse, we assume an
absorber which saturates much easier than the gain, i.e. EA ¿ EL, and the
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recovery times of gain and absorption shall be much longer than the pulse
width τ pulse, τA À τpulse. Since, we assume a slow gain and a slow absorber,
we can neglect the relaxation terms in eqs.(4.155) and (4.156) during growth
and decay of the pulse. Then the equations for gain and loss as a function
of the unknown Q-switched pulse shape fQ(t)

P (t) = EPfQ(t) (4.175)

can be solved. The pulse shape fQ(t) is again normalized, such that its
integral over time is one and EP is, therefore, the pulse energy. Analogous to
the derivation for the Q-switched mode locking threshold in eqs.(4.189) and
(4.190), we obtain

q(t) = q0 exp

∙
−EP

EA

Z t

−∞
fQ(t

0)dt0
¸
, (4.176)

g(t) = gth exp

∙
−EP

EL

Z t

−∞
fQ(t

0)dt0
¸
. (4.177)

Substitution of these expressions into the eq.(4.154) for the laser power, and
integration over the pulse width, determines the extracted pulse energy. The
result is a balance between the total losses and the gain.

l + qP (EP ) = gP (EP ) (4.178)

with

qP (EP ) = q0

1− exp
h
−EP

EA

i
EP
EA

, (4.179)

gP (EP ) = gth

1− exp
h
−EP

EL

i
EP
EL

. (4.180)

Because, we assumed that the absorber is completely saturated, we can
set qP (EP ) ≈ 0. Figure 4.33 shows the solution of eq.(4.178), which is the
pulse energy as a function of the ratio between saturable and nonsaturable
losses s = q0/l. Also approximate solutions for small and large s are shown
as the dashed curves. Thus, the larger the ratio between saturable and
nonsaturable losses is, the larger is the intracavity pulse energy, which is not
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surprising. Note, the extracted pulse energy is proportional to the output
coupling, which is 2l if no other losses are present. If we assume, s << 1,
then, we can use approximately the low energy approximation

EP = 2EL

q0

l + q0
. (4.181)

The externally emitted pulse energy is then given by

Eex
P = 2lEP = EL

4lq0

l + q0
. (4.182)

Thus, the total extracted pulse energy is completely symmetric in the sat-
urable and non saturable losses. For a given amount of saturable absorption,
the extracted pulse energy is maximum for an output coupling as large as
possible. Of course threshold must still be reached, i.e. l + q0 < g0. Thus,
in the following, we assume l > q0 as in Fig. 4.32. The absorber is immedi-
atelly bleached, after the laser reaches threshold. The light field growth and
extracts some energy stored in the gain medium, until the gain is saturated
to the low loss value l. Then the light field decays again, because the gain
is below the loss. During decay the field can saturate the gain by a similar
amount as during build-up, as long as the saturable losses are smaller than
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the constant output coupler losses l, which we shall assume in the following.
Then the pulse shape is almost symmetric as can be seen from Fig. 4.32(b)
and is well approximated by a secant hyperbolicus square for reasons that
will become obvious in a moment. Thus, we assume

fQ(t) =
1

2τP
sech2

µ
t

τ p

¶
. (4.183)

With the assumption of an explicit pulse form, we can compute the pulse
width by substitution of this ansatz into eq.(4.154) and using (4.176), (4.177)

−TR
τP
tanh

µ
t

τ p

¶
= gth exp

∙
− EP

2EL

µ
1 + tanh

µ
t

τ p

¶¶¸
− l. (4.184)

Again, we neglect the saturated absorption. If we expand this equation up
to first order in EP/EL and compare coefficients, we find from the constant
term the energy (4.182), and from the tanh-term we obtain the following
simple expression for the pulse width

τP =
TR

q0
. (4.185)

For the FWHM pulse width of the resulting sech2-pulse we obtain

τP,FWHM = 1.75
TR

q0
. (4.186)

Thus, for optimium operation of a Q-switched microchip laser, with respect
to minimum pulse width and maximum extracted energy in the limits consid-
ered here, we obtain a very simple design criterium. If we have a maximum
small signal round-trip gain g0, we should design an absorber with q0 some-
what smaller than g0/2 and an output coupler with q0 < l < g0− q0, so that
the laser still fullfills the cw-Q-switching condition. It is this simple opti-
mization, that allowed us to reach the shortest pulses every generated from a
cw-Q-switched solid-state laser. Note, for a maximum saturable absorption
of 2 q0 = 13%, a cavity roundtip time of TR = 2.6 ps for the Nd:YVO4 laser,
one expects from (4.186) a pulse width of about τP = 70ps, which is close
to what we observed in the experiment above. We achieved pulses between
56 and 90 ps [17]. The typical extracted pulse energies were on the order of
EP = 0.1 - 0.2 μJ for pulses of about 60ps [17]. Using a saturation energy of
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Figure 4.34: Laser output power as a function of time, when operating in the
Q-switched mode-locked regime.

about EL = 30 μJ and an output coupler loss of 2l = 0.1, we expect, accord-
ing to (4.182), a maximum extracted pulse energy of Eex

P = 2 μJ. Thus, we
have a deviation of one order of magnitude, which clearly indicates that the
absorber still introduces too much of nonsaturable intracavity losses. Low-
ering of these losses should lead to μJ - 50 ps pulses from this type of a
very simple and cheap laser, when compared with any other pulse generation
technique.

4.8 Q-Switched Mode Locking

To understand the regime of Q-switched mode locking, we reconsider the rate
equations (4.154) to (4.156). Fig. 4.34 shows, that we can describe the laser
power on two time scales. One is on the order of the Q-switching envelope
and occurs on multiple round-trips in the laser cavity, T = mTR. Therefore,
it is on the order of microseconds. The other time scale t is a short time scale
on the order of the pulse width, i.e. picoseconds. Assuming a normalized
pulse shape fn(t) for the n-th pulse such thatZ TR/2

−TR/2
fn(t− nTR)dt = 1, (4.187)
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we can make the following ansatz for the laser power

P (T, t) = EP (T )

∞X
n=−∞

fn(t− nTR). (4.188)

Here, EP (T = mTR) is the pulse energy of the m-th pulse, which only changes
appreciably over many round-trips in the cavity. The shape of the m-th pulse,
fm(t), is not yet of further interest. For simplicity, we assume that the mode-
locked pulses are much shorter than the recovery time of the absorber. In
this case, the relaxation term of the absorber in Eq.(4.157) can be neglected
during the duration of the mode-locked pulses. Since the absorber recovery
time is assumed to be much shorter than the cavity round-trip time, the
absorber is unsaturated before the arrival of a pulse. Thus, for the saturation
of the absorber during one pulse, we obtain

q(T = mTR, t) = q0 exp

∙
−EP (T )

EA

Z t

−TR/2
fm(t

0)dt0
¸
. (4.189)

Then, the loss in pulse energy per roundtrip can be written as

qP (T ) =

Z TR/2

−TR/2
fm(t)q(T = mTR, t)dt = q0

1− exp
h
−EP (T )

EA

i
EP (T )

EA

. (4.190)

Eq. (4.190) shows that the saturable absorber saturates with the pulse energy
and not with the average intensity of the laser, as in the case of cw-Q-
switching (4.157). Therefore, the absorber is much more strongly bleached
at the same average power. After averaging Eqs.(4.154) and (4.155) over one
round-trip, we obtain the following two equations for the dynamics of the
pulse energy and the gain on a coarse grained time scale T :

TR
dEP

dT
= 2(g − l − qP (EP ))EP , (4.191)

TR
dg

dT
= −g − g0

TL
− gEP

EL

. (4.192)

This averaging is allowed, because the saturation of the gain medium within
one pulse is negligible, due to the small interaction cross section of the
solid-state laser material. Comparing Eqs.(4.154), (4.155) and (4.157) with
(4.189), (4.191) and (4.192), it becomes obvious that the stability criterion
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(4.158) also applies to Q-switched mode locking if we replace the formula for
cw-saturation of the absorber (4.157) by the formula for pulsed saturation
(4.190). Then, stability against Q-switched mode locking requires

−2EP

dqP

dEP

¯̄̄̄
cw−mod

<
r

TL

¯̄̄̄
cw−mod

, (4.193)

with

−2EP

dqP

dEP

¯̄̄̄
cw−mod

= 2q0

1− exp
h
−EP

EA

i³
1 + EP

EA

´
EP
EA

. (4.194)

When expressed in terms of the average power P = EP/TR, similar to
Eq.(4.165), we obtain

−2TLEP

dqP

dEP

¯̄̄̄
cw−mod

= 2TLq0

1− exp
h
− P

χPPL

i ³
1 + P

χPPL

´
P

χPPL

, (4.195)

where χP = χTA describes an effective stiffness of the absorber compared
with the gain when the laser is cw-mode-locked at the same average power
as the cw laser. Thus, similar to the case of cw-Q-switching and mode locking
it is useful to introduce the driving force for Q-switched mode locking

QMDF =
2q0TL

χP
. (4.196)

Figure 4.35 shows the relation (4.193) for different absorber strength. In
going from Fig. 4.24 to Fig. 4.35, we used TA = 0.1. We see, that the
short normalized recovery time essentially leads to a scaling of the abscissa,
when going from Fig. 4.24 to Fig. 4.35 while keeping all other parameters
constant. Comparing Eqs.(4.166) with (4.196), it follows that, in the case
of cw-mode locking, the absorber is more strongly saturated by a factor of
1/TA, which can easily be as large as 1000. Therefore, the Q-switched mode
locking driving force is much larger than the mode locking driving force,
MDF, Accordingly, the tendency for Q-switched mode locking is significantly
higher than for cw Q-switching. However, now, it is much easier to saturate
the absorber with an average power well below the damage threshold of the
absorber (Fig. 4.35). Therefore, one is able to leave the regime of Q-switched
mode locking at a large enough intracavity power.
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We summarize our results for Q-switched mode locking in Fig. 4.36.
It shows the stability boundary for Q-switched mode locking according to
eq.(4.193), for different strengths of the saturable absorber, i.e. different
values 2q0TL. One may also derive minimum critical mode locking driving
force for self-starting modelocking of the laserMDFc due to various processes
in the laser [28][29][31][32]. Or, with the definition of the pulsed stiffness, we
obtain

χp,c ≤
2q0TL

MDFc

TA. (4.197)

Thus, for a self-starting laser which shows pure cw-mode locking, we have to
design the absorber such that its MDF is greater than this critical value. Or
expressed differently, the pulsed stiffness has to be smaller than the critical
value χp,c, at a fixed value for the absorber strength q0. There is always
a trade-off: On one hand, the mode locking driving force has to be large
enough for self-starting. On the other hand the saturable absorption has to
be small enough, so that the laser can be operated in a parameter regime
where it is stable against Q-switching mode locking, see Fig. (4.36).

4.9 Summary

Starting from a simple two level laser and absorber model, we characterized
the dynamics of solid-state lasers mode-locked and Q-switched by a saturable
absorber. The unique properties of solid-state laser materials, i.e. their long
upper-state life time and their small cross sections for stimulated emission,
allow for a separation of the laser dynamics on at least two time scales.
One process is the energy build-up and decay, which occurs typically on a
time scale of the upper state lifetime or cavity decay time of the laser. The
other process is the pulse shaping, which occurs within several roundtrips
in the cavity. Separating these processes, we can distinguish between the
different laser dynamics called cw-Q-switching, Q-switched mode locking and
cw-mode locking. We found the stability boundaries of the different regimes,
which give us guidelines for the design of absorbers for a given solid state
laser to favour one of these regimes. Semiconductor absorbers are a good
choice for saturable absorbers to modelock lasers, since the carrier lifetime
can be engineered by low temperature growth [24]. When the pulses become
short enough, the laser pulse saturates the absorber much more efficiently,
which stabilizes the laser against undesired Q-switched mode locking. It has
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been demonstrated experimentally, that this technique can control the laser
dynamics of a large variety of solid-state lasers, such as Nd:YAG, Nd:YLF,
Nd:YV04, [22] in the picosecond regime.
With semiconductor devices and soliton formation due to negative GVD

and SPM, we can use similar semiconductor absorbers to modelock the lasers
in the femtosecond regime [39]. The stability criteria derived here can be ap-
plied to both picosecond and femtosecond lasers. However, the characteristics
of the absorber dynamics may change drastically when going from picosecond
to femtosecond pulses [40]. Especially, the saturation energy may depend not
only on excitation wavelength, but also on the pulsewidth. In addition there
may be additional loss mechanismes for the pulse, for example due to soliton
formation there are additional filter losses of the pulse which couple to the
energy of the pulse via the area theorem. This has to be taken into account,
before applying the theory to fs-laser systems, which will be discussed in
more detail later.
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Chapter 5

Active Mode Locking

For simplicity, we assume, that the laser operates in the transverse fundamen-

tal modes and, therefore, we only have to treat the longitudinal modes of the

laser similar to a simple plane parallel Fabry-Perot resonator (Figure: 5.1).

We consider one polarization of the field only, however, as we will say later

for some mode-locked laser polarization dynamics will become important.

The task of mode-locking is to get as many of the longitudinal modes

lasing in a phase synchronous fashion, such that the superposition of all

modes represents a pulse with a spatial extent much shorter than the cavity.

The pulse will then propagate at the group velocity corresponding to the

center frequency of the pulse.

Cavity Length, L

Figure 5.1: Fabry-Perot resonator
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5.1 The Master Equation of Mode Locking

Lets consider for the moment the cold cavity (i.e. there is only a simple

linear medium in the cavity no lasing). The most general solution for the

intracavity field is a superpositon of left- and rightward running waves

()( ) = 

( ∞X
=0

̂
(Ω+)

)
 (5.1)

and

()( ) = 

( ∞X
=0

̂
(Ω−)

)
 (5.2)

The possible values for the wavenumbers are  = , resulting from the

boundary conditions on metallic mirrors or periodicity after one roundtrip in

the cavity. If the mirrors are perfectly reflecting, the leftward and rightward

moving waves Eqs.(5.1) and (5.2) contain the same information and it is

sufficient to treat only one of them. Usually one of the cavity mirrors is

not perfectly reflecting in order to couple out light, however, this can be

considered a perturbation to the ideal mode structure.

We consider the modes in Eq.(5.2) as a continuum and replace the sum

by an integral

()( ) =
1

2


½Z ∞

=0

̂()(Ω()−)

¾
(5.3)

with

̂() = ̂2 (5.4)

Eq.(5.3) is similar to the pulse propagation discussed in chapter 2 and de-

scribes the pulse propagation in the resonator. However, here it is rather

an initial value problem, rather than a boundary value problem. Note, the

wavenumbers of the modes are fixed, not the frequencies. To emphasize this

even more, we introduce a new time variable  =  and a local time frame

0 = − 0, instead of the propagation distance  where 0 is the group

velocity at the central wave number 0 of the pulse

0 =




¯̄̄̄
=0

=

µ




¶−1 ¯̄̄̄¯
=0

 (5.5)
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For introduction of a slowly varying envelope, we shift the frequency and

wavenumber by the center frequency 0 = Ω0 and center wave number

0 = 0

 =  −0 (5.6)

() = Ω(0 + )−Ω0 (5.7)

̂() = ̂(0 + ) (5.8)

The temporal evolution of the pulse is then determined by

()( ) =
1

2


(Z ∞

−0
→−∞

̂()(()−)

)
(0−0) (5.9)

Analogous to chapter 2, we define a slowly varying field envelope, that is

already normalized to the total power flow in the beam

( ) =

r


20

1

2

Z ∞

−∞
̂()(()−) (5.10)

With the retarded time 0 and time  , we obtain analogous to Eq. (??).

( 0) =

r


20

1

2

Z ∞

−∞
̂()((()−0)+0

0
 (5.11)

which can be written as


( 0)



¯̄̄̄
()

= 

∞X
=2



µ
− 

0

¶

( 0) (5.12)

with the dispersion coefficients per resonator round-trip  =
2
0

 =
2

!+10

−1()
−1

¯̄̄̄
¯
=0

 (5.13)

The dispersion coefficients (5.13) look somewhat suspicious, however, it is

not difficult to show, that they are equivalent to derivatives of the roundtrip

phase (Ω) =
Ω

(Ω)2 in the resonator at the center frequency

 = − 1
!


()

 (Ω)

Ω

¯̄̄̄
¯
Ω=0

 (5.14)



192 CHAPTER 5. ACTIVE MODE LOCKING

Sofar, only the lossless resonator is treated. The gain and loss can be mod-

elled by adding a term like


( 0)



¯̄̄̄
()

= −( 0) (5.15)

where  is the amplitude loss per round-trip. In an analogous manner we can

write for the gain


( 0)



¯̄̄̄
()

=

µ
( ) +

2

02

¶
( 0) (5.16)

where ( ) is the gain and and  is the curvature of the gain at the maxi-

mum of the Lorentzian lineshape.

 =
( )

Ω2
(5.17)

 is the gain dispersion. ( ) is an average gain, which can be computed

from the rate equation valid for each unit cell in the resonator. The distrib-

uted gain obeys the equation

( )


= − − 0


− 

|( )|2


 (5.18)

where  is the saturation energy  =

2∗

 ,  the upper state lifetime

and  the gain cross section. For typical solid-state lasers, the intracavity

pulse energy is much smaller than the saturation energy. Therefore, the gain

changes within one roundtrip are small. Furthermore, we assume that the

gain saturates spatially homogeneous, ( 0) = (0). Then, the equation for
the average gain ( ) can be found by averaging (5.18) over one round-trip

and we obtain
( )


= − − 0


− 

 ( )


 (5.19)

where  ( ) is the intracavity pulse energy at time  = 

 ( ) =

Z 2

0=−2
|( 0)|20 ≈

Z ∞

−∞
|( 0)|20 (5.20)
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Figure 5.2: Actively modelocked laser with an amplitude modulator

(Acousto-Optic-Modulator).

Taking all effects into account, the linear ones: loss, dispersion, gain and

gain dispersion, as well as the nonlinear ones like saturable absorption and

self-phase modulation, we end up with the master equation of modelocking


( 0)


= −( 0) + 

∞X
=2



µ



0

¶

( 0)

+ ( )

µ
1 +

1

Ω2

2

02

¶
( 0) (5.21)

− ( 0)( 0)− |( 0)|2( 0)
To keep notation simple, we replace 0 by  again. This equation was first

derived by Haus [4] under the assumption of small changes in pulse shape

per round-trip and per element passed within one round-trip.

5.2 Active Mode Locking by Loss Modula-

tion

Active mode locking was first investigated in 1970 by Kuizenga and Siegman

using a gaussian pulse analyses, which we want to delegate to the exercises

[3]. Later in 1975 Haus [4] introduced the master equation approach (5.21).

We follow the approach of Haus, because it also shows the stability of the

solution.

We introduce a loss modulator into the cavity, for example an acousto-

optic modulator, which periodically varies the intracavity loss according to
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Figure 5.3: Schematic representation of the master equation for an actively

mode-locked laser.

() = (1− cos()). The modulation frequency has to be very precisely

tuned to the resonator round-trip time,  = 2, see Fig.5.2. The

modelocking process is then described by the master equation





=

∙
( ) +

2

2
−  − (1− cos())

¸
 (5.22)

neglecting GDD and SPM. The equation can be interpreted as the total pulse

shaping due to gain, loss and modulator, see Fig.5.3.

If we fix the gain in Eq. (5.22) at its stationary value, what ever it might

be, Eq.(5.22) is a linear p.d.e, which can be solved by separation of variables.

The pulses, we expect, will have a width much shorter than the round-trip

time  They will be located in the minimum of the loss modulation where

the cosine-function can be approximated by a parabola and we obtain





=

∙
 −  +

2

2
−

2

¸
 (5.23)

 is the modulation strength, and corresponds to the curvature of the loss

modulation in the time domain at the minimum loss point

 =


Ω2
 (5.24)

 =
2
2

 (5.25)
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The differential operator on the right side of (5.23) corresponds to the Schrödinger-

Operator of the harmonic oscillator problem. Therefore, the eigen functions

of this operator are the Hermite-Gaussians

( ) = ()
  (5.26)

() =

s


2
√
!

()
− 2

22  (5.27)

where  defines the width of the Gaussian. The width is given by the fourth

root of the ratio between gain dispersion and modulator strength

 =
4

q
 (5.28)

Note, from Eq. (5.26) we can follow, that the gain per round-trip of each

eigenmode is given by  (or in general the real part of ), which are given

by

 =  −  − 2
2
(+

1

2
) (5.29)

The corresponding saturated gain for each eigen solution is given by

 =
1

1 + 



 (5.30)

where  is the energy of the corresponding solution and  =  the

saturation power of the gain. Eq. (5.29) shows that for given  the eigen

solution with  = 0 the ground mode, has the largest gain per roundtrip.

Thus, if there is initially a field distribution which is a superpostion of all

eigen solutions, the ground mode will grow fastest and will saturate the gain

to a value

 =  +
2
 (5.31)

such that 0 = 0 and consequently all other modes will decay since   0 for

 ≥ 1. This also proves the stability of the ground mode solution [4]. Thus
active modelocking without detuning between resonator round-trip time and

modulator period leads to Gaussian steady state pulses with a FWHM pulse

width

∆ = 2 ln 2 = 166 (5.32)
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The spectrum of the Gaussian pulse is given by

̃0() =

Z ∞

−∞
0()

 (5.33)

=

q√


− ()
2

2  (5.34)

and its FWHM is

∆ =
166

2
 (5.35)

Therfore, the time-bandwidth product of the Gaussian is

∆ ·∆ = 044 (5.36)

The stationary pulse shape of the modelocked laser is due to the parabolic

loss modulation (pulse shortening) in the time domain and the parabolic

filtering (pulse stretching) due to the gain in the frequency domain, see Figs.

5.4 and 5.5. The stationary pulse is achieved when both effects balance.

Since external modulation is limited to electronic speed and the pulse width

does only scale with the inverse square root of the gain bandwidth actively

modelocking typically only results in pulse width in the range of 10-100
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Figure 5.4: (a) Loss modulation gives pulse shortening in each roundtrip
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Figure 5.5: (b) the finite gain bandwidth gives pulse broadening in each

roundtrip. For a certain pulse width there is balance between the two

processes.

For example: Nd:YAG; 2 = 2 = 10% Ω = ∆ = 065 THz

 = 02  = 100 MHz = 024 ps
2 = 4 · 1016−1   ≈ 99 ps

With the pulse width (5.28), Eq.(5.31) can be rewritten in several ways

 =  +
2
 =  +



 2
=  +

1

2


2
 +

1

2



 2
 (5.37)

which means that in steady state the saturated gain is lifted above the loss

level l, so that many modes in the laser are maintained above threshold.

There is additional gain necessary to overcome the loss of the modulator due

to the finite temporal width of the pulse and the gain filter due to the finite

bandwidth of the pulse. Usually

 − 


=


2



¿ 1 (5.38)

since the pulses are much shorter than the round-trip time and the stationary

pulse energy can therefore be computed from

 =
0

1 + 



=  (5.39)
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Figure 5.6: Modelocking in the frequency domain: The modulator transvers

energy from each mode to its neighboring mode, thereby redistributing en-

ergy from the center to the wings of the spectrum. This process seeds and

injection locks neighboring modes.

The name modelocking originates from studying this pulse formation process

in the frequency domain. Note, the term

− [1− cos()]

does generate sidebands on each cavity mode present according to

− [1− cos()] exp(0)

= −
∙
exp(0)−

1

2
exp((0− ))− 1

2
exp((0+ ))

¸
= 

∙
− exp(0) +

1

2
exp(0−1) +

1

2
exp(0+1)

¸
if the modulation frequency is the same as the cavity round-trip frequency.

The sidebands generated from each running mode is injected into the neigh-

boring modes which leads to synchronisation and locking of neighboring

modes, i.e. mode-locking, see Fig.5.6

5.3 Active Mode-Locking by Phase Modula-

tion

Side bands can also be generated by a phase modulator instead of an am-

plitude modulator. However, the generated sidebands are out of phase with
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the carrier, which leads to a chirp on the steady state pulse. We can again

use the master equation to study this type of modelocking. All that changes

is that the modulation becomes imaginary, i.e. we have to replace  by 

in Eq.(5.22)





=

∙
( ) +

2

2
−  −  (1− cos())

¸
 (5.40)

The imaginary unit can be pulled through much of the calculation and we

arrive at the same Hermite Gaussian eigen solutions (5.26,5.27), however, the

parameter  becomes 
0
 and is now complex and not quite the pulse width

 0 =
4
p
− 4

q
 (5.41)

The ground mode or stationary solution is given by

0() =

s


2
√
! 0


− 2

22

1√
2
(1+)

 (5.42)

with  =
4
p
 as before. We end up with chirped pulses. How does

the pulse shortening actually work, because the modulator just puts a chirp

on the pulse, it does actually not shorten it? One can easily show, that if a

Gaussian pulse with chirp parameter 

0() ∼ 
− 2

22

1√
2
(1+)

 (5.43)

has a chirp   1 subsequent filtering is actually shortening the pulse.

5.4 ActiveMode Locking with Additional SPM

Due to the strong focussing of the pulse in the gain medium also additional

self-phase modulation can become important. Lets consider the case of an

actively mode-locked laser with additional SPM, see Fig. 5.7. One can write

down the corresponding master equation





=

∙
( ) +

2

2
−  −

2 − ||2
¸
 (5.44)

Unfortunately, there is no analytic solution to this equation. But it is not

difficult to guess what will happen in this case. As long as the SPM is not
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Figure 5.7: Active mode-locking with SPM

excessive, the pulses will experience additional self-phase modulation, which

creates a chirp on the pulse. Thus one can make an ansatz with a chirped

Gaussian similar to (5.43) for the steady state solution of the master equation

(5.44)

0() = 
− 2

22
(1+)+Ψ

(5.45)

Note, we allow for an additional phase shift per roundtrip Ψ because the

added SPM does not leave the phase invariant after one round-trip. This is

still a steady state solution for the intensity envelope. Substitution into the

master equation using the intermediate result

2

2
0() =

½
2

 4
(1 + )

2 − 1

 2
(1 + )

¾
0() (5.46)

leads to

Ψ0() =

½
 −  +

∙
2

 4
(1 + )

2 − 1

 2
(1 + )

¸
(5.47)

−
2 −  ||2 −

2

2

¾
0()
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To find an approximate solution we expand the Gaussian in the bracket,

which is a consequency of the SPM to first order in the exponent.

Ψ =  −  +

∙
2

 4
(1 + )

2 − 1

 2
(1 + )

¸
−

2 −  ||2
µ
1− 2

 2

¶


(5.48)

This has to be fulfilled for all times, so we can compare coefficients in front

of the constant terms and the quadratic terms, which leads to two complex

conditions. This leads to four equations for the unknown pulsewidth ,

chirp , round-trip phase Ψ and the necessary excess gain  −  With the

nonlinear peak phase shift due to SPM, 0 =  ||2  Real and Imaginary
parts of the quadratic terms lead to

0 =


 4

¡
1− 2

¢− (5.49)

0 = 2


 4
+

0
 2
 (5.50)

and the constant terms give the excess gain and the additional round-trip

phase.

 −  =


 2
 (5.51)

Ψ = 

∙
− 1
 2


¸
− 0 (5.52)

The first two equations directly give the chirp and pulse width.

 = −0
2


2

(5.53)

 4 =


 +
20
4

 (5.54)

However, one has to note, that this simple analysis does not give any hint

on the stability of these approximate solution. Indeed computer simulations

show, that after an additional pulse shorting of about a factor of 2 by SPM

beyond the pulse width already achieved by pure active mode-locking on its

own, the SPM drives the pulses unstable [5]. This is one of the reasons,

why very broadband laser media, like Ti:sapphire, can not simply generate
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Figure 5.8: Acitve mode-locking with additional soliton formation

femtosecond pulses via active modelocking. The SPM occuring in the gain

medium for very short pulses drives the modelocking unstable. Additional

stabilization measures have to be adopted. For example the addition of

negative group delay dispersion might lead to stable soliton formation in the

presence of the active modelocker.

5.5 Active Mode Locking with Soliton For-

mation

Experimental results with fiber lasers [8, 9, 11] and solid state lasers [10]

indicated that soliton shaping in the negative GDD regime leads to pulse

stabilization and considerable pulse shorting. With sufficient negative dis-

persion and self-phase modulation in the system and picosecond or even

femtosecond pulses, it is possible that the pulse shaping due to GDD and

SPM is much stronger than due to modulation and gain filtering, see Fig.

5.8. The resulting master equation for this case is





=

∙
 + ( −  ||) 2

2
−  − (1− cos())− ||2

¸
 (5.55)
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For the case, that soliton formation takes over, the steady state solution a

soliton plus a continuum contribution

( ) =
¡
() + ( )

¢
− (5.56)

with

() =  sech() and  =
1


(+ 2

Z 

0

( 0) 0 − 0) (5.57)

where  is the continuum contribution. The phase is determined by

( ) = 0( )− 



Z 

0

µ
1

( 0)2
− ( 0)2

¶
 0 (5.58)

whereby we always assume that the relation between the soliton energy and

soliton width is maintained (3.9)

||
( )2

=
( )2

2
 (5.59)

We also allow for a continuous change in the soliton amplitude  or energy

 = 22 and the soliton variables phase 0, carrier frequency  and timing

0. 0 is the soliton phase shift per roundtrip

0 =
||
 2

 (5.60)

However, we assume that the changes in carrier frequency, timing and

phase stay small. Introducing (5.56) into (5.55) we obtain according to the

soliton perturbation theory developed in chapter 3.5



∙



+




f +

∆


f +

∆


f +

∆


f

¸
= 0L (a +∆f) +R(a+∆f + a) (5.61)

− sin()∆a()

The last term arises because the active modelocker breaks the time invariance

of the system and leads to a restoring force pushing the soliton back to its

equilibrium position. L, R are the operators of the linearized NSE and of

the active mode locking scheme, respectively

R = 

µ
1 +

1

Ω2
2

2

2

¶
−  − (1− cos())  (5.62)

The vectors f f f and f describe the change in the soliton when the soliton

energy, phase, carrier frequency and timing varies.
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5.5.1 Stability Condition

We want to show, that a stable soliton can exist in the presence of the

modelocker and gain dispersion if the ratio between the negative GDD and

gain dispersion is sufficiently large. From (5.61) we obtain the equations of

motion for the soliton parameters and the continuum by carrying out the

scalar product with the corresponding adjoint functions. Specifically, for the

soliton energy we get





= 2

µ
 −  − 

3Ω2
2
− 2

24
2 2

¶
 (5.63)

+  f (+) |Ra  

We see that gain saturation does not lead to a coupling between the soliton

and the continuum to first order in the perturbation, because they are or-

thogonal to each other in the sense of the scalar product (3.37). This also

means that to first order the total field energy is contained in the soliton.

Thus to zero order the stationary soliton energy0 = 2
2
0 is determined

by the condition that the saturated gain is equal to the total loss due to the

linear loss , gain filtering and modulator loss

 −  =
2

24
2 2 +



3Ω2
2

(5.64)

with the saturated gain

 =
0

1 +0

 (5.65)

Linearization around this stationary value gives for the soliton perturbations
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
∆


= 2

Ã
− 

(1 +0)

µ
0



+
1

3Ω2
2

¶

+
2

12
22

!
∆+  f (+) |Ra  (5.66)


∆


=  f

(+)

 |Ra  (5.67)


∆


= − 4

3Ω2
2
∆+  f (+) |Ra  (5.68)


∆


= −

2

6
2 2∆+ 2||∆

+  f
(+)
 |Ra  (5.69)

and for the continuum we obtain


()


= Φ0(

2 + 1)()+  f
(+)

 |Ra 
+  f

(+)

 |R (a0() +∆ f +∆ f) 

−  f
(+)

 | sin()a0()  ∆ (5.70)

Thus the action of the active modelocker and gain dispersion has several

effects. First, the modelocker leads to a restoring force in the timing of the

soliton (5.69). Second, the gain dispersion and the active modelocker lead to

coupling between the perturbed soliton and the continuum which results in

a steady excitation of the continuum.

However, as we will see later, the pulse width of the soliton, which can be

stabilized by the modelocker, is not too far from the Gaussian pulse width

by only active mode locking. Then relation

 ¿ 1¿ Ω (5.71)

is fulfilled. The weak gain dispersion and the weak active modelocker only

couples the soliton to the continuum, but to first order the continuum does

not couple back to the soliton. Neglecting higher order terms in the matrix

elements of eq.(5.70) [6] results in a decoupling of the soliton perturbations

from the continuum in (5.66) to (5.70). For a laser far above threshold, i.e.
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0  1, gain saturation always stabilizes the amplitude perturbation

and eqs.(5.67) to (5.69) indicate for phase, frequency and timing fluctuations.

This is in contrast to the situation in a soliton storage ring where the laser

amplifier compensating for the loss in the ring is below threshold [14].

By inverse Fourier transformation of (5.70) and weak coupling, we obtain

for the associated function of the continuum





=

∙
 −  + Φ0 +



Ω2
(1− )

2

2

− (1− cos())

¸
+F−1

½
 f

(+)

 |Ra0()  (5.72)

−  f
(+)

 | sin()a0()  ∆

¾
where  is the dispersion normalized to the gain dispersion

 = ||Ω2 (5.73)

Note, that the homogeneous part of the equation of motion for the continuum,

which governs the decay of the continuum, is the same as the homogeneous

part of the equation for the noise in a soliton storage ring at the position

where no soliton or bit is present [14]. Thus the decay of the continuum is

not affected by the nonlinearity, but there is a continuous excitation of the

continuum by the soliton when the perturbing elements are passed by the

soliton. Thus under the above approximations the question of stability of

the soliton solution is completely governed by the stability of the continuum

(5.72). As we can see from (5.72) the evolution of the continuum obeys

the active mode locking equation with GVD but with a value for the gain

determined by (5.64). In the parabolic approximation of the cosine, we obtain

again the Hermite Gaussians as the eigensolutions for the evolution operator

but the width of these eigensolutions is now given by

  = 
4
p
(1− ) (5.74)

and the associated eigenvalues are

 = Φ0 +  −  −2 2
p
(1− )(+

1

2
) (5.75)
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The gain is clamped to the steady state value given by condition (5.64) and

we obtain

 = +Φ0 +
1

3

p


"³


´2
+

2

4

³


´−2
(5.76)

−6
p
(1− )(+

1

2
)

#


Stability is achieved when all continuum modes see a net loss per roundtrip,

{}  0 for  ≥ 0, i.e. we get from (5.76)

³


´2
+

2

4

µ




¶2
 3{

p
(1− )} (5.77)

Relation (5.77) establishes a quadratic inequality for the pulse width reduc-

tion ratio  = ()
2, which is a measure for the pulse width reduction due

to soliton formation

2 − 3{
p
(1− )} + 2

4
 0 (5.78)

As has to be expected, this inequality can only be satisfied if we have a

minimum amount of negative normalized dispersion so that a soliton can be

formed at all

 = 0652 (5.79)

Therefore our perturbation ansatz gives only meaningful results beyond this

critical amount of negative dispersion. Since  compares the width of a

Gaussian with that of a secant hyperbolic it is more relevant to compare the

full width half maximum of the intensity profiles of the corresponding pulses

which is given by

 =
166

176

p
 (5.80)
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Figure 5.9: Pulsewidth reduction as a function of normalized dispersion.

Below  = 0652 no stable soliton can be formed.

Figure 5.9 shows the maximum pulse width reduction  allowed by the

stability criterion (5.78) as a function of the normalized dispersion. The crit-

ical value for the pulse width reduction is  ≈ 12. For large normalized
dispersion Fig. 1 shows that the soliton can be kept stable at a pulse width

reduced by up to a factor of 5 when the normalized dispersion can reach a

value of 200. Even at a moderate negative dispersion of  = 5, we can

achieve a pulsewidth reduction by a factor of 2. For large normalized disper-

sion the stability criterion (5.78) approaches asymptotically the behavior

 

r
9

2
or  

166

176

4

r
9

2
 (5.81)

Thus, the possible pulse-width reduction scales with the fourth root of the

normalized dispersion indicating the need of an excessive amount of disper-

sion necessary to maintain a stable soliton while suppressing the continuum.

The physical reason for this is that gain filtering and the active modelocker

continuously shed energy from the soliton into the continuum. For the soli-

ton the action of GVD and SPM is always in balance and maintains the

pulse shape. However, as can be seen from (5.72), the continuum, which can

be viewed as a weak background pulse, does not experience SPM once it is

generated and therefore gets spread by GVD. This is also the reason why

the eigenstates of the continuum consist of long chirped pulses that scale
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also with the fourth root of the dispersion (5.74). Then, the long continuum

pulses suffer a much higher loss in the active modulator in contrast to the

short soliton which suffers reduced gain when passing the gain medium due

to its broader spectrum. The soliton is stable as long as the continuum sees

less roundtrip gain than the soliton.

In principle by introducing a large amount of negative dispersion the

theory would predict arbitrarily short pulses. However, the master equation

(5.55) only describes the laser system properly when the nonlinear changes of

the pulse per pass are small. This gives an upper limit to the nonlinear phase

shift Φ0 that the soliton can undergo during one roundtrip. A conservative

estimation of this upper limit is given with Φ0 = 01. Then the action of

the individual operators in (5.55) can still be considered as continuous. Even

if one considers larger values for the maximum phase shift allowed, since in

fiber lasers the action of GVD and SPM occurs simultaneously and therefore

eq.(5.55) may describe the laser properly even for large nonlinear phase shifts

per roundtrip, one will run into intrinsic soliton and sideband instabilities for

Φ0 approaching 2 [29, 30]. Under the condition of a limited phase shift per

roundtrip we obtain

 2 =
||
Φ0

 (5.82)

Thus from (5.32), the definition of , (5.81) and (5.82) we obtain for the

maximum possible reduction in pulsewidth

 =
166

176
12

s
(9Φ02)2



(5.83)

and therefore for the minimum pulsewidth

 =
6

s
22



9Φ0

 (5.84)

The necessary amount of normalized negative GVD is then given by

 =
2

9
3

s
(9Φ02)2

 

 (5.85)

Eqs.(5.83) to (5.85) constitute the main results of this paper, because they

allow us to compute the possible pulse width reduction and the necessary
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gain

material
Ω

2 ()
M 

2 ()



(2)
 · (2) 

()

Nd:YAG 0.06 0.2 250 0.7 2.5 ·10−7 68

Nd:glass 4 0.2 250 158·10−6 2.5 ·10−7 8.35

Cr:LiSAF 32 0.2 250 2.4·10−6 2.5 ·10−7 3

Ti:sapphire 43 0.01 100 1.4 ·10−6 2 ·10−9 8.5

gain

material




()


 


Nd:YAG 3 22.7 23.4 702

Nd:glass 6 1.4 385 11,538

Cr:LiSAF 8.6 0.35 1563 46,600

Ti:sapphire 13.5 0.63 9367 281,000

Table 5.1: Maximum pulsewidth reduction and necessary normalized GVD

for different laser systems. In all cases we used for the saturated gain  = 01

and the soliton phase shift per roundtrip Φ0 = 01. For the broadband gain

materials the last column indicates rather long transient times which calls

for regenerative mode locking.
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negative GVD for a given laser system. Table (5.1) shows the evaluation of

these formulas for several gain media and typical laser parameters.

Table 5.1 shows that soliton formation in actively mode-locked lasers may

lead to considerable pulse shortening, up to a factor of 10 in Ti:sapphire. Due

to the 12th root in (5.83) the shortening depends mostly on the bandwidth

of the gain material which can change by several orders of magnitude for the

different laser materials. The amount of negative dispersion for achieving this

additional pulse shortening is in a range which can be achieved by gratings,

Gires-Tournois interferometers, or prisms.

Of course, in the experiment one has to stay away from these limits

to suppress the continuum sufficiently. However, as numerical simulations

show, the transition from stable to instable behaviour is remarkably sharp.

The reason for this can be understood from the structure of the eigenvalues

for the continuum (5.76). The time scale for the decay of transients is given

by the inverse of the real part of the fundamental continuum mode which

diverges at the transition to instability. Nevertheless, a good estimate for

this transient time is given by the leading term of the real part of (5.76)

 


=

1

{0} ≈
3p

2
(5.86)

This transient time is also shown in Table (5.1) for different laser systems.

Thus these transients decay, if not too close to the instability border, on time

scales from approximately 1,000 up to some 100,000 roundtrips, depending

strongly on the gain bandwidth and modulation strength. Consequently, to

first order the eigenvalues of the continuum modes, which are excited by the

right hand side of (5.72), are purely imaginary and independent of the mode

number, i.e.  ≈ Φ0. Therefore, as long as the continuum is stable, the

solution to (5.72) is given by

() =
−
Φ0
F−1

½
 f

(+)

 |Ra0() 

− 
2  f

(+)

 |a0()  ∆



¾
 (5.87)

Thus, in steady state the continuum is on the order of

|()| ≈ 0

Φ0



 2
=

0



 (5.88)



212 CHAPTER 5. ACTIVE MODE LOCKING

which demonstrates again the spreading of the continuum by the dispersion.

Equation (5.88) shows that the nonlinear phase shift of the solitary pulse

per round trip has to be chosen as large as possible. This also maximizes

the normalized dispersion, so that the radiation shed from the soliton into

the continuum changes the phase rapidly enough such that the continuum

in steady state stays small. Note that the size of the generated continuum

according to (5.88) is rather independent of the real part of the lowest eigen-

value of the continuum mode. Therefore, the border to instability is very

sharply defined. However, the time scale of the transients at the transition

to instability can become arbitrarily long. Therefore, numerical simulations

are only trustworthy if the time scales for transients in the system are known

from theoretical considerations as those derived above in (5.86). The simu-

lation time for a given laser should be at least of the order of 10 times  
or even longer, if operated close to the instability point, as we will see in the

next section.

5.5.2 Numerical simulations

Table 5.1 shows that soliton formation in actively mode-locked lasers may

lead to considerable pulse shortening, up to a factor of 10 in Ti:sapphire. We

want to illustrate that at the example of a Nd:YAG laser, which is chosen

due to its moderate gain bandwidth, and therefore, its large gain dispersion.

This will limit the pulsewidth reduction possible to about 3, but the decay

time of the continuum (5.86) (see also Table 5.1) is then in a range of 700

roundtrips so that the steady state of the mode-locked laser can be reached

with moderate computer time, while the approximations involved are still

satisfied. The system parameters used for the simulation are shown in table

5.2. For the simulation of eq.(5.55) we use the standard split-step Fourier

transform method. Here the discrete action of SPM and GDD per roundtrip

is included by choosing the integration step size for the  integration to be

the roundtrip time . We used a discretisation of 1024 points over the

bandwidth of 1, which corresponds to a resolution in the time domain

of 1. The following figures, show only one tenth of the simulated window

in time and frequency.

Figure 5.10 shows the result of the simulation starting with a 68-ps-long

Gaussian pulse with a pulse energy of  = 40 nJ for  = 24, i.e.  = -17

ps2. For the given SPM coefficient this should lead to stable pulse shortening

by a factor of  = 2.8. Thus after at least a few thousand roundtrips the
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parameter value

 01

0 1

 1

Ω 2 · 60

 2 · 025

 4

 02

 14 · 10−4−1

 −172  − 102

Table 5.2: Parameters used for numerical simulations
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Figure 5.10: Time evolution of the pulse intensity in a Nd:YAG laser for the

parameters in Table 5.2,  = −172, for the first 1,000 roundtrips in the
laser cavity, starting with a 68ps long Gaussian pulse.
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laser should be in steady state again with a FWHM pulsewidth of 24 ps.

Fig. 5.10 shows the pulse evolution over the first thousand round-trips, i.e.

4s real time. The long Gaussian pulse at the start contains an appreciable

amount of continuum. The continuum part of the solution does not experi-

ence the nonlinear phase shift due to SPM in contrast to the soliton. Thus

the soliton interferes with the continuum periodically with the soliton period

of  = 20 = 20. This is the reason for the oscillations of the

pulse amplitude seen in Fig. 5.10 which vanish with the decay of the con-

tinuum. Note also that the solitary pulse is rapidly formed, due to the large

nonlinear phase shift per roundtrip. Figure 5.11 shows the simulation in time

and frequency domain over 10,000 roundtrips. The laser reaches steady state

after about 4,000 roundtrips which corresponds to 6 ×   and the final

pulsewidth is 24 ps in exact agreement with the predictions of the analytic

formulas derived above.

Lower normalized dispersion of  = 15 or  = -10 ps2 only allows for

a reduction in pulsewidth by  = 268. However, using the same amount of

SPM as before we leave the range of stable soliton generation.
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Figure 5.11: Time evolution of the intensity (a) and spectrum (b) for the

same parameters as Fig. 2 over 10,000 roundtrips. The laser reaches steady

state after about 4,000 rountrips.



216 CHAPTER 5. ACTIVE MODE LOCKING

0

200

400

600

800

1000 -60
-40

-20
0

20
40

60

500

1000

1500

2000

P
ow

er
 / 

W
 

t / psround trips

0

10

20

30

40

50 -100

-50

0

50

100

500

1000

1500

P
ow

er
 / 

W
 

t / ps

x 1000  round trips

Figure 5.12: (a) Time evolution of the intensity in a Nd:YAG laser for the

parameters in Table 5.2 over the first 1,000 round-trips. The amount of

negative dispersion is reduced to  = −102, starting again from a 68ps

long pulse. The continuum in this case does not decay as in Fig. 5.2 and 5.3

due to the insufficient dispersion. (b) Same simulation over 50,000 round-

trips.
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Figure 5.12(a) shows similar to Fig. 5.10 the first 1 000 roundtrips in

that case. Again the solitary pulse is rapidly formed out of the long Gaussian

initial pulse. But in contrast to the situation in Fig. 5.10, the continuum does

not any longer decay on this time scale. The dispersion is too low to spread

the continuum rapidly enough. The continuum then accumulates over many

roundtrips as can be seen from Fig. 5.12(b). After about 10,000 roundtrips

the continuum has grown so much that it extracts an appreciable amount of

energy from the soliton. But surprisingly the continuum modes stop growing

after about 30,000 roundtrips and a new quasi stationary state is reached.

5.5.3 Experimental Verification

The theory above explains very well the ps Ti:saphire experiments [10] in

the regime where the pulses are stabilized by the active modelocker alone.

Gires-Tournois interferometers were used to obtain large amounts of negative

GDD to operate the laser in the stable soliton regime derived above. Here

we want to discuss in more detail the experimental results obtained recently

with a regeneratively, actively mode-locked Nd:glass laser [7], resulting in 310

fs. If SPM and GVD could be neglected, the weak modelocker would produce

Gaussian pulses with a FWHM of  = 10 ps. However, the strong

SPM prevents stable pulse formation. The negative dispersion available in

the experiment is too low to achieve stable soliton formation, because the

pulse width of the soliton at this power level is given by  = 4||( ) =
464 fs, for the example discussed. The normalized dispersion is not large

enough to allow for such a large pulse width reduction. Providing enough

negative dispersion results in a 310 fs perfectly sech-shaped soliton-like pulse

as shown in Fig. 5.13. A numerical simulation of this case would need millions

of roundtrips through the cavity until a stationary state is reached. That

means milliseconds of real time, but would necessitate days of computer

time. Also the transition to instable behaviour has been observed, which is

the characteristic occurence of a short solitary fs-pulse together with a long

ps-pulse due to the instable continuum as we have found in the numerical

simulation for the case of a Nd:YAG laser (see Fig. 5.12(b)). Figure 5.14

shows the signal of a fast detector diode on the sampling oscilloscope. The

detector has an overall bandwidth of 25 and therefore can not resolve

the fs-pulse, but can resolve the width of the following roughly 100 long

pulse.
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Figure 5.13: Autocorrelation of the actively mode-locked pulse (solid line)

and corresponding 2 fit (dashed line) with additional soliton formation.
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Figure 5.14: Sampling signal of fast detector when the mode-locked laser

operates at the transition to instability. The short fs pulse can not be resolved

by the detector and therefore results in a sharp spike corresponding to the

detector response time. In advance of the fs-pulse travels a roughly 100

long pulse.
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5.6 Active Modelocking with Detuning

So far, we only considered the case of perfect synchronism between the round-

trip of the pulse in the cavity and the external modulator. Technically,

such perfect synchronism is not easy to achieve. One way would be to do

regenerative mode locking, i.e. a part of the output signal of the modelocked

laser is detected, the beatnote at the round-trip frequency is filtered out from

the detector, and sent to an amplifier, which drives the modulator. This

procedure enforces synchronism if the cavity length undergoes fluctuations

due to acoustic vibrations and thermal expansion.

Nevertheless, it is interesting to know how sensitive the system is against

detuning between the modulator and the resonator. It turns out that this

is a physically and mathematically rich situation, which applies to many

other phenomena occuring in externally driven systems, such as the transi-

tion from laminar to turbulent flow in hydrodynamics. This transition has

puzzled physicists for more than a hundred years [15]. During the last 5 to

10 years, a scenario for the transition to turbulence has been put forward

by Trefethen and others [16]. This model gives not only a quantitative de-

scription of the kind of instability that leads to a transition from laminar,

i.e. highly ordered dynamics, to turbulent flow, i.e. chaotic motion, but also

an intuitive physical picture why turbulence is occuring. Such a picture is

the basis for many laser instabilities especially in synchronized laser systems.

According to this theory, turbulence is due to strong transient growth of

deviations from a stable stationary point of the system together with a non-

linear feedback mechanism. The nonlinear feedback mechanism couples part

of the amplified perturbation back into the initial perturbation. Therefore,

the perturbation experiences strong growth repeatedly. Once the transient

growth is large enough, a slight perturbation from the stable stationary point

renders the system into turbulence. Small perturbations are always present

in real systems in the form of system intrinsic noise or environmental noise

and, in computer simulations, due to the finite precision. The predictions

of the linearized stability analysis become meaningless in such cases. The

detuned actively modelocked laser is an excellent example of such a system,

which in addition can be studied analytically. The detuned case has been

only studied experimentally [17][18] or numerically [19] so far. Here, we con-

sider an analytical approach. Note, that this type of instability can not be

detected by a linear stability analysis which is widely used in laser theories

and which we use in this course very often to prove stable pulse formation.
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One has to be aware that such situations may arise, where the results of a

linearized stability analysis have only very limited validity.

The equation of motion for the pulse envelope in an actively modelocked

laser with detuning can be writen as


( )


=

∙
( )−  +

2

2
(5.89)

− (1− cos()) + 




¸
( )

Here, ( ) is the pulse envelope as before. There is the time  which is

coarse grained on the time scale of the resonator round-trip time  and

the time  which resolves the resulting pulse shape. The saturated gain is

denoted by ( ) and left dynamical, because we no longer assume that the

gain and field dynamics reaches a steady state eventually. The curvature of

the intracavity losses in the frequency domain, which limit the bandwidth of

the laser, is given by  .and left fixed for simplicity.  is the depth of the

loss modulation introduced by the modulator with angular frequency  =

2  where  is the modulator period. Note that Eq.(5.89) describes the

change in the pulse between one period of modulation. The detuning between

resonator round-trip time and the modulator period is  =  − This

detuning means that the pulse hits the modulator with some temporal off-set

after one round-trip, which can be described by adding the term 


 in the

master equation.The saturated gain  obeys a separate ordinary differential

equation

( )


= −( )− 0


− 

 ( )



 (5.90)

As before, 0 is the small signal gain due to the pumping,  the saturation

power of the gain medium,  the gain relaxation time and  ( ) =
R

|( )|2  the total field energy stored in the cavity at time  .
As before, we expect pulses with a pulse width much shorter than the

round-trip time in the cavity and we assume that they still will be placed

in time near the position where the modulator introduces low loss (Figure

5.15), so that we can still approximate the cosine by a parabola





=

∙
 −  +

2

2
−

2 + 




¸
 (5.91)
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Figure 5.15: Drifting pulse dynamics in a detuned actively modelocked laser

for the situation, where the modulator period is larger than the cavity round-

trip time. The displacement A is caused by the mismatch between the cavity

round-trip time and the modulator period. The displacement B is due to

unequal losses experienced by the front and the back of the pulse in the

modulator. The gain saturates to a level where a possible stationary pulse

experiences no net gain or loss, which opens up a net gain window following

the pulse. Perturbations within that window get amplified while drifting

towards the stationary pulse.

Here,  =22 is the curvature of the loss modulation at the point

of minimum loss as before. The time t is now allowed to range from −∞ to

+∞ since the modulator losses make sure that only during the physically

allowed range −2¿ ¿ 2 radiation can build up.

In the case of vanishing detuning, i.e.  = 0, the differential operator

on the right side of (5.91), which generates the dynamics and is usually

called a evolution operator ̂ correspondes to the Schrödinger operator of

the harmonic oscillator. Therefore, it is useful to introduce the creation and

annihilation operators

̂ =
1√
2

µ



+





¶
 ̂† =

1√
2

µ
−


+





¶
 (5.92)
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with  =
4
p
 The evolution operator ̂ is then given by

̂ =  −  − 2
p


µ
̂†̂+

1

2

¶
(5.93)

and the evolution equation (5.91) can be written as





= ̂ (5.94)

Consequently, the eigensolutions of this evolution operator are the Hermite-

Gaussians, which we used already before

( ) = ()
 (5.95)

() =

s


2
√
!

()
− 2

22 (5.96)

and  is the pulsewidth of the Gaussian.(see Figure 5.16a)

0
time, (arb.u.)

loss↑

pu
ls

e 
en

ve
lo

pe
, (

ar
b.

u.
) n=0Δ=0

n=2

n=4

n=8

n=18

0
time, (arb.u.)

loss
↑

pu
ls

e 
en

ve
lo

pe
, (

ar
b.

u.
) n=0Δ=0.32

n=2

n=4

n=8

n=18

(a) (b)

Figure 5.16: Lower order eigenmodes of the linearized system for zero detun-

ing, ∆ = 0 (a) and for a detuning, ∆ = 032 in (b).

The eigenmodes are orthogonal to each other because the evolution op-

erator is hermitian in this case.

The round-trip gain of the eigenmode () is given by its eigenvalue (or

in general by the real part of the eigenvalue) which is given by  =  −
− 2p(+05) where  = 0

³
1 + 



´−1
 with  =

R |()|2 
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The eigenvalues prove that, for a given pulse energy, the mode with  = 0,

which we call the ground mode, experiences the largest gain. Consequently,

the ground mode will saturate the gain to a value such that 0 = 0 in steady

state and all other modes experience net loss,   0 for   0 as discussed

before This is a stable situation as can be shown rigorously by a linearized

stability analysis [?]. Thus active modelocking with perfect synchronization

produces Gaussian pulses with a 1—half width of the intensity profile given

by .

In the case of non zero detuning  the situation becomes more complex.

The evolution operator, (5.93), changes to

̂ =  −  − 2
p


∙¡
̂† −∆

¢
(̂+∆) + (

1

2
+∆2)

¸
(5.97)

with the normalized detuning

∆ =
1

2
p
2




 (5.98)

Introducing the shifted creation and annihilation operators, ̂† = ̂†+∆ and

̂ = ̂+∆ respectively we obtain

̂ = ∆ − 2
p


³
̂†̂− 2∆̂

´
(5.99)

with the excess gain

∆ =  −  − 2
p
(

1

2
+∆2) (5.100)

due to the detuning. Note, that the resulting evolution operator is not any

longer hermitian and even not normal, i.e.
£
†

¤ 6= 0 which causes the

eigenmodes to become nonnormal [21]. Nevertheless, it is an easy excercise

to compute the eigenvectors and eigenvalues of the new evolution operator in

terms of the eigenstates of ̂†̂ |i  which are the Hermite Gaussians centered
around ∆ The eigenvectors |i to ̂ are found by the ansatz

|i =
X
=0

 |i  with +1 =
− 

2∆
√
 + 1

  (5.101)

The new eigenvalues are  =  −  − 2p(∆
2 + + 05) By inspec-

tion, it is again easy to see, that the new eigenstates form a complete basis in



224 CHAPTER 5. ACTIVE MODE LOCKING

L2() However, the eigenvectors are no longer orthogonal to each other. The

eigensolutions as a function of time are given as a product of a Hermite Poly-

nomial and a shifted Gaussian () = h |i ∼ () exp
h
− (−

√
2∆)

2

22

i
.

Again, a linearized stability analysis shows that the ground mode, i.e.|0i  a
Gaussian, is a stable stationary solution. Surprisingly, the linearized analy-

sis predicts stability of the ground mode for all values of the detuning in

the parabolic modulation and gain approximation. This result is even inde-

pendent from the dynamics of the gain, i.e. the upper state lifetime of the

active medium, as long as there is enough gain to support the pulse. Only

the position of the maximum of the ground mode,
√
2∆ ·  depends on the

normalized detuning.

Figure 5.15 summarizes the results obtained so far. In the case of de-

tuning, the center of the stationary Gaussian pulse is shifted away from the

position of minimum loss of the modulator. Since the net gain and loss within

one round-trip in the laser cavity has to be zero for a stationary pulse, there

is a long net gain window following the pulse in the case of detuning due

to the necessary excess gain. Figure 2 shows a few of the resulting lowest

order eigenfunctions for the case of a normalized detuning ∆ = 0 in (a) and

∆ = 032 in (b). These eigenfunctions are not orthogonal as a result of the

nonnormal evolution operator

5.6.1 Dynamics of the Detuned Actively Mode-locked

Laser

To get insight into the dynamics of the system, we look at computer simu-

lations for a Nd:YLF Laser with the parameters shown in Table 5.3 Figures

 = 366  0 = 079

 = 450   = 2467 · 1017−2
Ω = 112   = 2 · 10−26 2
 = 4   = 17 

 = 0025 0 = 1047 

 = 02

Table 5.3: Data used in the simulations of a Nd:YLF laser.

5.17 show the temporal evolution of the coefficient cwhen the master equa-
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tion is decomposed into Hermite Gaussians centered at t=0 according to

Eq.(5.96).

( ) =

∞X
=0

( ) ()
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Figure 5.17: Coefficients of the envelope in a Hermite-Gaussian-Basis, as

a function of resonator round-trips. The normalized detuning is ∆ = 3.5.

The simulation starts from the steady state without detuning. The curve

starting at 1 is the ground mode. To describe a shifted pulse, many modes

are necessary.

Figure 5.18 and 5.19 shows the deviation from the steady state gain and

the pulse envelope in the time domain for a normalized detuning of ∆ = 35
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Figure 5.18: Gain as a function of the number of roundtrips. It changes to a

higher level.
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Figure 5.19: Temporal evolution of the pusle envelope. The pulse shifts

slowly into the new equilibrium position at
√
2 ∆ = 49 in agreement with

the simulation.

Figures 5.20 to 5.22 show the same quantities for a slightly higher nor-

malized detuning of ∆ = 4
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Figure 5.20: Temporal evolution of the coefficients in a Hermite-Gaussian

Basis at a normalized detuning of ∆ = 4. Almost peridoically short in-

terrupting events of the otherwise regular motion can be easily recognized

(Intermittent Behavior). Over an extended period time between such events

the laser approaches almost a steady state.
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Figure 5.22: Time evolution of pulse envelope.
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Figure 5.21: Temporal evolution of deviation from quasi steady state gain.

The pictures clearly show that the system does not approach a steady

state anymore, but rather stays turbulent, i.e. the dynamics is chaotic.

5.6.2 Nonnormal Systems and Transient Gain

To get insight into the dynamics of a nonnormal time evolution, we consider

the following two-dimensional nonnormal system




=  (0) = 0, () = 0 (5.102)
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Figure 5.23: Decomposition of an initial perturbation in the eigen basis.

with

 =

µ −1
2


2

0 −1
¶
⇒ † =

µ −1
2

0

2
−1

¶

£
†

¤
=



4

µ
 1

1 

¶
6= 0
(5.103)

The parameter  scales the strength of the nonnormality, similar to the

detuning ∆ in the case of a modelocked laser or the Reynolds number in

hydrodynamics, where the linearized Navier-Stokes Equations constitute a

nonnormal system.

The eigenvalues and vectors of the linear system are

1 = −1
2
 1 =

µ
1

0

¶
, 2 = −1 2 =

1√
1 + 2

µ


−1
¶

(5.104)

The eigenvectors build a complete system and every initial vector can be

decomposed in this basis. However, for large , the two eigenvectors become

more and more parallel, so that a decomposition of a small initial vector

almost orthogonal to the basis vectors needs large components (Figure 5.23)

The solution is

() = 0 = 1
−2 −→ 1 + 2 

− −→ 2
Since the eigenvalues are negative, both contributions decay, and the

system is stable. However, one eigen component decays twice as fast than



5.6. ACTIVE MODELOCKING WITH DETUNING 229

the other one. Of importance to us is the transient gain that the system is

showing due to the fact of near parallel eigen vectors. Both coefficients 1
and 2 are large. When one of the components decays, the other one is still

there and the resulting vector

(→ 2) ≈ 1
−1 −→ 1

can be much larger then the initial perturbation during this transient phase.

This is transient gain. It can become arbitrarily large for large .

5.6.3 The Nonormal Behavior of the Detuned Laser

The nonnormality of the operator,
h
̂ ̂

†


i
∼ ∆ increases with detuning.

Figure 5.24 shows the normalized scalar products between the eigenmodes

for different values of the detuning

() =

¯̄̄̄
¯ h |ip
h |i h |i

¯̄̄̄
¯  (5.105)

The eigenmodes are orthogonal for zero detuning. The orthogonality van-

ishes with increased detuning. The recursion relation (5.101) tells us that the

overlap of the new eigenmodes with the ground mode increases for increasing

detuning. This corresponds to the parallelization of the eigenmodes of the

linearzed problem which leads to large transient gain,
°°°̂°°°, in a nonnormal

situation [16]. Figure 5.24d shows the transient gain for an initial perturba-

tion from the stationary ground mode calculated by numerical simulations

of the linearized system using an expansion of the linearized system in terms

of Fock states to the operator ̂. A normalized detuning of ∆ = 3 already

leads to transient gains for perturbations of the order of 106 within 20 000

round-trips which lead to an enormous sensitivity of the system against per-

turbations. An analytical solution of the linearized system neglecting the

gain saturation shows that the transient gain scales with the detuning ac-

cording to exp(2∆2) This strong super exponential growth with increasing

detuning determines the dynamics completely.
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Figure 5.24: Scalar products of eigenvectors as a function of the eigenvector

index for the cases ∆ = 0 shown in (a), ∆ = 1 in (b) and ∆ = 3 in (c). (d)

shows the transient gain as a funtion of time for these detunings computed

and for ∆ = 2 from the linearized system dynamics.
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Figure 5.25: Critical detuning obtained from numerical simulations as a func-

tion of the normalized pumping rate and cavity decay time divided by the

upper-state lifetime. The crititcal detuning is almost independent of all laser

parameters shown. The mean critical detuning is ∆ ≈ 365
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Figure 5.25 shows the surface of the transition to turbulence in the pa-

rameter space of a Nd:YLF laser, i.e. critical detuning ∆ the pumping rate

 = 0 and the ratio between the cavity decay time  =  and the

upper state lifetime  In this model, we did not inlcude the spontaneous

emission.

The transition to turbulence always occurs at a normalized detuning of

about∆ ≈ 37 which gives a transient gain exp(2∆2) = 1012 This means that

already uncertainties of the numerical integration algorithm are amplified to

a perturbation as large as the stationary state itself.To prove that the system

dynamics becomes really chaotic, one has to compute the Liapunov coefficient

[22]. The Liapunov coefficient describes how fast the phase space trajectores

separate from each other, if they start in close proximity. It is formally

defined in the following way. Two trajectories () and () start in close

vicinity at  = 0
k(0)− (0)k =  = 10−4 (5.106)

Then, the system is run for a certain time ∆ and the logarithmic growth

rate, i.e. Liapunov coefficient, of the distance between both trajectories is

evaluated using

0 = ln

µk(0 +∆)− (0 +∆)k


¶
(5.107)

For the next iteration the trajectory () is rescaled along the distance be-

tween (0 +∆) and (0 +∆) according to

(1) = (0 +∆) + 
(0 +∆)− (0 +∆)

k(0 +∆)− (0 +∆)k  (5.108)

The new points of the trajectories (1+∆) and (1+∆) = (0+2∆) are

calculated and a new estimate for the Liapunov coefficient 1 is calculated

using Eq.(5.107) with new indices. This procedure is continued and the

Liapunov coefficient is defined as the average of all the approximations over

a long enough iteration, so that its changes are below a certain error bound

from iteration to iteration.

 =
1



X
=0

 (5.109)

Figure 5.26 shows the Liapunov coefficient of the Nd:YLF laser discussed

above, as a function of the normlized detuning. When the Liapunov coef-

ficient becomes positive, i.e. the system becomes exponentially sensitive to
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small changes in the initial conditions, the system is called chaotic. The

graph clearly indicates that the dynamics is chaotic above a critical detuning

of about ∆ ≈ 37

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

Li
ap

un
ov

 c
oe

ffi
ci

en
t, 

 x
 1

0-4

detuning Δ

stationary area

turbulent area

→critical detuning Δ=3.7

Figure 5.26: Liapunov coefficient over normalized detuning.

In the turbulent regime, the system does not reach a steady state, because

it is nonperiodically interrupted by a new pulse created out of the net gain

window, see Figure 5.15, following the pulse for positive detuning. This pulse

saturates the gain and the nearly formed steady state pulse is destroyed and

finally replaced by a new one. The gain saturation provides the nonlinear

feedback mechanism, which strongly perturbs the system again, once a strong

perturbation grows up due to the transient linear amplification mechanism.

The critical detuning becomes smaller if additional noise sources, such as

the spontaneous emission noise of the laser amplifier and technical noise

sources are taken into account. However, due to the super exponential

growth, the critical detuning will not depend strongly on the strength of

the noise sources. If the spontaneous emission noise is included in the sim-

ulation, we obtain the same shape for the critical detuning as in Fig. 5.25,

however the critical detuning is lowered to about ∆ ≈ 2 Note that this crit-
ical detuning is very insensitive to any other changes in the parameters of the

system. Therefore, one can expect that actively mode-locked lasers without

regenerative feedback run unstable at a real detuning, see (5.98) given by

 = 4
p
2 (5.110)
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For the above Nd:YLF laser, using the values in Table 5.3 results in a relative

precision of the modulation frequency of




= 17 · 10−6

The derived value for the frequency stability can easily be achieved and

maintained with modern microwave synthesizers. However, this requires that

the cavity length of Nd:YLF laser is also stable to this limit. Note that the

thermal expansion coefficient for steel is 16 · 10−5

5.7 Summary

The main result of this section is, that pure active mode locking with an

amplitude modulator leads to Gaussian pulses. The width is inverse propor-

tional to the square root of the gain bandwdith. Mode locking can also be

achieved by a phase modulator which leads to chirped Gaussian pulses. A

soliton much shorter than the Gaussian pulse due to pure active mode locking

can be stabilized by an active modelocker. This finding also has an impor-

tant consequence for passive mode locking. It implies that a slow saturable

absorber, i.e. an absorber with a recovery time much longer than the width

of the soliton, is enough to stabilize the pulse, i.e. to modelock the laser.

Finally, we looked into the sensitivity of active mode locking on synchronizm

between the cavity rountrip frequency and the modulation frequency. This

dynamics is characterized by a transition to chaos which is governed by a

universal detuning parameter, which is typically on the order of 10−6
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Chapter 6

Passive Modelocking

As we have seen in chapter 5 the pulse width in an actively modelocked laser

is inverse proportional to the fourth root of the curvature in the loss modu-

lation. In active modelocking one is limited to the speed of electronic signal

generators. Therefore, this curvature can never be very strong. However, if

the pulse can modulate the absorption on its own, the curvature of the ab-

sorption modulationcan become large, or in other words the net gain window

generated by the pulse can be as short as the pulse itself. In this case, the

net gain window shortens with the pulse. Therefore, passively modelocked

lasers can generate much shorter pulses than actively modelocked lasers.

However, a suitable saturable absorber is required for passive modelock-

ing. Depending on the ratio between saturable absorber recovery time and fi-

nal pulse width, one may distinguish between the regimes of operation shown

in Figure 6.1, which depicts the final steady state pulse formation process.

In a solid state laser with intracavity pulse energies much lower than the sat-

uration energy of the gain medium, gain saturation can be neglected. Then

a fast saturable absorber must be present that opens and closes the net gain

window generated by the pulse immediately before and after the pulse. This

modelocking principle is called fast saturable absorber modelocking, see Fig-

ure 6.1 a).

In semiconductor and dye lasers usually the intracavity pulse energy ex-

ceeds the saturation energy of the gain medium and so the the gain medium

undergoes saturation. A short net gain window can still be created, almost

independent of the recovery time of the gain, if a similar but unpumped

medium is introduced into the cavity acting as an absorber with a somewhat

lower saturation energy then the gain medium. For example, this can be
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Figure 6.1: Pulse-shaping and stabilization mechanisms owing to gain and

loss dynamics in passively mode-locked lasers: (a) using only a fast saturable

absorber; (b) using a combination of gain and loss saturation; (c) using a

saturable absorber with a finite relaxation time and soliton formation.

arranged for by stronger focusing in the absorber medium than in the gain

medium. Then the absorber bleaches first and opens a net gain window,

that is closed by the pulse itself by bleaching the gain somewhat later, see

Figure 6.1 b). This principle of modelocking is called slow-saturable absorber

modelocking.

When modelocking of picosecond and femtosecond lasers with semicon-

ductor saturable absorbers has been developed it became obvious that even

with rather slow absorbers, showing recovery times of a few picoseconds, one

was able to generate sub-picosecond pulses resulting in a significant net gain

window after the pulse, see Figure 6.1 c). From our investigation of active

modelocking in the presence of soliton formation, we can expect that such a

situation may still be stable up to a certain limit in the presence of strong

soliton formation. This is the case and this modelocking regime is called

soliton modelocking, since solitary pulse formation due to SPM and GDD

shapes the pulse to a stable sech-shape despite the open net gain window

following the pulse.



6.1. SLOW SATURABLE ABSORBER MODE LOCKING 239

6.1 Slow Saturable Absorber Mode Locking

Due to the small cross section for stimulated emission in solid state lasers,

typical intracavity pulse energies are much smaller than the saturation energy

of the gain. Therefore, we neglected the effect of gain saturation due to one

pulse sofar, the gain only saturates with the average power. However, there

are gain media which have large gain cross sections like semiconductors and

dyes, see Table 4.1, and typical intracavity pulse energies may become large

enough to saturate the gain considerably in a single pass. In fact, it is this

effect, which made the mode-locked dye laser so sucessful. The model for the

slow saturable absorber mode locking has to take into account the change

of gain in the passage of one pulse [1, 2]. In the following, we consider a

modelocked laser, that experiences in one round-trip a saturable gain and a

slow saturable absorber. In the dye laser, both media are dyes with different

saturation intensities or with different focusing into the dye jets so that gain

and loss may show different saturation energies. The relaxation equation of

the gain, in the limit of a pulse short compared with its relaxation time, can

be approximated by




= − |()|

2



(6.1)

The coefficient  is the saturation energy of the gain. Integration of the

equation shows, that the gain saturates with the pulse energy ()

() =

Z 

−2
|()|2 (6.2)

when passing the gain

() =  exp [−()] (6.3)

where  is the initial small signal gain just before the arrival of the pulse. A

similar equation holds for the loss of the saturable absorber whose response

(loss) is represented by ()

() = 0 exp [−()] (6.4)
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where  is the saturation energy of the saturable absorber. If the back-

ground loss is denoted by , the master equation of mode-locking becomes





 = [ (exp (−())) − −

0 exp (−())]+
1
Ω2


2

2


(6.5)

Here, we have replaced the filtering action of the gain  =
1
Ω2


as

produced by a separate fixed filter. An analytic solution to this integro-

differential equation can be obtained with one approximation: the exponen-

tials are expanded to second order. This is legitimate if the population deple-

tions of the gain and saturable absorber media are not excessive. Consider

one of these expansions:

0 exp (−()) ≈ 0

∙
1− (()) +

1

2
(())

2

¸
 (6.6)

We only consider the saturable gain and loss and the finite gain bandwidth.

Than the master equation is given by


( )


=

∙
()− ()−  +

2

2

¸
( ) (6.7)

The filter dispersion,  = 1Ω2  effectively models the finite bandwidth

of the laser, that might not be only due to the finite gain bandwidth, but

includes all bandwidth limiting effects in a parabolic approximation. Sup-

pose the pulse is a symmetric function of time. Then the first power of the

integral gives an antisymmetric function of time, its square is symmetric.

An antisymmetric function acting on the pulse () causes a displacement.

Hence, the steady state solution does not yield zero for the change per pass,

the derivative 1




must be equated to a time shift ∆ of the pulse. When

this is done one can confirm easily that () =  sech() is a solution of

(6.6) with constraints on its coefficients. Thus we, are looking for a "steady

state" solution (  ) =  sech(


+  


)Note, that  is the fraction of

the pulsewidth, the pulse is shifted in each round-trip due to the shaping by

loss and gain. The constraints on its coefficients can be easily found using
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the following relations for the sech-pulse

() =

Z 

−2
|()|2 = 

2

µ
1 + tanh(




+ 




)

¶
(6.8)

()2 =

µ


2

¶2µ
2 + 2tanh(




+ 




)− sech2( 


+ 




)

¶
(6.9)





(  ) = − tanh( 


+ 




)(  ) (6.10)

1

Ω2

2

2
(  ) =

1

Ω2
2

µ
1− 2sech2( 


+ 




)

¶
(  ) (6.11)

substituting them into the master equation (6.5) and collecting the coeffi-

cients in front of the different temporal functions. The constant term gives

the necessary small signal gain



"
1− 

2

+

µ


2

¶2#
=  + 0

"
1− 

2

+

µ


2

¶2#
− 1

Ω2
2
 (6.12)

The constant in front of the odd tanh−function delivers the timing shift per
round-trip

 =
∆


= 

"


2

−
µ



2

¶2#
− 0

"


2

−
µ



2

¶2#
 (6.13)

And finally the constant in front of the sech2-function determines the pulsewidth

1

 2
=

Ω2
2

8

µ
0

2


− 

2


¶
(6.14)

These equations have important implications. Consider first the equation for

the inverse pulsewidth, (6.14). In order to get a real solution, the right hand

side has to be positive. This implies that 0
2
  

2
. The saturable

absorber must saturate more easily, and, therefore more strongly, than the

gain medium in order to open a net window of gain (Figure 6.2).

This was accomplished in a dye laser system by stronger focusing into

the saturable absorber-dye jet (Reducing the saturation energy for the sat-

urable absorber) than into the gain-dye jet (which was inverted, i.e. optically
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Figure 6.2: Dynamics of a laser mode-locked with a slow saturable absorber.
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pumped). Equation (6.12) makes a statement about the net gain before pas-

sage of the pulse. The net gain before passage of the pulse is

 − 0 −  = − 1

Ω2
2
+ 

"


2

−
µ



2

¶2#

−0
"



2

−
µ



2

¶2#


(6.15)

Using condition (6.14) this can be expressed as

 − 0 −  = 

∙


2

¸
− 0

∙


2

¸
+

1

Ω2
2
 (6.16)

This gain is negative since the effect of the saturable absorber is larger than

that of the gain. Since the pulse has the same exponential tail after passage

as before, one concludes that the net gain after passage of the pulse is the

same as before passage and thus also negative. The pulse is stable against

noise build-up both in its front and its back. This principle works if the

ratio between the saturation energies for the saturable absorber and gain

 =  is very small. Then the shortest pulsewidth achievable with a

given system is

 =
2
√
2√

0Ω






√
2√

0Ω

 (6.17)

The greater sign comes from the fact that our theory is based on the ex-

pansion of the exponentials, which is only true for 
2

 1 Note that the

modelocking principle of the dye laser is a very fascinating one due to the

fact that actually non of the elements in the system are fast. It is the inter-

play between two media that opens a short window in time on the scale of

femtoseconds. The media themselves just have to be fast enough to recover

completely between one round trip, i.e. on a nanosecond timescale.

Over the last fifteen years, the dye laser has been largely replaced by

solid state lasers, which offer even more bandwidth than dyes and are on top

of that much easier to handle because they do not show degradation over

time. With it came the need for a different mode locking principle, since the

saturation energy of these broadband solid-state laser media are much higher

than the typical intracavity pulse energies. The absorber has to open and

close the net gain window.
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6.2 Fast Saturable Absorber Mode Locking

The dynamics of a laser modelocked with a fast saturable absorber is again

covered by the master equation (5.21) [3]. Now, the losses  react instantly

on the intensity or power  () = |()|2 of the field

() =
0

1 +
||2


 (6.18)

where  is the saturation power of the absorber. There is no analytic

solution of the master equation (5.21) with the absorber response (6.18).

Therefore, we make expansions on the absorber response to get analytic

insight. If the absorber is not saturated, we can expand the response (6.18)

for small intensities

() = 0 − ||2 (6.19)

with the saturable absorber modulation coefficient  = 0. The constant

nonsaturated loss 0 can be absorbed in the losses 0 =  + 0. The resulting

master equation is, see also Fig. 6.3


( )


=

∙
 − 0 +

2

2
+ ||2 + j2

2

2
−j |A|2

¸
( ) (6.20)

SPM

2
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2t
jD

+
1

�

2

22
g

d

dt
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	 A(t )
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M

Figure 6.3: Schematic representation of the master equation for a passively

modelocked laser with a fast saturable absorber.
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Eq. (6.20) is a generalized Ginzburg-Landau equation well known from

superconductivity with a rather complex solution manifold.

6.2.1 Without GDD and SPM

We consider first the situation without SPM and GDD, i.e. 2= = 0


( )


=

∙
 − 0 +

2

2
+ ||2

¸
( ) (6.21)

Up to the imaginary unit, this equation is still very similar to the NSE. To

find the final pulse shape and width, we look for the stationary solution


( )


= 0

Since the equation is similar to the NSE, we try the following ansatz

( ) = () = 0sech

µ




¶
 (6.22)

Note, there is




sech = − tanh sech (6.23)

2

2
sech = tanh2  sech − sech3

=
¡
sech− 2 sech3¢  (6.24)

Substitution of the ansatz (6.22) into the master equation (6.21), assuming

steady state, results in

0 =

∙
( − 0) +



 2

∙
1− 2sech2

µ




¶¸
+|0|2sech2

µ




¶¸
·0sech

µ




¶
 (6.25)

Comparison of the coefficients with the sech- and sech3-expressions results

in the conditions for the pulse peak intensity and pulse width  and for the

saturated gain



 2
=

1

2
|0|2 (6.26)

 = 0 − 

 2
 (6.27)
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From Eq.(6.26) and with the pulse energy of a sech pulse, see Eq.(3.8),  =

2|0|2 
 =

4


 (6.28)

Eq. (6.28) is rather similar to the soliton width with the exception that

the conservative pulse shaping effects GDD and SPM are replaced by gain

dispersion and saturable absorption. The soliton phase shift per roundtrip is

replaced by the difference between the saturated gain and loss in Eq.(6.28).

It is interesting to have a closer look on how the difference between gain and

loss


2
per round-trip comes about. From the master equation (6.21) we can

derive an equation of motion for the pulse energy according to


 ( )


= 





Z ∞

−∞
|( )|2  (6.29)

= 

Z ∞

−∞

∙
( )∗




( ) + 

¸
 (6.30)

= 2( ) (6.31)

where  is the net energy gain per roundtrip, which vanishes when steady

state is reached [3]. Substitution of the master equation into (6.30) withZ ∞

−∞

¡
sech2

¢
 = 2 (6.32)Z ∞

−∞

¡
sech4

¢
 =

4

3
 (6.33)

−
Z ∞

−∞
sech

2

2
(sech)  =

Z ∞

−∞

µ



sech

¶2
 =

2

3
 (6.34)

results in

( ) =  − 0 − 

3 2
+
2

3
|0|2 (6.35)

=  − 0 +
1

2
|0|2 =  − 0 +



 2
= 0 (6.36)

with the saturated gain

( ) =
0

1 + 


(6.37)
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Figure 6.4: Gain and loss in a passively modelocked laser using a fast sat-

urable absorber on a normalized time scale  =  . The absorber is assumed

to saturate linearly with intensity according to () = 0

³
1− ||2
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´


Equation (6.36) together with (6.28) determines the pulse energy

( ) =
0

1 + 


= 0 − 

 2

= 0 − ( )
2

16

(6.38)

Figure 6.4 shows the time dependent variation of gain and loss in a laser

modelocked with a fast saturable absorber on a normalized time scale. Here,

we assumed that the absorber saturates linearly with intensity up to a max-

imum value 0 = 20. If this maximum saturable absorption is completely

exploited see Figure 6.5.The minimum pulse width achievable with a given

saturable absorption 0 results from Eq.(6.26)



 2
=

0

2
 (6.39)

to be

 =

r
2

0

1

Ω

 (6.40)
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Figure 6.5: Saturation characteristic of an ideal saturable absorber

Note that in contrast to active modelocking, now the achievable pulse width

is scaling with the inverse gain bandwidth, which gives much shorter pulses.

Figure 6.4 can be interpreted as follows: In steady state, the saturated gain is

below loss, by about one half of the exploited saturable loss before and after

the pulse. This means, that there is net loss outside the pulse, which keeps

the pulse stable against growth of instabilities at the leading and trailing

edge of the pulse. If there is stable mode-locked operation, there must be

always net loss far away from the pulse, otherwise, a continuous wave signal

running at the peak of the gain would experience more gain than the pulse

and would break through. From Eq.(6.35) follows, that one third of the

exploited saturable loss is used up during saturation of the aborber and

actually only one sixth is used to overcome the filter losses due to the finite

gain bandwidth. Note, there is a limit to the mimium pulse width, which

comes about, because the saturated gain (6.27) is  = + 1
2
0 and, therefore,

from Eq.(6.40), if we assume that the finite bandwidth of the laser is set by

the gain, i.e.  =  =


Ω2
we obtain for 0 À 

min =
1

Ω

(6.41)

for the linearly saturating absorber model. This corresponds to mode locking

over the full bandwidth of the gain medium, since for a sech-shaped pulse,

the time-bandwidth product is 0.315, and therefore,

∆ =
0315

176 · min =
Ω

176 ·   (6.42)



6.2. FAST SATURABLE ABSORBER MODE LOCKING 249

As an example, for Ti:sapphire this corresponds to Ω = 270 THz, min = 37

fs,  = 65 fs.

6.2.2 With GDD and SPM

After understanding what happens without GDD and SPM, we look at the

solutions of the full master equation (6.20) with GDD and SPM. It turns out,

that there exist steady state solutions, which are chirped hyperbolic secant

functions [4]

( ) = 0

µ
sech

µ




¶¶(1+)
  (6.43)

= 0sech

µ




¶
exp

∙
 ln sech

µ




¶
+ 

¸
 (6.44)

Where  is the round-trip phase shift of the pulse, which we have to allow for.

Only the intensity of the pulse becomes stationary. There is still a phase-shift

per round-trip due to the difference between the group and phase velocity

(these effects have been already transformed away) and the nonlinear effects.

As in the last section, we can substitute this ansatz into the master equation

and compare coefficients. Using the following relations





¡
()

¢
= ()−1




() (6.45)




(sech)

(1+)
= − (1 + ) tanh (sech)

(1+)
 (6.46)

2

2
(sech)

(1+)
=

¡
(1 + )2 − ¡2 + 3 − 2

¢
sech2

¢
(6.47)

(sech)
(1+)

 (6.48)

in the master equation and comparing the coefficients to the same functions

leads to two complex equations

1

 2
( + 2)

¡
2 + 3 − 2

¢
= ( − ) |0|2 (6.49)

0 − (1 + )2

 2
( + 2) =  −  (6.50)

These equations are extensions to Eqs.(6.26) and (6.27) and are equivalent

to four real equations for the phase-shift per round-trip  the pulse width
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 , the chirp  and the peak power |0|2 or pulse energy. The imaginary
part of Eq.(6.50) determines the phase-shift only, which is most often not of

importance. The real part of Eq.(6.50) gives the saturated gain

 = 0 − 1− 2

 2
 +

22

 2
 (6.51)

The real part and imaginary part of Eq.(6.49) give

1

 2

£


¡
2− 2

¢− 32

¤
= |0|2 (6.52)

1

 2

£
2

¡
2− 2

¢
+ 3

¤
= −|0|2 (6.53)

We introduce the normalized dispersion,  = 2  and the pulse width

of the system without GDD and SPM, i.e. the width of the purely saturable

absorber modelocked system,  0 = 4( ) Dividing Eq.(6.53) by (6.52)

and introducing the normalized nonlinearity  =  we obtain a quadratic

equation for the chirp,



¡
2− 2

¢
+ 3¡

2− 2
¢− 3

= −

or after some reodering

3

2− 2
=

 +

−1 + 

≡ 1


 (6.54)

Note that  depends only on the system parameters. Therefore, the chirp is

given by

 = −3
2
±

sµ
3

2


¶2
+ 2 (6.55)

Knowing the chirp, we obtain from Eq.(6.52) the pulsewidth

 =
 0

2

¡
2− 2 − 3

¢
 (6.56)

which, with Eq.(6.54), can also be written as

 =
3 0

2
 (−) (6.57)
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In order to be physically meaningful the pulse width has to be a positive

number, i.e. the product  (−) has always to be greater than 0, which

determines the root in Eq.(6.55)

 =

⎧⎨⎩ −32+
q¡

3
2

¢2
+ 2 for   

−3
2
−

q¡
3
2

¢2
+ 2 for   

 (6.58)

Figure 6.6(a,b and d) shows the resulting chirp, pulse width and nonlinear

round-trip phase shift with regard to the system parameters [4][5]. A neces-

sary but not sufficient criterion for the stability of the pulses is, that there

must be net loss leading and following the pulse. From Eq.(6.51), we obtain

 − 0 = −1− 2

 2
 +

22

 2
 0 (6.59)

If we define the stability parameter 

 = 1− 2 − 2  0 (6.60)

 has to be greater than zero, as shown in Figure 6.6 (d).



252 CHAPTER 6. PASSIVE MODELOCKING

Figure 6.6: (a) Pulsewidth, (b) Chirp parameter, (c) Net gain following the

pulse, which is related to stability. (d) Phase shift per pass. [4]

Figure 6.6 (a-d) indicate that there are essentially three operating regimes.

First, without GDD and SPM, the pulses are always stable. Second, if there

is strong soliton-like pulse shaping, i.e.  À 1 and − À 1 the chirp is

always much smaller than for positive dispersion and the pulses are soliton-

like. At last, the pulses are even chirp free, if the condition  = − is

fulfilled. Then the solution is

( ) = 0

µ
sech

µ




¶¶
  for  = − (6.61)

Note, for this discussion we always assumed a positive SPM-coefficient. In

this regime we also obtain the shortest pulses directly from the system, which

can be a factor 2-3 shorter than by pure saturable absorber modelocking.

Note that Figure 6.6 indicates even arbitrarily shorter pulses if the nonlinear

index, i.e.  is further increased. However, this is only an artificat of
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the linear approximation of the saturable absorber, which can now become

arbitrarily large, compare (6.18) and (6.19). As we have found from the

analysis of the fast saturable absorber model, Figure 6.4, only one sixth of

the saturable absorption is used for overcoming the gain filtering. This is so,

because the saturable absorber has to shape and stabilize the pulse against

breakthrough of cw-radiation. With SPM and GDD this is relaxed. The

pulse shaping can be done by SPM and GDD alone, i.e. soliton formation

and the absorber only has to stabilize the pulse. But then all of the saturable

absorption can be used up for stability, i.e. six times as much, which allows

for additional pulse shorteing by a factor of about
√
6 = 25 in a parbolic

filter situation. Note, that for an experimentalist a factor of three is a large

number. This tells us that the 6.5 fs limit for Ti:sapphire derived above from

the saturable absorber model can be reduced to 2.6 fs including GDD and

SPM, which is about one optical cycle of 2.7 fs at a center wavelength of

800nm. At that point, all the approximations we have mode so far break

down. If the amount of negative dispersion is reduced too much, i.e. pulses

become to short, the absorber cannot keep them stable anymore.

If there is strong positive dispersion, the pulses again become stable and

long, but highly chirped. The pulse can then be compressed externally, how-

ever not completely to their transform limit, because these are nonlinearly

chirped pulses, see Eq.(6.43).

In the case of strong solitonlike pulse shaping, the absorber doesn’t have

to be really fast, because the pulse is shaped by GDD and SPM and the

absorber has only to stabilize the soliton against the continuum. This regime

has been called Soliton mode locking.

6.3 Soliton Mode Locking

If strong soliton formation is present in the system, the saturable absorber

doesn’t have to be fast [6][7][8], see Figure 6.7. The master equation describ-

ing the mode locking process is given by


( )


=

∙
 −  + ( + )

2

2
− |( )|2 − ( )

¸
( )

(6.62)
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The saturable absorber obeys a separate differential equation that describes

the absorber response to the pulse in each round trip

( )


= − − 0


− |( )|

2



 (6.63)

Where  is the absorber recovery time and  the saturation energy. If the

soliton shaping effects are much larger than the pulse
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Figure 6.7: Response of a slow saturable absorber to a soliton-like pulse.

The pulse experiences loss during saturation of the absorber and filter losses.

The saturated gain is equal to these losses. The loss experienced by the

continuum,  must be higher than the losses of the soliton to keep the soliton

stable.
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Figure 6.8: The continuum, that might grow in the opten net gain window

following the pulse is spread by dispersion into the regions of high absorption.

shaping due to the filter and the saturable absorber, the steady state

pulse will be a soliton and continuum contribution similar to the case of

active mode locking with strong soliton formation as discussed in section 5.5

( ) =

µ
 sech(




) + ( )

¶

−0 

 (6.64)
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long pulse exploiting the peak of the gain
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The continuum can be viewed as a long pulse competing with the soliton

for the available gain. In the frequency domain, see Figure 6.9, the soliton

has a broad spectrum compared to the continuum. Therefore, the continuum

experiences the peak of the gain, whereas the soliton spectrum on average

experiences less gain. This advantage in gain of the continuum has to be

compensated for in the time domain by the saturable absorber response, see

Figure 6.8. Whereas for the soliton, there is a balance of the nonlinearity

and the dispersion, this is not so for the continuum. Therefore, the contin-

uum is spread by the dispersion into the regions of high absorption. This

mechanism has to clean up the gain window following the soliton and caused

by the slow recovery of the absorber. As in the case of active modelocking,

once the soliton is too short, i.e. a too long net-gain window arises, the loss

of the continuum may be lower than the loss of the soliton, see Figure 6.7

and the continuum may break through and destroy the single pulse soliton

solution. As a rule of thumb the absorber recovery time can be about 10

times longer than the soliton width. This modelocking principle is especially

important for modelocking of lasers with semiconductor saturable absorbers,

which show typical absorber recovery times that may range from 100fs-100

ps. Pulses as short as 13fs have been generated with semiconductor saturable

absorbers [11]. Figure 6.10 shows the measured spectra from a Ti:sapphire

laser modelocked with a saturable absorber for different values for the intra-

cavity dispersion. Lowering the dispersion, increases the bandwidth of the

soliton and therefore its loss, while lowering at the same time the loss for the

continuum. At some value of the dispersion the laser has to become unstabile

by break through of the continuum. In the example shown, this occurs at

a dispersion value of about  = −5002. The continuum break-through is

clearly visible by the additional spectral components showing up at the cen-

ter of the spectrum. Reducing the dispersion even further might lead again

to more stable but complicated spectra related to the formation of higher

order solitons. Note the spectra shown are time averaged spectra.
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The continuum leads to a background pedestal in the intensity autocor-
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relation of the emitted pulse, see Figure 6.11. The details of the spectra and

autocorrelation may strongly depend on the detailed absorber response.

6.4 Dispersion Managed Soliton Formation

The nonlinear Schrödinger equation describes pulse propagation in a medium

with continuously distributed dispersion and self-phase-modulation. For

lasers generating pulses as short as 10 fs and below, it was first pointed out by

Spielmann et al. that large changes in the pulse occur within one roundtrip

and that the ordering of the pulse-shaping elements within the cavity has a

major effect on the pulse formation [9]. The discrete action of linear disper-

sion in the arms of the laser resonator and the discrete, but simultaneous,

action of positive SPM and positive GDD in the laser crystal cannot any

longer be neglected. The importance of strong dispersion variations for the

laser dynamics was first discovered in a fiber laser and called stretched pulse

modelocking [11]. The positive dispersion in the Er-doped fiber section of a

fiber ring laser was balanced by a negative dispersive passive fiber. The pulse

circulating in the ring was stretched and compressed by as much as a factor

of 20 in one roundtrip. One consequence of this behavior was a dramatic

decrease of the nonlinearity and thus increased stability against the SPM

induced instabilities. The sidebands, due to periodic perturbations of the

soliton, as discussed in section 3.6, are no longer observed (see Fig. 6.12).

Figure 6.12: Spectra of mode-locked Er-doped fiber lasers operating in the

conventional soliton regime, i.e. net negative dispersion and in the stretched

pulse mode of operation at almost zero average dispersion [11].
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The energy of the output pulses could be increased 100 fold. The mini-

mum pulsewidth was 63 fs, with a bandwdith much broader than the erbium

gain bandwidth [12]. Figure 6.12 also shows the spectral enhancement of the

fiber laser in the dispersion managed regime. The generation of ultrashort

pulses from solid state lasers like Ti:sapphire has progressed over the past

decade and led to the generation of pulses as short as 5 fs directly from the

laser. At such short pulse lengths the pulse is streched up to a factor of ten

when propagating through the laser crystal creating a dispersion managed

soliton [10]. The spectra generated with these lasers are not of simple shape

for many reasons. Here, we want to consider the impact on the spectral

shape and laser dynamcis due to dispersion managed soliton formation.

Figure 6.13: (a) Schematic of a Kerr-lens mode-locked Ti:sapphire laser:

P’s, prisms; L, lens; DCM’s, double-chirped mirror; TiSa, Ti:sapphire. (b)

Correspondence with dispersion-managed fiber transmission.
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Amode-locked laser producing ultrashort pulses consists at least of a gain

medium (Ti:sapphire crystal) and dispersion balancing components (mirrors,

prism pairs), see Fig. 6.13 a. The system can be decomposed into the res-

onator arms and the crystal, see Fig. 6.13 b. To achieve ultrashort pulses,

the dispersion-balancing components should produce near-zero net dispersion

while the dispersion element(s) individually produce significant group delay

over the broad bandwidth of the laser pulse. This fact suggests an analogy

with dispersion-managed pulse propagation along a dispersion-managed fiber

transmission link [14]. A system with sufficient variation of dispersion can

support solitary waves. One can show that the Kerr nonlinearity produces

a self-consistent nonlinear scattering potential that permits formation of a

perodic solution with a simple phase factor in a system with zero net dis-

persion. The pulses are analogous to solitons in that they are self-consistent

solutions of the Hamiltonian (lossless) problem as the conventional solitons

discussed above. But they are not secant hyperbolic in shape. Figure 6.15

shows a numerical simulation of a self-consistent solution of the Hamiltonian

pulse-propagation problem in a linear medium of negative dispersion and

subsequent propagation in a nonlinear medium of positive dispersion and

positive self-phase modulation, following the equation




( ) = ()

2

2
( )− ()||2( ) (6.65)

In Fig. 6.15 the steady state intensity profiles are shown at the center of

the negative dispersion segment over 1000 roundtrips. It is clear that the solu-

tion repeats itself from period to period, i.e. there is a new solitary wave that

solves the piecewise nonlinear Schroedinger equation 6.65, dispersion man-

aged soliton. In contrast to the conventional soliton the dispersion mangaged

soliton of equation 6.65 (with no SAM and no filtering) resemble Gaussian

pulses down to about −10 dB from the peak, but then show rather compli-

cated structure, see Fig. 6.15.The dispersion map () used is shown as an

inset in Figure 6.14. One can additionally include saturable gain, Lorentzian

gain filtering, and a fast saturable absorber. Figure 6.14 shows the behavior

in one period (one round trip through the resonator) including these effects.

The response of the absorber is () = (1+ ||2), with  = 001/mm

and  = 1 MW. The bandwidth-limited gain is modeled by the Lorentzian

profile with gain bandwidth 2×43 THz. The filtering and saturable absorp-
tion reduce the spectral and temporal side lobes of the Hamiltonian problem.

As can be inferred from Fig. 6.14, the steady state pulse formation can be
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Figure 6.14: Pulse shaping in one round trip. The negative segment has no

nonlinearity.

understood in the following way. By symmetry the pulses are chirp free in

the middle of the dispersion cells. A chirp free pulse starting in the center of

the gain crystal, i.e. nonlinear segment is spectrally broadened by the SPM

and disperses in time due to the GVD, which generates a rather linear chirp

over the pulse. After the pulse is leaving the crystal it experiences negative

GVD during propagation through the left or right resonator arm, which is

compressing the positively chirped pulse to its transform limit at the end of

the arm, where an output coupler can be placed. Back propagation towards

the crystal imposes a negative chirp, generating the time reversed solution of

the nonliner Schrödinger equation (6.65). Therefore, subsequent propagation

in the nonlinear crystal is compressing the pulse spectrally and temporally

to its initial shape in the center of the crystal. The spectrum is narrower in

the crystal than in the negative-dispersion sections, because it is negatively

prechirped before it enters the SPM section and spectral spreading occurs

again only after the pulse has been compressed. This result further explains

that in a laser with a linear cavity, for which the negative dispersion is lo-

cated in only one arm of the laser resonator (i.e. in the prism pair and no

use of chirped mirrors) the spectrum is widest in the arm that contains the

negative dispersion . In a laser with a linear cavity, for which the negative
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dispersion is equally distributed in both arms of the cavity, the pulse runs

through the dispersion map twice per roundtrip. The pulse is short at each

end of the cavity and, most importantly, the pulses are identical in each pass

through the crystal, which exploits the saturable absorber action (Kerr-Lens

Modelocking in this case, as will be discussed in the next chapter) twice

per roundtrip, in contrast to an asymmetric dispersion distribution in the

resonator arms. Thus a symmetric dispersion distribution leads to an effec-

tive saturable absorption that is twice as strong as an asymmetric dispersion

distribution resulting in substantially shorter pulses. Furthermore, the dis-

persion swing between the negative and positive dispersion sections is only

half, which allows for shorter dispersion-managed solitons operating at the

same average power level.
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Figure 6.15: Simulation of the Hamiltonian problem. Intensity profiles at

the center of the negatively dispersive segment are shown for successive

roundtrips. The total extent in 1000 roundtrips.  = (±) = ±60 fs2/mm,
segment of crystal length  = 2 mm, FWHM = 55 fs,  = 0 for   0  = 1

(MW mm)−1 for   0. [10]

To further illustrate the efficiency of the dispersion managed soliton for-

mation, we present a series of simulations that start with a linear segment

of negative dispersion and a nonlinear segment of positive dispersion of the

same magnitude, saturable absorber action, and filtering.
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Figure 6.16: Sequence of pulse profiles in the center of the negatively dis-

persive segment for three magnitudes of SPM.  = 3 fs, with solid curves

(5.5 fs) for  = 1 (MW mm)−1, dashed-dotted curve (7 fs) for  = 05 (MW
mm)−1, and dashed cuves for no SPM of  = 0. The dispersion map is of

Fig. 6.14. The output coupler loss is 3%.[10]

The dashed curve in Figure 6.16 shows the pulse shape for gain, loss,

saturable absorption and gain filtering only. We obtained the other traces

by increasing the SPM while keeping the energy fixed through adjustment

of the gain. As one can see, increasing the SPM permits shorter pulses.

The shortest pulse can be approximately three times shorter than the pulse

without SPM. The parameters chosen for the simulations are listed in the

figure caption. In this respect, the behavior is similar to the fast saturable

absorber case with conventional soliton formation as discussed in the last

section.

A major difference in the dispersion managed soliton case is illustrated in

Fig. 6.17. The figure shows the parameter ranges for a dispersion-managed

soliton system (no gain, no loss, no filtering) that is unbalanced such as to

result in the net dispersion that serves as the abscissa of the figure. Each

curve gives the locus of energy versus net cavity dispersion for a stretching

ratio  =  2FWHM (or pulse width with fixed crystal length ). One can

see that for pulse width longer than 8 fs with crystal length  = 2 mm,

no solution of finite energy exists in the dispersion managed system for zero

or positive net dispersion. Pulses of durations longer than 8 fs require net

negative dispersion. Hence one can reach the ultrashort dispersion managed
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soliton operation at zero net dispersion only by first providing the system

with negative dispersion. At the same energy, one can form a shorter pulse

by reducing the net dispersion, provided that the 8 fs threshold has been

passed. For a fixed dispersion swing ±, the stretching increases quadrat-
ically with the spectral width or the inverse pulse width. Long pulses with

no stretching have a sech shape. For stretching ratios of 3-10 the pulses are

Gaussian shaped. For even larger stretching ratios the pulse spectra become

increasingly more flat topped, as shown in Fig. 6.16.

Figure 6.17: Energy of the pulse in the lossless dispersion-managed system

with stretching  =  2FWHM or for a fixed crystal length  and pulsewidth

as parameters;  = 60 fs2/mm for Ti:sapphire at 800 nm [10].

To gain insight into the laser dynamics and later on in their noise and

tuning behavior, it is advantageous to formulate also a master equation ap-

proach for the dispersion managed soliton case [16]. Care has to be taken of

the fact that the Kerr-phase shift is produced by a pulse of varying amplitude

and width as it circulates around the ring. The Kerr-phase shift for a pulse

of constant width, ||2 had to be replaced by a phase profile that mimics
the average shape of the pulse, weighted by its intensity. Therefore, the SPM

action is replaced by

||2 = ||2
µ
1− 

2

 2

¶
(6.66)
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where  is the pulse amplitude at the position of minimum width. The

Kerr-phase profile is expanded to second order in . The coefficient  and

 are evaluated variationally. The saturable absorber action is similarly

expanded. Finally, the net intracavity dispersion acting on average on the

pulse is replaced by the effective dispersion net in the resonator within one

roundtrip. The master equation becomes





 = ( − )+

Ã
1

Ω2
+ net

!
2

2


+( − )||2
µ
1− 

2

 2

¶


(6.67)

This equation has Gaussian-pulse solutions. The master equation (6.67)

is a patchwork, it is not an ordinary differential equation. The coefficients in

the equation depend on the pulse solution and eventually have to be found

iteratively. Nevertheless, the equation accounts for the pulse shaping in the

system in an analytic fashion. It will allow us to extend the conventional

soliton perturbation theory to the case of dispersion managed solitons.

There is one more interesting property of the stretched pulse operation

that needs to be emphasized. Dispersion managed solitons may form even

when the net dispersion as seen by a linearly propagating pulse is zero or

slightly positive. This is a surprising result which was discovered in the

study of dispersion managed soliton propagation [14]. It turns out that the

stretched pulse changes its spectrum during propagation through the two

segments of fiber with opposite dispersion or in the case of a Ti:Sapphire

laser in the nonlinear crystal. The spectrum in the segment with normal

(positive) dispersion is narrower, than in the segment of anomalous (nega-

tive) dispersion, see Figure 6.14. The pulse sees an effective net negative

dispersion, provided that the positive net is not too large. In (6.67) the

net is to be replaced by eff which can be computed variationally. Thus,

dispersion managed soliton-like solutions can exist even when net is zero.

However, they exist only if the stretching factor is large, see Figure 6.17.

A remarkable property of the dispersion managed solitons is that they do

not radiate (generate continuum) even though they propagate in a medium

with abrupt dispersion changes. This can be understood by the fact, that the

dispersion mangaged soliton is a solution of the underlaying dynamics incor-

porating already the periodic dispersion variations including the Kerr-effect.
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This is in contrast to the soliton in a continuously distributed dispersive en-

vironment, where periodic variations in dispersion and nonlinearity leads to

radiation.
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Chapter 7

Kerr-Lens and Additive Pulse

Mode Locking

There are many ways to generate saturable absorber action. One can use

real saturable absorbers, such as semiconductors or dyes and solid-state laser

media. One can also exploit artificial saturable absorbers The two most

prominent artificial saturable absorber modelocking techniques are called

Kerr-Lens Mode Locking (KLM) and Additive Pulse Mode Locking (APM).

APM is sometimes also called Coupled-Cavity Mode Locking (CCM). KLM

was invented in the early 90’s [1][2][3][4][5][6][7], but was already predicted

to occur much earlier [8][9][10]·

7.1 Kerr-Lens Mode Locking (KLM)

The general principle behind Kerr-Lens Mode Locking is sketched in Fig. 7.1.

A pulse that builds up in a laser cavity containing a gain medium and a Kerr

medium experiences not only self-phase modulation but also self focussing,

that is nonlinear lensing of the laser beam, due to the nonlinear refractive in-

dex of the Kerr medium. A spatio-temporal laser pulse propagating through

the Kerr medium has a time dependent mode size as higher intensities ac-

quire stronger focussing. If a hard aperture is placed at the right position

in the cavity, it strips of the wings of the pulse, leading to a shortening of

the pulse. Such combined mechanism has the same effect as a saturable ab-

sorber. If the electronic Kerr effect with response time of a few femtoseconds

or less is used, a fast saturable absorber has been created. Instead of a sep-

271
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artifical fast 
saturable 
absorber

   Kerr 
Mediumgain

intensity

   hard aperture

beam 
waist

self - 
focusing

   soft aperture

Figure 7.1: Principle mechanism of KLM. The hard aperture can be also

replaced by the soft aperture due to the spatial variation of the gain in the

laser crystal.

arate Kerr medium and a hard aperture, the gain medium can act both as a

Kerr medium and as a soft aperture (i.e. increased gain instead of saturable

absorption). The sensitivity of the laser mode size on additional nonlinear

lensing is drastically enhanced if the cavity is operated close to the stability

boundary of the cavity. Therefore, it is of prime importance to understand

the stability ranges of laser resonators. Laser resonators are best understood

in terms of paraxial optics [11][12][14][13][15].

7.1.1 Review of Paraxial Optics and Laser Resonator

Design

The solutions to the paraxial wave equation, which keep their form during

propagation, are the Hermite-Gaussian beams. Since we consider only the

fundamental transverse modes, we are dealing with the Gaussian beam

( ) =


()
exp

∙
− 2

2()

¸
 (7.1)
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with the complex q-parameter  =  +  or its inverse

1

()
=

1

()
− 



2()
 (7.2)

The Gaussian beam intensity ( ) = |( )|2 expressed in terms of the
power  carried by the beam is given by

( ) =
2

2()
exp

∙
− 22

2()

¸
 (7.3)

The use of the q-parameter simplifies the description of Gaussian beam prop-

agation. In free space propagation from 1 to 2, the variation of the beam

parameter  is simply governed by

2 = 1 + 2 − 1 (7.4)

where 2 and 1 are the beam parameters at 1 and 2. If the beam waist,

at which the beam has a minimum spot size 0 and a planar wavefront

( = ∞), is located at  = 0, the variations of the beam spot size and the

radius of curvature are explicitly expressed as

() = 

"
1 +

µ


2

¶2#12
 (7.5)

and

() = 

"
1 +

µ
2


¶2#
 (7.6)

The angular divergence of the beam is inversely proportional to the beam

waist. In the far field, the half angle divergence is given by,

 =




 (7.7)

as illustrated in Figure 7.2.



274CHAPTER 7. KERR-LENSANDADDITIVEPULSEMODELOCKING
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Beam Waist

z/z R

Figure 7.2: Gaussian beam and its characteristics.

Due to diffraction, the smaller the spot size at the beam waist, the larger

the divergence. The Rayleigh range is defined as the distance from the waist

over which the beam area doubles and can be expressed as

 =
2


 (7.8)

The confocal parameter of the Gaussian beam is defined as twice the Rayleigh

range

 = 2 =
22


 (7.9)

and corresponds to the length over which the beam is focused. The propa-

gation of Hermite-Gaussian beams through paraxial optical systems can be

efficiently evaluated using the ABCD-law [11]

2 =
1 +

1 +
(7.10)

where 1 and 2 are the beam parameters at the input and the output planes

of the optical system or component. The ABCD matrices of some optical

elements are summarized in Table 7.1. If a Gaussian beam with a waist 01
is focused by a thin lens a distance 1 away from the waist there will be a
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new focus at a distance

2 =  +
(1 − )2

(1 − )2 +
³
201


´2  (7.11)

and a waist 02

1

202
=

1

201

µ
1− 1



¶2
+
1

2

³01


´2
(7.12)

Z

z

f

21 z

w
01 02

w

Figure 7.3: Focusing of a Gaussian beam by a lens.

7.1.2 Two-Mirror Resonators

We consider the two mirror resonator shown in Figure 7.4.
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Optical Element ABCD-Matrix

Free Space Distance 

µ
1 

0 1

¶
Thin Lens with

focal length 

µ
1 0

−1 1

¶
Mirror under Angle

 to Axis and Radius 

Sagittal Plane

µ
1 0

−2 cos 


1

¶
Mirror under Angle

 to Axis and Radius 

Tangential Plane

µ
1 0
−2

 cos 
1

¶
Brewster Plate under

Angle  to Axis and Thickness

 Sagittal Plane

µ
1 



0 1

¶
Brewster Plate under

Angle  to Axis and Thickness

 Tangential Plane

µ
1 

3

0 1

¶

Table 7.1: ABCD matrices for commonly used optical elements.

R1
R2

M1 M2 Z

r

L

Figure 7.4: Two-Mirror Resonator with curvedmirrors with radii of curvature

R1 and R2

The resonator can be unfolded for an ABCD-matrix analysis, see Figure

7.5.
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Z
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f2f1
2
1

2
1

f1

Figure 7.5: Two-mirror resonator unfolded. Note, only one half of the fo-

cusing strength of mirror 1 belongs to a fundamental period describing one

resonator roundtrip.

The product of ABCD matrices describing one roundtrip according to

Figure 7.5 are then given by

 =

µ
1 0
−1
21

1

¶µ
1 

0 1

¶µ
1 0
−1
2

1

¶µ
1 

0 1

¶µ
1 0
−1
21

1

¶
(7.13)

where 1 = 12, and 2 = 22 To carry out this product and to formulate

the cavity stability criteria, it is convenient to use the cavity parameters

 = 1−  = 1 2. The resulting cavity roundtrip ABCD-matrix can be

written in the form

 =

µ
(212 − 1) 22

21 (12 − 1)  (212 − 1)
¶
=

µ
 

 

¶
. (7.14)

Resonator Stability

The ABCD matrices describe the dynamics of rays propagating inside the

resonator. An optical ray is characterized by the vector r=

µ


0

¶
 where 

is the distance from the optical axis and 0 the slope of the ray to the optical
axis. The resonator is stable if no ray escapes after many round-trips, which

is the case when the eigenvalues of the matrix  are less than or equal to

one. Since we have a lossless resonator, i.e. det| | = 1 the product of the
eigenvalues has to be 1 and, therefore, the stable resonator corresponds to

the case of a complex conjugate pair of eigenvalues with a magnitude of 1.
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The eigenvalue equation to  is given by

det | −  · 1| = det
¯̄̄̄µ

(212 − 1)−  22

21 (12 − 1)  (212 − 1)− 

¶¯̄̄̄
= 0 (7.15)

2 − 2 (212 − 1)+ 1 = 0 (7.16)

The eigenvalues are

12 = (212 − 1)±
q
(212 − 1)2 − 1 (7.17)

=

½
exp (±)  cosh  = 212 − 1 for |212 − 1|  1
exp (±)  cos = 212 − 1 for |212 − 1| ≤ 1 (7.18)

The case of a complex conjugate pair with a unit magnitude corresponds to

a stable resontor. Therfore, the stability criterion for a stable two mirror

resonator is

|212 − 1| ≤ 1 (7.19)

The stable and unstable parameter ranges are given by

stable : 0 ≤ 1 · 2 =  ≤ 1 (7.20)

unstable : 12 ≤ 0; or 12 ≥ 1 (7.21)

where  = 1 · 2, is the stability parameter of the cavity. The stabil-

ity criterion can be easily interpreted geometrically. Of importance are

the distances between the mirror mid-points M and cavity end points, i.e.

 = ( − ) = − as shown in Figure 7.6.

R1 R2

M1 M2 Z

r

L

S1S2

Figure 7.6: The stability criterion involves distances between the mirror mid-

points M and cavity end points. i.e.  = ( − ) = −
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The following rules for a stable resonator can be derived from Figure 7.6

using the stability criterion expressed in terms of the distances  Note, that

the distances and radii can be positive and negative

stable : 0 ≤ 12

12
≤ 1 (7.22)

The rules are:

• A resonator is stable, if the mirror radii, laid out along the optical axis,
overlap.

• A resonator is unstable, if the radii do not overlap or one lies within
the other.

Figure 7.7 shows stable and unstable resonator configurations.

R1
R2 R1

R2

Stable Unstable

R1

R2

R2

R1

R2

R2

Figure 7.7: Illustration of stable and unstable resonator configurations.

For a two-mirror resonator with concave mirrors and 1 ≤ 2, we obtain

the general stability diagram as shown in Figure 7.8. There are two ranges

for the mirror distance L, within which the cavity is stable, 0 ≤  ≤ 1 and
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L

0 R2 1R +R
2

R1

Figure 7.8: Stabile regions (black) for the two-mirror resonator.

2 ≤  ≤ 1+2 It is interesting to investigate the spot size at the mirrors

and the minimum spot size in the cavity as a function of the mirror distance

L.

Resonator Mode Characteristics

The stable modes of the resonator reproduce themselves after one round-trip,

i.e. from Eq.(7.10) we find

1 =
1 +

1 +
(7.23)

The inverse q-parameter, which is directly related to the phase front curva-

ture and the spot size of the beam, is determined byµ
1



¶2
+

−



µ
1



¶
+
1−

2
= 0 (7.24)

The solution is µ
1



¶
12

= −−

2
± 

2 ||
q
(+)

2 − 1 (7.25)

If we apply this formula to (7.15), we find the spot size on mirror 1µ
1



¶
12

= − 

2 ||
q
(+)

2 − 1 = − 

21
 (7.26)

or

41 =

µ
2



¶2
2

1

1

1− 12
(7.27)

=

µ
1



¶2
2 − 

1 − 

µ


1 +2 − 

¶
 (7.28)
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By symmetry, we find the spot size on mirror 3 via switching index 1 and 2:

42 =

µ
2



¶2
1

2

1

1− 12
(7.29)

=

µ
2



¶2
1 − 

2 − 

µ


1 +2 − 

¶
 (7.30)

The intracavity focus can be found by transforming the focused Gaussian

beam with the propagation matrix

 =

µ
1 1
0 1

¶µ
1 0
−1
21

1

¶
=

µ
1− 1

21
1

−1
21

1

¶
 (7.31)

to its new focus by properly choosing 1 see Figure 7.9.

-

Figure 7.9: Two-mirror resonator

A short calculation results in

1 = 
2 (1 − 1)

212 − 1 − 2
(7.32)

=
(−2)

2−1 −2
 (7.33)

and, again, by symmetry

2 = 
1 (2 − 1)

212 − 1 − 2
(7.34)

=
(−1)

2−1 −2
= − 1 (7.35)
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The spot size in the intracavity focus is

4 =

µ




¶2
12 (1− 12)

(212 − 1 − 2)2
(7.36)

=

µ




¶2
(1 − )(2 − )(1 +2 − )

(1 +2 − 2)2  (7.37)

All these quantities for the two-mirror resonator are shown in Figure 7.11.

Note, that all resonators and the Gaussian beam are related to the confocal

resonator as shown in Figure 7.10.

General Resonator

Confocal
Resonator

R11 2
R

Figure 7.10: Two-mirror resonator and its relationship with the confocal

resonator.
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Figure 7.11: From top to bottom: Cavity parameters, 1, 2, , 0, 1, 2,

1 and 2 for the two-mirror resonator with 1 = 10 cm and 2 = 11 cm.
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7.1.3 Four-Mirror Resonators

More complex resonators, like the four-mirror resonator depicted in Figure

7.12 a) can be transformed to an equivalent two-mirror resonator as shown

in Figure 7.4 b) and c)

2


1

L2

L 1R

R
2

n

t
x

a)

f =2f =1

1L

L

L2
t

R /21 R /22

x

b)

1

L

d2

x

c)

R’
21R’

d L’

Pump

Laser

Figure 7.12: a) Four-mirror resonator with gain medium of refractive index

n, and thickness t. Folding angles have to be adjusted for astigmatism com-

pensation. b) Equivalent lens cavity. Note that the new focal length do not

yet account for the different equivalent radii of curvature due to nonnormal

incidence on the mirrors. c) Equivalent two-mirror cavity with imaged end

mirrors.

Each of the resonator arms (end mirror,1, 1) or (end mirror, 2, 2) is

equivalent to a new mirror with a new radius of curvature 012 positioned a
distance 12 away from the old reference plane [12]. This follows simply from

the fact that each symmetric optical system is equivalent to a lens positioned
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at a distance  from the old reference plane

 =

µ
 

 

¶
=

µ
1 

0 1

¶µ
1 0
−1


1

¶µ
1 

0 1

¶
(7.38)

=

Ã
1− 



³
2− 



´
−1


1− 


!
with

 =
− 1


(7.39)

−1


= 

The matrix of the resonator arm 1 is given by

 =

µ
1 0
−2
1

1

¶µ
1 21
0 1

¶µ
1 0
−2
1

1

¶
=

Ã
1− 41

1
21

−4
1

³
1− 21

1

´
1− 41

1

!
(7.40)

from which we obtain

1 = −1
2

1

1−1(21)
 (7.41)

01 = −
µ
1

2

¶2
1

1 [1−1(21)]
 (7.42)

For arm lengths 12 much larger than the radius of curvature, the new radius

of curvature is roughly by a factor of 1
41

smaller. Typical values are 1 = 10

cm and 1 = 50 cm. Then the new radius of curvature is 
0
1 = 5 mm. The

analogous equations apply to the other resonator arm

2 = −2
2

1

1−2(22)
 (7.43)

02 = −
µ
2

2

¶2
1

2 [1−2(22)]
 (7.44)

Note that the new mirror radii are negative for   1 The new distance

0 between the equivalent mirrors is then also negative over the region where
the resonator is stable, see Fig.7.8. We obtain

0 = + 1 + 2 = − 1 +2

2
−  (7.45)
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 =
1

2

∙
1

1−1(21)
− 1
¸
+

2

2

∙
1

1−2(22)
− 1
¸

(7.46)

= −(01 +02) (7.47)

or

 =
1 +2

2
− (01 +02) + 0 (7.48)

From the discussion in section 7.1.2, we see that the stability ranges

cover at most a distance  Figure 7.13 shows the resonator characteristics as

a function of the cavity length  for the following parameters 1 = 2 = 10

cm and 1 = 100 cm and 2 = 75 cm, which lead to

1 = −526 cm
01 = −026 cm  (7.49)

2 = −536 cm
02 = −036 cm  (7.50)

0 = − 1062 cm (7.51)

Note, that the formulas (7.27) to (7.37) can be used with all quantities re-

placed by the corresponding primed quantities in Eq.(7.49) - (7.51). The

result is shown in Fig. 7.13. The transformation from  to 0
0
transforms

the stability ranges according to Fig. 7.14. The confocal parameter of the

laser mode is approximately equal to the stability range.

Astigmatism Compensation

So far, we have considered the curved mirrors under normal incidence. In a

real cavity this is not the case and one has to analyze the cavity performance

for the tangential and sagittal beam separately. The gain medium, usually a

thin plate with a refractive index n and a thickness t, generates astigmatism.

Astigmatism means that the beam foci for sagittal and tangential plane are

not at the same position. Also, the stablity regions of the cavity are different

for the different planes and the output beam is elliptical. This is so, because

a beam entering a plate under an angle refracts differently in both planes, as

described by different ABCD matricies for tangential and sagittal plane, see

Table 7.1.Fortunately, one can balance the astigmatism of the beam due to
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Figure 7.13: From top to bottom: Cavity parameters, 1, 2, , 0, 1, 2,

1 and 2 for the four-mirror resonator with 1 = 2 = 10 cm, 1 = 100 cm

and 2 = 75 cm.
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L

1R-R’ -R’
2R R-R’1 2R-R’

Figure 7.14: Transformed stability range for the four mirror resonator with

 = (1 +2)2.

the plate by the astigmatism introduced by the curved mirrors at a specific

incidence angle  on the mirrors [12] The focal length of the curved mirrors

under an angle are given by

 =  cos 

 =  · cos 
(7.52)

The propagation distance in a plate with thickness t under Brewster’s angle is

given by 
√
2 + 1 Thus, the equivalent traversing distances in the sagittal

and the tangential planes are (Table 7.1),

 = 
√
2 + 12

 = 
√
2 + 14

(7.53)

The different distances have to compensate for the different focal lengths in

the sagittal and tangential planes. Assuming two idential mirrors  = 1 =

2, leads to the condition

 − 2 =  − 2 (7.54)

With  = 2 we find

 sin  tan  =  where  =
√
2 + 1

2 − 1
4

(7.55)

Note, that  is the thickness of the plate as opposed to the path length of the

beam in the plate. The equation gives a quadratic equation for cos

cos2  +



cos  − 1 = 0 (7.56)
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cos 12 = −

2
±
s
1 +

µ


2

¶2
(7.57)

Since the angle is positive, the only solution is

 = arccos

⎡⎣s1 +µ

2

¶2
− 

2

⎤⎦  (7.58)

This concludes the design and analysis of the linear resonator.

7.1.4 The Kerr Lensing Effects

At high intensities, the refractive index in the gain medium becomes intensity

dependent

 = 0 + 2 (7.59)

The Gaussian intensity profile of the beam creates an intensity dependent

index profile

() =
2

2
exp

h
−2( 


)2
i
 (7.60)

In the center of the beam the index can be appoximated by a parabola

() = 00

µ
1−1
2
22

¶
 where (7.61)

00 = 0 + 2
2

2
  =

1

2

s
82

00
 (7.62)

A thin slice of a parabolic index medium is equivalent to a thin lens. If the

parabolic index medium has a thickness  then the ABCD matrix describing

the ray propagation through the medium at normal incidence is [16]

 =

µ
cos  1

00
sin 

−00 sin  cos 

¶
 (7.63)

Note that, for small t, we recover the thin lens formula (→ 0 but 00
2 =

1 =const.). If the Kerr medium is placed under Brewster’s angle, we again

have to differentiate between the sagittal and tangential planes. For the
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sagittal plane, the beam size entering the medium remains the same, but for

the tangential plane, it opens up by a factor 00

 =  (7.64)

 =  · 00
The spotsize propotional to 2 has to be replaced by 2 =Therefore,

under Brewster angle incidence, the two planes start to interact during prop-

agation as the gamma parameters are coupled together by

 =
1



s
82

00
(7.65)

 =
1



s
82

00
(7.66)

Without proof (see [12]), we obtain the matrices listed in Table 7.2. For low

Optical Element ABCD-Matrix

Kerr Medium

Normal Incidence
 =

µ
cos  1

00
sin 

−00 sin  cos 

¶
Kerr Medium

Sagittal Plane
 =

µ
cos 

1
00

sin 

−00 sin  cos 

¶
Kerr Medium

Tangential Plane
 =

µ
cos 

1
030 

sin 

−030  sin  cos 

¶

Table 7.2: ABCD matrices for Kerr media, modelled with a parabolic index

profile () = 00
¡
1−1

2
22

¢


peak power  , the Kerr lensing effect can be neglected and the matrices in

Table 7.2 converge towards those for linear propagation. When the laser is

mode-locked, the peak power  rises by many orders of magnitude, roughly

the ratio of cavity round-trip time to the final pulse width, assuming a con-

stant pulse energy. For a 100 MHz, 10 fs laser, this is a factor of 106. With

the help of the matrix formulation of the Kerr effect, one can iteratively find

the steady state beam waists in the laser. Starting with the values for the

linear cavity, one can obtain a new resonator mode, which gives improved
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values for the beam waists by calculating a new cavity round-trip propaga-

tion matrix based on a given peak power  This scheme can be iterated

until there is only a negligible change from iteration to iteration. Using such

a simulation, one can find the change in beam waist at a certain position in

the resonator between cw-operation and mode-locked operation, which can

be expressed in terms of the delta parameter

 =
1



( )− ( = 0 )

( = 0 )
(7.67)

where p is the ratio between the peak power and the critical power for self-

focusing

 =  with  = 2
¡
22

2
0

¢
 (7.68)

To gain insight into the sensitivity of a certain cavity configuration for KLM,

it is interesting to compute the normalized beam size variations  as a

function of the most critical cavity parameters. For the four-mirror cavity,

the natural parameters to choose are the distance between the crystal and the

pump mirror position, , and the mirror distance  see Figure 7.12. Figure

7.15 shows such a plot for the following cavity parameters 1 = 2 = 10 cm,

1 = 104 cm, 2 = 86 cm,  = 2 mm,  = 176 and  = 200 kW.
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Figure 7.15: Beam narrowing ratio  for cavity parameters 1 = 2 = 10

cm, 1 = 104 cm, 2 = 86 cm,  = 2 mm,  = 176 and  = 200 kW

(Courtesy of Onur Kuzucu).
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The Kerr lensing effect can be exploited in different ways to achieve mode

locking.

Soft-Aperture KLM

In the case of soft-aperture KLM, the cavity is tuned in such a way that

the Kerr lensing effect leads to a shrinkage of the laser mode when mode-

locked. The non-saturated gain in a laser depends on the overlap of the pump

mode and the laser mode. From the rate equations for the radial photon

distribution () and the inversion  () of a laser, which are proportional

to the intensities of the pump beam and the laser beam, we obtain a gain,

that is proportional to the product of () and  ()If we assume that the

focus of the laser mode and the pump mode are at the same position and

neglect the variation of both beams as a function of distance, we obtain

 ∼
Z ∞

0

() ∗ ()

∼
Z ∞

0

2

2
exp

∙
−2

2

2

¸
2

2
exp

∙
−2

2

2

¸


With the beam cross sections of the pump and the laser beam in the gain

medium,  = 2 and  = 2 ,we obtain

 ∼ 1

 +



If the pump beam is much more strongly focused in the gain medium than the

laser beam, a shrinkage of the laser mode cross section in the gain medium

leads to an increased gain. When the laser operates in steady state, the

change in saturated gain would have to be used for the investigation. How-

ever, the general argument carries through even for this case. Figure 7.16

shows the variation of the laser mode size in and close to the crystal in a

soft-aperture KLM laser due to self-focusing.
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Figure 7.16: Variation of laser mode size in and close to the crystal in a soft

aperture KLM laser due to self-focussing.

Hard-Aperture KLM

In a hard-aperture KLM-Laser, one of the resonator arms contains (usually

close to the end mirrors) an aperture such that it cuts the beam slightly.

When Kerr lensing occurs and leads to a shrinkage of the beam at this posi-

tion, the losses of the beam are reduced. Note, that depending on whether

the aperture is positioned in the long or short arm of the resontor, the operat-

ing point of the cavity at which Kerr lensing favours or opposes mode-locking

may be quite different (see Figure 7.13).
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Figure 7.17: Principle mechanism of APM.

7.2 Additive Pulse Mode Locking

Like Kerr-Lens Mode Locking also Additive Pulse Mode Locking (APM) is an

artificial saturable absorber effect [17][18][19][20][21][22]. Figure 7.17 shows

the general principle at work. A small fraction of the light emitted from the

main laser cavity is injected externally into a nonlinear fiber. In the fiber

strong SPM occurs and introduces a significant phase shift between the peak

and the wings of the pulse. In the case shown the phase shift is 

A part of the modified and heavily distorted pulse is reinjected into the

cavity in an interferometrically stable way, such that the injected pulse inter-

feres constructively with the next cavity pulse in the center and destructively

in the wings. This superposition leads to a shorter intracavity pulse and the

pulse shaping generated by this process is identical to the one obtained from

a fast saturable absorber. Again, an artificial saturable absorber action is

generated.
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Figure 7.18: Schematic of nonlinear Mach-Zehnder interferometer.

Figure 7.18 shows a simple nonlinear interferometer. In practice, such

an interferometer can be realized in a self-stabilized way by the use of both

polarizations in an isotropic Kerr medium with polarizer and analyzer as

shown in Figure 7.19.

Figure 7.19: Nonlinear Mach-Zehnder interferometer using nonlinear polar-

ization rotation in a fiber [25].

The Kerr effect rotates the polarization ellipse and thus transforms phase

modulation into amplitude modulation. The operation is in one-to-one cor-

respondence with that of the nonlinear Mach-Zehnder interferometer of Fig.



296CHAPTER 7. KERR-LENSANDADDITIVEPULSEMODELOCKING

7.18. The system of Figure 7.18 can be analyzed rather simply and thus it

is worthwhile to look at the derivation and the implicit assumptions. The

couplers are described by the scattering matrices

 =

∙
 

√
1− 2


√
1− 2 

¸
 (7.69)

The outputs of the interferometer are then

1 =
£
2−1 − (1− 2)−2

¤
 (7.70)

2 = 2
√
1− 2 exp

∙
− 1 + 2

2

¸
cos

∙
2 − 1
2

¸
 (7.71)

1 and 2 are the phase shifts in the two arms composed of both linear "bias"

contributions  and the Kerr phase shifts 

 =  +  ( = 1 2) (7.72)

 =  ||2  ( = 1 2) (7.73)

The power in output port two is related to the linear and nonlinear losses

|2|2 = 22
¡
1− 2

¢
(1 + cos [2 − 1]) ||2

= 22
¡
1− 2

¢ {(1 + cos [2 − 1])− (7.74)

− sin [2 − 1] (2 − 1)} ||2 
where we linearized the cosine and assumed that the Kerr phase shifts are

small. Depending on the bias phase  = 2 − 1 the amplitude loss is

 = 2
¡
1− 2

¢
(1 + cos) ||2  (7.75)

and the −parameter of the equivalent fast saturable absorber is
 = (2 − 1) 

2
¡
1− 2

¢
sin (7.76)

If the interferometer forms part of a resonant system, the frequency of the

system is affected by the phase shift of the interferometer and in turn affects

the phase.

When the resonant frequencies of the linear system ( =  = 0) without

the interferometer should remain the resonant frequencies with the interfer-

ometer, the net phase shift of the interferometer has to be chosen to be zero.

Since a small loss has been assumed and hence 2 À 1− 2

Im
£
2−1 − ¡1− 2

¢
−2

¤
= Im

£
2(1− 1)−

¡
1− 2

¢
−2

¤
= 0

(7.77)
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or

1 =
(1− 2)

2
sin2 (7.78)

and cos1 = 1 With this adjustment and  = 2, the response of the

interferometer becomes

1 ≈ +∆ = − (1− 2) (1 + cos) 

+(1− 2) (2 − 1) sin  (7.79)

−21 + (1− 2)2 cos 

This gives for the parameters of the master equation   and 

 = (1− 2) (1 + cos)  (7.80)

 = (2 − 1)
¡
1− 2

¢
sin (7.81)

 = 1
2 − 2(1− 2) cos (7.82)

Due to the special choice of the bias phase there is no contribution of the

nonlinear interferometer to the linear phase. This agrees with expressions

(7.75) and (7.76). The Kerr coefficients are

1 = 2
µ
2



¶
2



 (7.83)

2 =
¡
1− 2

¢µ2


¶
2



 (7.84)

Here,  is the free space wavelength of the optical field,  is the effective

area of the mode, 2 the intensity dependent refractive index, and  is the

length of the Kerr medium. Figure 7.20 is the saturable absorber coefficient

 normalized to the loss and Kerr effect (note that  goes to zero when the

loss goes to zero) as a function of 2.
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-

Figure 7.20: Normalized saturable absorber coefficient 
h¡

2


¢
2


 

i
as a function of 2 with loss  as parameter [25].

Large saturable absorber coefficients can be achieved at moderate loss

values.
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Chapter 8

Semiconductor Saturable

Absorbers

Sofar we only considered artificial saturable absorbers, but there is of course

the possibility to use real absorbers for modelocking. A prominent candidate

for a saturable absorber is semiconductor material, which was pioneered by

Islam, Knox and Keller [1][2][3] The great advantage of using semiconductor

materials is that the wavelength range over which these absorbers operate

can be chosen by material composition and bandstructure engineering, if

semiconductor heterostructures are used (see Figure 8.1). Even though, the

basic physics of carrier dynamics in these structures is to a large extent well

understood [4], the actual development of semiconductor saturable absorbers

for mode locking is still very much ongoing.
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Figure 8.1: Energy Gap, corresponding wavelength and lattice constant for

various compound semiconductors. The dashed lines indicate indirect tran-

sitions.
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Figure 8.2: Typical semiconductor saturable absorber structure. A semicon-

ductor heterostruture (here AlAs/GaAs) is grown on a GaAs-Wafer (20-40

pairs). The layer thicknesses are chosen to be quarter wave at the center

wavelength at which the laser operates. This structures acts as quarter-wave

Braggmirror. On top of the Bragg mirror a half-wave thick layer of the low

index material (here AlAs) is grown, which has a field-maximum in its center.

At the field maximum either a bulk layer of GaAlAs or a single-or multiple

Quantum Well (MQW) structure is embedded, which acts as saturable ab-

sorber for the operating wavelength of the laser.
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A typical semiconductor saturable absorber structure is shown in Figure

8.2. A semiconductor heterostruture (here AlAs/GaAs) is grown on a GaAs-

Wafer (20-40 pairs). The layer thicknesses are chosen to be quarter wave

at the center wavelength at which the laser operates. These structures act

as quarter-wave Bragg mirror. On top of the Bragg mirror, a half-wave

thick layer of the low index material (here AlAs) is grown, which has a

field-maximum in its center. At the field maximum, either a bulk layer of

a compound semiconductor or a single-or multiple Quantum Well (MQW)

structure is embedded, which acts as a saturable absorber for the operating

wavelength of the laser. The absorber mirror serves as one of the endmirrors

in the laser (see Figure 8.3).

Argon
Pump

M1-3: R=10 cm

FS
Prisms

OC

Ti:S, 2.3 mm,
0.25%, Doping

M1

M3

M2

Sem.
Sat. Abs.

Figure 8.3: The semiconductor saturable absorber, mounted on a heat sink,

is used as one of the cavity end mirrors. A curved mirror determines the

spot-size of the laser beam on the saturable absorber and, therefore, scales

the energy fluence on the absorber at a given intracavity energy.

8.1 Carrier Dynamics and Saturation Prop-

erties

There is a rich ultrafast carrier dynamics in these materials, which can be

favorably exploited for saturable absorber design. The carrier dynamics in

bulk semiconductors occurs on three major time scales (see Figure 8.4 [5]).

When electron-hole pairs are generated, this excitation can be considered
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as an equivalent two-level system if the interaction between the carriers is

neglected, which is a very rough assumption.

hhlh

E

k

Eg

e - e

e - LOII

III

I

Figure 8.4: Carrier dynamics in a bulk semiconducotr material. Three time

scales can be distinguished. I. Coherent carrier dynamics, which at room tem-

perature may last between 10-50 fs depending on excitation density. II. Ther-

malization between the carriers due to carrier-carrier scattering and cooling

to the lattice temperature by LO-Phonon emission. III. Carrier-trapping or

recombination [5].

There is a coherent regime (I) with a duration of 10-50 fs depending on

conditions and material. Then in phase (II), carrier-carrier scattering sets

in and leads to destruction of coherence and thermalization of the electron

and hole gas at a high temperature due to the excitation of the carriers high

in the conduction or valence band. This usually happens on a 60 - 100 fs

time scale. On a 300fs - 1ps time scale, the hot carrier gas interacts with

the lattice mainly by emitting LO-phonons (37 meV in GaAs). The carrier

gas cools down to lattice temperature. After the thermalization and cooling

processes, the carriers are at the bottom of the conduction and valence band,



8.1. CARRIER DYNAMICS AND SATURATION PROPERTIES 307

respectively. The carriers vanish (III) either by getting trapped in impurity

states, which can happen on a 100 fs - 100 ps time scale, or recombine over

recombination centers or by radiation on a nanosecond time-scale. Carrier-

lifetimes in III-VI semiconductors can reach several tens of nanoseconds and

in indirect semiconductors like silicon or germanium lifetimes can be in the

millisecond range. The carrier lifetime can be engineered over a large range

of values from 100 fs - 30ns, depending on the growth conditions and purity

of the material. Special low-temperature growth that leads to the formation

or trapping and recombination centers as well as ion-bombardment can result

in very short lifetimes [9]. Figure 8.5 shows a typical pump probe response

of a semiconductor saturable absorber when excited with a 100 fs long pulse.

The typical bi-temporal behavior stems from the fast thermalization (spectral

hole-burning)[7] and carrier cooling and the slow trapping and recombination

processes.
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Figure 8.5: Pump probe response of a semiconductor saturable absorber

mirror with a multiple-quantum well InGaAs saturable absorber grown at

low temperature [3].

With the formula for the saturation intensity of a two-level system Eq.

(4.70), we can estimate a typical value for the saturation fluence  (satura-

tion energy density) of a semiconductor absorber for interband transitions.

The saturation fluence , also related to the absorption cross-section  is
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then given by

 =



=  =

~2

22

¯̄̄

¯̄̄2 (8.1)

=
~20

220

¯̄̄

¯̄̄2 (8.2)

The value for the dipole moment for interband transitions in III-V semicon-

ductors is about  = 05 nm with little variation for the different materials.

Together with a dephasing time on the order of 2 = 20 fs and a linear

refractive index 0 = 3 we obtain

 =
~20

220

¯̄̄

¯̄̄2 = 35 2

(8.3)

Figure 8.6 shows the saturation fluence measurement and pump probe trace

with 10 fs excitation pulses at 800 nm on a broadband GaAs semiconductor

saturable absorber based on a metal mirror shown in Figure 8.7 [11]. The

pump probe trace shows a 50 fs thermalization time and long time bleach-

ing of the absorption recovering on a 50 ps time scale due to trapping and

recombination.
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Figure 8.6: Saturation fluence and pump probe measurements with 10 fs

pulses on a broadband metal mirror based GaAs saturable absorber. The

dots are measured values and the solid line is the fit to a two-level saturation

characteristic [11].
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A typical value for the fluence at wich damage is observed on an absorber

is on the order of a few mJ/cm2 Saturating an absorber by a factor of

10 without damaging it is still possible. The damage threshold is strongly

dependent on the growth, design, fabrication and mounting (heat sinking) of

the absorber.
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Figure 8.7: GaAs saturable absorber grown an GaAs wafer and transfered

onto a metal mirror by post growth processing [10].

8.2 High Fluence Effects

To avoid Q-switched mode-locking caused by a semiconductor saturable ab-

sorber, the absorber very often is operated far above the saturation fluence

or enters this regime during Q-switched operation. Therefore it is also im-

portant to understand the nonlinear optical processes occuring at high exci-

tation levels [13]. Figure 8.8 shows differential pump probe measurements on

a semiconductor saturable absorber mirror similar to Figure 8.2 but adapted

to the 1.55  range for the developement of pulsed laser sources for optical
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communication. The structure is a GaAs/AlAs-Bragg-mirror with an InP

half-wave layer and an embedded InGaAsP quantum well absorber with a

band edge at 1.530 . The mirror is matched to air with an Al203 single-

layer Ar-coating. At low fluence (56 ) the bleaching dynamics of the

QWs are dominant. At higher fluences, two-photon absorption (TPA) and

free carrier absorption (FCA) in the InP half-wave layer develop and enven-

tually dominate [13].
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Figure 8.8: Differential reflectivity measurements of a semiconductor sat-

urable absorber mirror (GaAs/AlAs-Bragg-mirror and InP half-wave layer

with embedded InGaAsP quantum well absorber for the 1.55  range. The

mirror is matched to air with an Al203single-layer ar-coating). At low fluence

the bleaching dynamics of the QWs are dominant. At higher fluences, TPA

and FCA develop and enventually dominate [13].

The assumption that TPA and FCA are responsible for this behaviour has

been verified experimentally. Figure 8.9 shows differential reflectivity mea-

surements under high fluence excitation at 1.56  for a saturable absorber

mirror structure in which absorption bleaching is negligible (solid curve). The

quantum well was placed close to a null of the field. A strong TPA peak is

followed by induced FCA with a single ∼ 5ps decay for FCA. Both of these
dynamics do not significantly depend on the wavelength of the excitation,

as long as the excitation remains below the band gap. The ∼ 5ps decay is
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attributed to carrier diffusion across the InP half-wave layer [13] The dashed

curve shows the differential absorption of a ∼ 350  thick InP substrate in

which a standing-wave pattern is not formed and the ∼ 5ps decay is absent.
The inset in Figure 8.9 shows the power dependence of TPA and FCA. As

expected, TPA and FCA vary linearly and quadratically, respectively, with

pump power.The pump-induced absorption of the probe (TPA) is linearly

dependent on the pump power. Since FCA is produced by carriers that are

generated by the pump alone via TPA, FCA scales with the square of the

pump power.
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Figure 8.9: Differential reflectivity measurements under high fluence excita-

tion at 1.56  for a saturable absorber mirror structure in which absorption

bleaching is negligible (solid cuve). The ∼ 5 ps decay for FCA is attributed
to carrier diffusion across the InP half-wave layer. The dahed curve shows

the differential absorption of a ∼ 350  thick InP substrate in which a

standing-wave pattern is not formed. (Inset) Linear and quadratic fluence

dependence of the TPA and FCA components, respectively.

These high fluence effects lead to strong modifications of the saturation

characteristics of a saturable absorber. The importance of the high fluence

effects was first recognized in resonant absorbers (see Figure 8.10). The field

inside the absorber is enhanced by adding a top reflector and a proper spacer

layer. This leads to an effective lower saturation fluence when viewed with
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respect to the intracavity fluence or intensity. Therefore, high fluenece effects

are already reached at low intracavity intensities (see Figure 8.9).

Figure 8.10: A top reflector is added to the semiconductor saturable absorber

such that the field in the quantum well is resonantely enhanced by about a

factor of 10 in comparison to the non resonant case.
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Figure 8.11: Saturation fluence measurement (dots) of the resonant absorber

shown in Figure 8.10 with 150 fs pulses at 1.53 . Fits are shown using

a fast or slow saturable absorber and TPA. Also the scaled saturation char-

acteristics of the absorber are shown when used in a laser with longer pulse

durations.

The roll-over of the saturation characteristics has positive and negative

consequences for mode locking. First, if the roll-over can be reached with the

available intracavity pulse energy, Q-switching can be suppressed. Second if

the roll-over occurs too early, the pulses break up into multiple pulses to

optimize the net gain for the overall pulse stream.

8.3 Break-up into Multiple Pulses

In the treatment of mode locking with fast and slow saturable absorbers we

only concentrated on stability against energy fluctuations (Q-switched mode

locking) and against break through of cw-radiation or continuum. Another

often observed instability is the break-up into multiple pulses. The existence

of such a mechanism is obvious if soliton pulse shaping processes are present.

If we assume that the pulse is completely shaped by the soliton−like pulse
shaping processes, the FWHM pulse width is given by

 = 176
4 |2|


 (8.4)
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where denotes the pulse energy. 2 the negative disperison and  the self-

phase modulation coefficient. With increasing pulse energy, of course the

absorber becomes more strongly saturated, which leads to shorter pulses ac-

cording to the saturable absorber and the soliton formula. At a certain point,

the absorber will saturate and can not provide any further pulse stabiliza-

tion. However, the Kerr nonlinearity may not yet saturate and, therefore,

the soliton formula dictates an ever decreasing pulse width for increasing

pulse energy. Such a process continues, until either the continuum breaks

through, because the soliton loss becomes larger than the continuum loss, or

the pulse breaks up into two pulses. The pulses will have reduced energy

per pulse and each one will be longer and experiences a reduced loss due

to the finite gain bandwidth. Due to the reduced pulse energy, each of the

pulses will suffer increased losses in the absorber, since it is not any longer

as strongly saturated as before. However, once the absorber is already over

saturated by the single pulse solution, it will also be strongly saturated for

the double-pulse solution. The filter loss due to the finite gain bandwidth

is heavily reduced for the double-pulse solution. As a result, the pulse will

break up into double-pulses. To find the transition point where the break-up

into multiple pulses occurs, we write down the round-trip loss due to the gain

and filter losses and the saturable absorber according to 6.35

 =


3 2
+ () (8.5)

where, () is the saturation loss experienced by the pulse when it prop-

agates through the saturable absorber. This saturation loss is given by

( ) =
1



+∞Z
−∞

( )|()|2 (8.6)

This expression can be easily evaluated for the case of a sech-shaped steady

state pulse in the fast saturable absorber model with

() =
0

1 +
|()|2


 where  =



 (8.7)

and the slow saturable absorber model, where the relaxation term can be

neglected because of  À  

() = 0 exp

∙
− 1



Z 

−∞
|(

0)|20
¸
 (8.8)
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For the slow absorber 8.8 the absorber losses (8.6) can be evaluated indepen-

dent of pulse shape to be

( ) = 0

1− exp
h
− 



i



 (8.9)

Thus for a slow absorber the losses depend only on pulse energy. In contrast,

for a fast absorber, the pulse shape must be taken into account and, for a

sech-shaped pulse, one obtaines [14]

( ) = 0

s
1

 (1 + )
tanh−1

∙r


1 + 

¸
 with  =



2
 (8.10)

and the pulse energy of one pulse of the multiple pulse solution. The energy

is determined from the total gain loss balance

0

1 + 



=  +  (8.11)

Most often, the saturable absorber losses are much smaller than the losses

due to the output coupler. In that case the total losses are fixed independent

of the absorber saturation and the filter losses. Then the average power does

not depend on the number of pulses in the cavity. If this is the case, one

pulse of the double pulse solution has about half of the energy of the single

pulse solution, and, therefore, the width of the double pulse is twice as large

as that of the single pulse according to (8.4). Then the filter and absorber

losses for the single and double pulse solution are given by

1 =


3 21
+ (1) (8.12)

2 =


12 21
+ (

1

2
) (8.13)

The single pulse solution is stable against break-up into double pulses as long

as

1 ≤ 2 (8.14)

is fulfilled. This is the case, if the difference in the filter losses between the

single and double pulse solution is smaller than the difference in the saturable

absorber losses


4 21
 ∆( ) = (



2
)− ( ) (8.15)
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Figure 8.12 shows the difference in the saturable absorption for a single

pulse and a double pulse solution as a function of the ratio between the

single pulse peak power and saturation power for a fast absorber and as a

function of the ratio between the single pulse energy and saturation energy

for a slow absorber. Thus, for both cases the optimum saturation ratio, at

which the largest discrimination between single and double pulses occurs and,

therefore, the shortest pulse before break-up into multiple pulses occurs, is

about 3. Note, that to arrive at this absolute number, we assumed that the

amount of saturable absoption is neglegible in comparison with the other

intracavity losses, so that the saturated gain level and the gain and filter

dispersion are fixed.
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Figure 8.12: Difference in loss experienced by a sech-shaped pulse in a slow

(- - -) and a fast (–—) saturable absorber for a given pulse energy or peak

power , respectively.

At this optimum operation point, the discrimination against multiple

break-up of a fast absorber is about 50% larger than the value of the slow ab-

sorber. Since the minimum pulsewidth scales with the square root of∆( ),

see Eq. (8.15), the minimum pulsewidth of the slow absorber is only about

22% longer than with an equally strong fast saturable absorber. Figure 8.12

also predicts that a laser modelocked by a fast saturable absorber is much

more stable against multiple pulse break-up than a slow saturable absorber if

it is oversaturated . This is due to the fact that a fast saturable absorber sat-

urates with the peak power of the pulse in comparison with a slow saturable

absorber, which saturates with the pulse energy. When the pulse breaks up

into a pulse twice as long with half energy in each, the peak power of the
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individual pulses changes by a factor of four. Therefore, the discrimination

between long and short pulses is larger in the case of a fast saturable ab-

sorber, especially for strong saturation. Note that Fig. 8.12 is based on the

simple saturation formulas for fast and slow saturable absorbers Eqs. (8.9)

and (8.10). We compare these predictions with numerical simulations and

experimental observations made wiht a Nd:glass laser [15][16].

The Nd:glass laser described in ref. [15] was modelocked by a saturable

absorber which showed a fast recovery time of  = 200 fs, a modulation

depth of 0 = 0005 and a saturation energy of  = 17  . The other laser

parameters can be found in [16]. Without the solitonlike pulse formation

(GDD and SPM is switched off), the laser is predicted to produce about

200 fs short pulses with a single pulse per round-trip, very similar to what

was discussed in the fast saturable absorber mode locking in Chapter 6. The

dynamics becomes very much different if the negative GDD and positive SPM

are included in the simulation, (see Figure 8.13)
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Figure 8.13: Each trace shows the pulse intensity profile obtained after 20,000

cavity round-trips in a diode-pumped Nd:glass laser according to [15]. When

the laser reaches the double-pulse regime the multiple pulses are in constant

motion with respect to each other. The resulting pulse train is no longer

stationary.
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With increasing small signal gain, i. e. increasing pulse energy, the soliton

shortens to 80 fs due to the solitonlike pulse shaping, (Figure 8.13).
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Figure 8.14: Steady state pulse width ( R°) and time-bandwidth product (o)
for a Nd:glass laser modelocked by a saturable absorber with a 200 fs recovery

time with GDD and SPM included, shown as a function of the intracavity

pulse energy. The time-bandwidth product is only meaningful in the single

pulse regime, where it is shown. The pulses are almost transform limited

sech-pulses. The pulse width in the multiple pulseing regime is only unique

in the parameter region where multiple pulses of similar height and width

are achieved. The pulses break up into multiple pulses when the absorber is

about three times saturated.

The pulse width follows nicely the soliton relation (8.4), (dash-dotted

line). The pulses become shorter, by about a factor of 2.5, than without

GDD and SPM before the pulse breaks up into longer double-pulses. The

pulse break-up into double-pulses occurs when the absorber is about two

times saturated, close to the point where the shortest pulse can be expected

according to the discussion above. Figures 8.13 shows, that the break-up

point for the double pulses is also very close to the instability for continuum

break-through. Indeed the first pulse train after break-up at a small signal

gain of 0 = 009 shows the coexistance of a longer and a shorter pulse,

which indicates continuum break-through. But the following five traces are

double pulses of equal height and energy. For even stronger saturation of the
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absorber the double-pulses break-up into triple pulses and so on. Then the

dynamics becomes even more complex. This behavior has been observed in

detail in a Nd:glass laser [15], (see Figure 8.15), as well as in Cr4+:YAG lasers

[17]. The simulations just discussed match the parameters of the Nd:glass

experiments.
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Figure 8.15: Pulsewidth in a Nd:glass laser [15] as a function of intracavity

stored energy, i.e. pulse energy for a single pulse per round-trip. Dots mea-

sured values and solid line fits for a single and double-pulse solitonlike pulse

stream.

Figure 8.15 clearly shows the scaling of the observed pulse width according

to the soliton formula until the pulses break up at a saturation ratio of about

2. Notice, that the absorber recovery time of 200 fs is not much shorter than

the pulse width achieved. Nevertheless, the optimum saturation ratio is close

to the expected one of about 3. The break-up into pure double and triple

pulses can be observed more clearly if the absorber recovery time is chosen to

be shorter, so that continuum break-through is avoided. Figure 8.16 shows

the final simulation results obtained after 20,000 round-trips in the cavity, if

we reduce the absorber recovery time from 200 fs to 100 fs, again for different

small signal gain, e.g. intracavity power levels and pulse energies. Now, we

observe a clean break-up of the single-pulse solution into double-pulses and

at even higher intracavity power levels the break-up into triple pulses without

continuum generation in between. Note that the spacing between the pulses

is very much different from what has been observed for the 200 fs response

time. This spacing will depend on the details of the absorber and may also
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be influenced by the dynamic gain saturation even if it is only a very small

effect in this case [17].
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Figure 8.16: Each trace shows the pulse intensity profile obtained after 20,000

cavity round-trips for an absorber with a response time  = 100 fs for

different values of the small-signal gain. The simulations are always started

with a 1 ps initial pulse shown as the first trace. Note that only the single

pulse solutions are stationary.

8.4 Summary

Real absorbers do have the advantage of providing direct amplitude modula-

tion and do not exploit additional cavities or operation of the resonator close

to its stability boundary to achieve effective phase to amplitude conversion.

Especially in compact resonator designs, as necessary for high-repitition rate

lasers in the GHz range, semiconductor saturable absorbers with their low

saturation energies and compactness offer unique solutions to this important

technological challenge.
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Chapter 9

Pulse Characterization

Characterization of ultrashort laser pulses with pulse widths greater than
20ps can be directly performed electronically using high speed photo detec-
tors and sampling scopes. Photo detectors with bandwidth of 100 GHz are
available. For shorter pulses usually some type of autocorrelation or cross-
correlation in the optical domain using nonlinear optical e�ects has to be
performed, i.e. the pulse itself has to be used to measure its width, because
there are no other controllable events available on such short time scales.

9.1 Intensity Autocorrelation

Pulse duration measurements using second-harmonic intensity autocorrela-
tion is a standard method for pulse characterisation. Figure 9.1 shows the
setup for a background free intensity autocorrelation. The input pulse is split
in two, and one of the pulses is delayed by � . The two pulses are focussed
into a nonliner optical crystal in a non-colinear fashion. The nonlinear opti-
cal crystal is designed for e!cient second harmonic generation over the full
bandwidth of the pulse, i.e. it has a large second order nonlinear optical
suszeptibility and is phase matched for the specific wavelength range. We
do not consider the }—dependence of the electric field and phase—matching
e�ects. To simplify notation, we omit normalization factors. The induced
nonlinear polarization is expressed as a convolution of two interfering electric—
fields H1(w)> H2(w) with the nonlinear response function of the medium, the
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second order nonlinear susceptibility "(2).
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Figure 9.1: Setup for a background free intensity autocorrelation. To avoid
dispersion and pulse distortions in the autocorrelator reflective optics and
a thin crystal has to be used for measuring very short, typically sub-100 fs
pulses.

We assume the material response is instantaneous and replace "(2)(w �
w1> w� w2) by a Dirac delta—function "(2) · �(w� w1) · �(w� w2) which leads to

S (2)(w) 2 H1(w) · H2(w) (9.1)

Due to momentum conservation, see Figure 9.1, we may separate the product
H(w)·H(w��) geometrically and suppress a possible background coming from
simple SHG of the individual pulses alone. The signal is zero if the pulses
don’t overlap.

S (2)(w) 2 H(w) · H(w� �)= (9.2)
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L({)
{ = w@W

�s
�D

�s
W

1. Rectangle:

L({) =

½
1> |{| � 1@2
0> |{| A 1@2

1 1

2. Parabola:

L({) =

½
1� {2> |{| � 1@2
0> |{| A 1@2

0.8716
s
2

3. Sinc2

L({) = Sinc2(x)
0.7511 2.7833

4. Gaussian
L({) = h3{

2 0.7071 2
s
ln 2

5. Triangle

L({) =

½
1� |{| > |{| � 1
0> |{| A 1

0.6922 1

6. Sech2

L({) = Sech2({)
0.6482 1.7627

7. Lorentzian
L({) = 1

1+{2
0.5 2

8. Onesided Exponential

L({) =

½
h3{> { � 0
0> { ? 0

0.5 ln2

9. Twosided Exponential
L({) = h32|{|

0.4130 ln2

Table 10.1: Pulse shapes and its deconvolution factors

relating FWHM, �s> of the pulse to FWHM, �D> of the

intensity autocorrelationfunction.

The electric field of the second harmonic radiation is directly proportional to
the polarization, assuming a nondepleted fundamental radiation and the use
of thin crystals. Due to momentum conservation, see Figure 9.1, we find

LDF(�) 2
Z "

3"

¯̄̄
D(w)D(w� �)

¯̄̄2
gw = (9.3)

2
Z "

3"
L(w)L(w� �) gw> (9.4)
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with the complex envelopeD(w) and intensity L(w) = |D(w)|2 of the input pulse.
The photo detector integrates because its response is usually much slower
than the pulsewidth. Note, that the intenisty autocorrelation is symmetric
by construction

LDF(�) = LDF(��)= (9.5)

It is obvious from Eq.(9.3) that the intensity autocorrelation does not contain
full information about the electric field of the pulse, since the phase of the
pulse in the time domain is completely lost. However, if the pulse shape is
known the pulse width can be extracted by deconvolution of the correlation
function. Table 10.1 gives the deconvolution factors for some often used pulse
shapes.

9.2 Interferometric Autocorrelation (IAC)

A pulse characterization method, that also reveals the phase of the pulse
is the interferometric autocorrelation introduced by J. C. Diels [2], (Figure
9.2 a). The input beam is again split into two and one of them is delayed.
However, now the two pulses are sent colinearly into the nonlinear crystal.
Only the SHG component is detected after the filter.

$z

PMT

NL-CrystalBeam
Splitter

Input

Osciloscope

!

"!

#

$ z

#

Filter

a)

b)

Figure 9.2: (a) Setup for an interferometric autocorrelation. (b) Delay stage,
so that both beams are reflected from the same air/medium interface impos-
ing the same phase shifts on both pulses.
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The total field H(w> �) after the Michelson-Interferometer is given by the
two identical pulses delayed by � with respect to each other

H(w> �) = H(w+ �) +H(w) (9.6)

= D(w+ �)hm$f(w+�)hm!FH +D(w)hm$fwhm!FH = (9.7)

D(w) is the complex amplitude, the term hm$fw describes the oscillation with
the carrier frequency $f and !FH is the carrier-envelope phase. Eq. (9.1)
writes

S (2)(w> �) 2
¡
D(w+ �)hm$f(w+�)hm!FH +D(w)hm$fwhm!FH

¢2
(9.8)

This is only ideally the case if the paths for both beams are identical. If
for example dielectric or metal beamsplitters are used, there are di�erent
reflections involved in the Michelson-Interferometer shown in Fig. 9.2 (a)
leading to a di�erential phase shift between the two pulses. This can be
avoided by an exactly symmetric delay stage as shown in Fig. 9.2 (b).
Again, the radiated second harmonic electric field is proportional to the

polarization

H(w> �) 2
¡
D(w+ �)hm$f(w+�)hm!FH +D(w)hm$f(w)hm!FH

¢2
= (9.9)

The photo—detector (or photomultiplier) integrates over the envelope of each
individual pulse

L(�) 2
Z "

3"

¯̄̄ ¡
D(w+ �)hm$f(w+�) +D(w)hm$fw

¢2 ¯̄̄2
gw =

2
Z "

3"

¯̄̄
D2(w+ �)hm2$f(w+�)

+2D(w+ �)D(w)hm$f(w+�)hm$fw

+D2(w)hm2$fw
¯̄̄2
= (9.10)

Evaluation of the absolute square leads to the following expression

L(�) 2
Z "

3"

h
|D(w+ �)|4 + 4|D(w+ �)|2|D(w)|2 + |D(w)|4

+2D(w+ �)|D(w)|2DW(w)hm$f� + c=c=
+2D(w)|D(w+ �)|2DW(w+ �)h3m$f� + c=c=

+D2(w+ �)(DW(w))2hm2$f� + c=c=
i
gw = (9.11)
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The carrier—envelope phase !FH drops out since it is identical to both pulses.
The interferometric autocorrelation function is composed of the following
terms

L(�) = Ledfn + Llqw(�) + L$(�) + L2$(�) = (9.12)

Background signal Ledfn:

Ledfn =

Z "

3"

¡
|D(w+ �)|4 + |D(w)|4

¢
gw = 2

Z "

3"
L2(w) gw (9.13)

Intensity autocorrelation Llqw(�):

Llqw(�) = 4

Z "

3"
|D(w+ �)|2|D(w)|2 gw = 4

Z "

3"
L(w+ �) · L(w) gw (9.14)

Coherence term oscillating with $f: L$(�):

L$(�) = 4

Z "

3"
Re
hµ

L(w) + L(w+ �)

¶
DW(w)D(w+ �)hm$�

i
gw (9.15)

Coherence term oscillating with 2$f: L2$(�):

L2$(�) = 2

Z "

3"
Re
h
D2(w)(DW(w+ �))2hm2$�

i
gw (9.16)

Eq. (9.12) is often normalized relative to the background intensity Ledfn
resulting in the interferometric autocorrelation trace

LLDF(�) = 1 +
Llqw(�)

Ledfn
+

L$(�)

Ledfn
+

L2$(�)

Ledfn
= (9.17)

Eq. (9.17) is the final equation for the normalized interferometric auto-
correlation. The term Llqw(�) is the intensity autocorrelation, measured by
non—colinear second harmonic generation as discussed before. Therefore, the
averaged interferometric autocorrelation results in the intensity autocorrela-
tion sitting on a background of 1.
Fig. 9.3 shows a calculated and measured IAC for a sech-shaped pulse.

As with the intensity autorcorrelation, by construction the interferometric
autocorrelation has to be also symmetric:

LLDF(�) = LLDF(��) (9.18)
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Delay, fs

IA
C

Delay, fs

Figure 9.3: Computed and measured interferometric autocorrelation traces
for a 10 fs long sech-shaped pulse.



330 CHAPTER 9. PULSE CHARACTERIZATION

This is only true if the beam path between the two replicas in the setup are
completely identical, i.e. there is not even a phase shift between the two
pulses. A phase shift would lead to a shift in the fringe pattern, which shows
up very strongly in few-cycle long pulses. To avoid such a symmetry breaking,
one has to arrange the delay line as shown in Figure 9.2 b so that each pulse
travels through the same amount of substrate material and undergoes the
same reflections and transmissions.
At � = 0> all integrals are identical

Ledfn � 2
Z
|D(w)|4gw

Llqw(� = 0) � 2
Z
|D2(w)|2gw = 4

Z
|D(w)|4gw = 2Ledfn

L$(� = 0) � 2
Z
|D(w)|2D(w)DW(w)gw = 8

Z
|D(w)|4gw = 4Ledfn

L2$(� = 0) � 2
Z

D2(w)(D2(w)Wgw = 2

Z
|D(w)|4gw = Ledfn

(9.19)

Then, we obtain for the interferometric autocorrelation at zero time delay

LLDF(�)|max = LLDF(0) = 8

LLDF(� $ ±4) = 1

LLDF(�)|min $ 0

(9.20)

This is the important 1:8 ratio between the wings and the pick of the IAC,
which is a good guide for proper alignment of an interferometric autocorre-
lator. For a chirped pulse the envelope is not any longer real. A chirp in
the pulse results in nodes in the IAC. Figure 9.4 shows the IAC of a chirped
sech-pulse

D(w) =

µ
sech

µ
w

� s

¶¶(1+m�)
for di�erent chirps.
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Figure 9.4: Influence of increasing chirp on the IAC.

9.2.1 Interferometric Autocorrelation of an Unchirped

Sech-Pulse

Envelope of an unchirped sech-pulse

D(w) = sech(w@� s) (9.21)

Interferometric autocorrelation of a sech-pulse

LLDF(�) = 1 + {2 + cos (2$f�)}
3
³³

�
�s

´
cosh

³
�
�s

´
� sinh

³
�
�s

´´
sinh3

³
�
�s

´ (9.22)

+
3
³
sinh

³
2�
�s

´
�
³
2�
�s

´´
sinh3

³
�
�s

´ cos($f�)
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9.2.2 Interferometric Autocorrelation of a Chirped Gaussian

Pulse

Complex envelope of a Gaussian pulse

D(w) = exp

�
�
1

2

µ
w

� s

¶
(1 + m�)

¸
= (9.23)

Interferometric autocorrelation of a Gaussian pulse

LLDF(�) = 1 +

½
2 + h

3�2

2

�
�
�s

�2
cos(2$f�)

¾
h
31
2

�
�
�s

�2
(9.24)

+4h
3 3+�2

8

�
�
�s

�2
cos

Ã
�

4

µ
�

� s

¶2!
cos ($f�) =

9.2.3 Second Order Dispersion

It is fairly simple to compute in the Fourier domain what happens in the
presence of dispersion.

H(w) = D(w)hm$fw
I�$ H̃($) (9.25)

After propagation through a dispersive medium we obtain in the Fourier
domain.

H̃0($) = H̃($)h3lx($)

and

H0(w) = D0(w)hm$fw

Figure 9.5 shows the pulse amplitude before and after propagation through
a medium with second order dispersion. The pulse broadens due to the dis-
persion. If the dispersion is further increased the broadening increases and
the interferometric autocorrelation traces shown in Figure 9.5 develope a
characteristic pedestal due to the term Llqw. The width of the interferomet-
rically sensitive part remains the same and is more related to the coherence
time in the pulse, that is proportional to the inverse spectral width and does
not change.
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Figure 9.5: E�ect of di�erent amounts of second order dispersion on a trans-
form limited 10 fs Sech-pulse.

9.2.4 Third Order Dispersion

We expect, that third order dispersion a�ects the pulse significantly for

G3

� 3
A 1

which is for a 10fs sech-pulse G3 A
¡
10 fs
1=76

¢3
˜183 fs3= Figure 9.6 and 9.7 show

the impact on pulse shape and interferometric autocorrelation. The odd
dispersion term generates asymmetry in the pulse. The interferometric au-
tocorrelation developes characteristic nodes in the wings.
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Figure 9.6: Impact of 200 fs3 third order dispersion on a 10 fs pulse at a
center wavelength of 800 nm.and its interferometric autocorrelation.

Figure 9.7: Changes due to increasing third order Dispersion from 100-1000
fs3on a 10 fs pulse at a center wavelength of 800 nm.
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9.2.5 Self-Phase Modulation

Self-phase modulation without compensation by proper negative dispersion
generates a phase over the pulse in the time domain. This phase is invisible
in the intensity autocorrelation, however it shows up clearly in the IAC, see
Figure 9.8 for a Gaussian pulse with a peak nonlinear phase shift !0 = �D20 =
2 and Figure 9.8 for a nonlinear phase shift !0 = 3.

Figure 9.8: Change in pulse shape and interferometric autocorrelation in a
10 fs pulse at 800 nm subject to pure self-phase modulation leading to a
nonlinear phase shift of !0 = 2=

From the expierence gained by looking at the above IAC-traces for pulses
undergoing second and third order dispersions as well as self-phase modula-
tion we conclude that it is in general impossible to predict purely by looking
at the IAC what phase perturbations a pulse might have. Therefore, it was
always a wish to reconstruct uniquely the electrical field with respect to am-
plitude and phase from the measured data. In fact one can show rigorously,
that amplitude and phase of a pulse can be derived uniquely from the IAC
and the measured spectrum up to a time reversal ambiguity [1]. Further-
more, it has been shown that a cross-correlation of the pulse with a replica
chirped in a known medium and the pulse spectrum is enough to reconstruct
the pulse [3]. Since the spectrum of the pulse is already given only the phase
has to be determined. If a certain phase is assumed, the electric field and
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the measured cross-correlation or IAC can be computed. Minimization of
the error between the measured cross-correlation or IAC will give the de-
sired spectral phase. This procedure has been dubbed PICASO (Phase and
Intensity from Cross Correlation and Spectrum Only).

Figure 9.9: Change in pulse shape and interferometric autocorrelation in a
10 fs pulse at 800 nm subject to pure self-phase modulation leading to a
nonlinear phase shift of !0 = 3=

Note, also instead of measuring the autocorrelation and interferometric
autocorrelation with SHG one can also use two-photon absorption or higher
order absorption in a semiconductor material (Laser or LED) [4].
However today, the two widely used pulse chracterization techniques are

Frequency Resolved Optical Gating (FROG) and Spectral Phase Interferom-
etry for Direct Electric Field Reconstruction (SPIDER)

9.3 Frequency Resolved Optical Gating (FROG)

We follow closely the book of Rick Trebino, who invented FROG. In frequency
resolved optical gating, the pulse to be characterized is gated by another
ultrashort pulse [5]. The gating is no simple linear sampling technique, but
the pulses are crossed in a medium with an instantaneous nonlinearity ("(2)

or "(3)) in the same way as in an autocorrelation measurement (Figures 9.1
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and 9.10). The FROG—signal is a convolution of the unknown electric—field
H(w) with the gating—field j(w) (often a copy of the unknown pulse itself).
However, after the interaction of the pulse to be measured and the gate
pulse, the emitted nonlinear optical radiation is not put into a simple photo
detector, but is instead spectrally resolved detected. The general form of the
frequency—resolved intensity, or Spectrogram VI (� > $) is given by

VI (� > $) 2
¯̄̄̄Z "

3"
H(w) · j(w� �)h3m$ wgw

¯̄̄̄2
= (9.26)

g(t-#)

E(t)

timetime

E(t) contributes
phase (i.e., color),

to the signal pulse.

E(t) g(t-#)

g(t-#)

E(t)

time0 #

g(t-#) contributes

only intensity, not
phase (i.e., color),
to the signal pulse.

g(t-#) contributes

only intensity, not
phase (i.e., color),
to the signal pulse.

E(t) contributes
phase (i.e., color),

to the signal pulse.

E(t) g(t-#)

Figure 9.10: The spectrogram of a waveform E(t) tells the intensity and
frequency in a given time interval [5].

Representations of signals, or waveforms in general, by time-frequency
distributions has a long history. Most notabley musical scores are a temporal
sequence of tones giving its frequency and volume, see Fig. 9.11.
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Figure 9.12: Like a musical score, the spectrogram visually displays the fre-
quency vs. time [5].

Figure 9.11: A musical score is a time-frequency representation of the signal
to be played.

Time-frequency representations are well known in the radar community,
signal processing and quantummechanics [9] (Spectrogram, Wigner-Distribution,
Husimi-Distribution, ...), Figure 9.12 shows the spectrogram of di�erently
chirped pulses. Like a mucical score, (see Fig. 9.11) the spectrogram visu-
ally displays the frequency vs. time.
Note, that the gate pulse in the FROG measurement technique does not

to be very short. In fact if we have

j(w) � �(w) (9.27)

then
VI (� > $) = |H(�)|

2 (9.28)
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and the phase information is completely lost. There is no need for short
gate pulses. A gate length of the order of the pulse length is su!cient. It
temporally resolves the slow components and spectrally the fast components.

9.3.1 Polarization Gate FROG

Figure 9.13 shows the setup [6][7]. FROG is based on the generation of a
well defined gate pulse, eventually not yet known. This can be achieved
by using the pulse to be measured and an ultrafast nonlinear interaction.
For example the electronic Kerr e�ect can be used to induce an ultrafast
polarization modulation, that can gate the pulse with a copy of the same
pulse.

IFROG(!,#) = Esig(t,#) e-i!t dt% &&
2

IFROG(!,#) = Esig(t,#) e-i!t dt% &&
2

Spectro-

meter

Camera
Beam
splitter

Instantaneous nonlinear-
optical medium

Pulse to be
measured

E(t)

E(t-#)

Wave plate

(45' rotation

of polarization)

Esig(t,#) ( E(t) |E(t-#)|
2

Esig(t,#) ( E(t) |E(t-#)|
2

Variable
delay

“Polarization-Gate” Geometry

Spectro-

meter

Figure 9.13: Polarization Gate FROG setup. The instantaneous Kerr-e�ect
is used to rotate the polarization of the signal pulse H(w) during the presence
of the gate pulse H(w� �) proportional to the intensity of the gate pulse [5].

The signal analyzed in the FROG trace is, see Figure 9.14,

Hvlj(w> �) = H(w) |H(w� �)|2 (9.29)
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Esig(t,#) ( E(t) |E(t-#)|2
Esig(t,#) ( E(t) |E(t-#)|2

E(t-#)E(t)

time0

Signal pulse

"#/3 timetime0 #

Signal pulse

"#/3

|E(t-#)|2 contributes

only intensity, not
phase (i.e., color),
to the signal pulse.

E(t) contributes
phase (i.e., color),

to the signal pulse.

Figure 9.14: The signal pulse reflects the color of the gated pulse at the time
2�@3 [5]

The FROG traces generated from a PG-FROG for chirped pulses is iden-
tical to Fig. 9.12. Figure 9.15 shows FROG traces of more complicated
pulses
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Figure 9.15: FROG traces of more complicated pulses.
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9.3.2 FROG Inversion Algorithm

Spectrogram inversion algorithms need to know the gate function j(w � �),
which in the given case is related to the yet unknown pulse. So how do we
get from the FROG trace to the pulse shape with respect to amplitude and
phase? If there is such an algorithm, which produces solutions, the question
of uniqueness of this solution arises. To get insight into these issues, we
realize, that the FROG trace can be written as

LIURJ(� > $) 2
¯̄̄̄Z "

3"
Hvlj(w> �)h

3m$ wgw

¯̄̄̄2
(9.30)

Writing the signal field as a Fourier transform in the time variable, i.e.

Hvlj(w> �) =

Z "

3"
Ĥvlj(w>l)h

3ml �gl (9.31)

yields

LIURJ(� > $) 2
¯̄̄̄Z "

3"

Z "

3"
Ĥvlj(w>l)h

3m$ w3ml �gwgl

¯̄̄̄2
= (9.32)

This equation shows that the FROG-trace is the magnitude square of a two-
dimensional Fourier transform related to the signal field Hvlj(w>l)= The in-
version of Eq.(9.32) is known as the 2D-phase retrival problem. Fortunately
algorithms for this inversion exist [8] and it is known that the magnitude (or
magnitude square) of a 2D-Fourier transform (FT) essentially uniquely de-
termines also its phase, if additional conditions, such as finite support or the
relationship (9.29) is given. Essentially unique means, that there are ambigu-
ities but they are not dense in the function space of possible 2D-transforms,
i.e. they have probability zero to occur.
Furthermore, the unknown pulse H(w) can be easily obtained from the

modified signal field Ĥvlj(w>l) because

Ĥvlj(w>l) =

Z "

3"
Hvlj(w> �)h

ml �g� (9.33)

=

Z "

3"
H(w)j(w� �)h3ml �g� (9.34)

= H(w)JW(l)h3ml w (9.35)

with

J(l) =

Z "

3"
j(�)h3ml �g�= (9.36)
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Thus there is

H(w) 2 Ĥvlj(w> 0)= (9.37)

The only condition is that the gate function should be chosen such that
J(l) 6= 0= This is very powerful.

Fourier Transform Algorithm

The Fourier transform algorithm also commonly used in other phase retrieval
problems is schematically shown in Fig. 9.16

FFT with
respect to t

Inverse FFT
with respect to

Esig(t,#)Esig(t,#)E(t)

Start

Generate
Signal

E ( , )!)#sig
^E ( , )= ( )!)# Isig

^ ‘ FROG
E ( , )!)#sig
^

E ( , )!)#sig
^

½

E (t, )#sig‘

FROGI

Figure 9.16: Fourier transform algorithm for FROG trace inversion. The
blue operations indicate the constraints due to the gating technique used
and the FROG data [5]

Generalized Projections

The signal field Hvlj(w> �) has to fulfill two constraints, which define sets see
Fig. 9.17. The intersection between both sets results in yields H(w). Moving
to the closest point in one constraint set and then the other yields conver-
gence to the solution, if the two sets or convex. Unfortunately, the FROG
constraints are not convex. Nevertheless the algorithm works surprisingly
well. For more information consult with reference [5].
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The 
Solution!

Initial guess 
for Esig(t,W)

Set of waveforms that satisfy 
nonlinear-optical constraint:  

Set of waveforms that 
satisfy data constraint: 

Esig(t,W) v E(t) |E(t–W)|2

IFROG (Z,W ) v ³ Esig(t,W ) exp(�iZ t) dt
2

Esig(t,W)

Figure 9.17: Generalized Projections applied to FROG [5].

9.3.3 Second Harmonic FROG

So far we only discussed PG-FROG. However, if we choose a "(2) nonlinearity,
e.g. SHG, and set the gating—field equal to a copy of the pulse j(w) � H(w)>
we are measuring in eq.(9.26) the spectrally resolved autocorrelation signal.
The marginals of the measured FROG-trace do have the following propertiesZ "

3"
VI (� > $) g$ 2

Z "

3"
|H(w)|2 · |j(w� �)|2 gw = (9.38)

Z "

3"
VI (� > $) g� 2

¯̄̄̄Z "

3"
Ĥ($) · Ĵ($ � $0)g$0

¯̄̄̄
2= (9.39)

For the case, where j(w) � H(w)>we obtainZ "

3"
VI (� > $) g$ 2 LDF(�)= (9.40)

Z "

3"
VI (� > $) g� 2

¯̄̄
Ĥ2$($)

¯̄̄2
= (9.41)

The setup to measure the Frog-trace is identical with the setup to measure
the intensity autocorrelation function (Figure 9.1) only the photodector for
the second harmonic is replaced by a spectrometer (Figure 9.18).
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Figure 9.18: SHG-FROG setup.

Baltuska, 
Pshenichnikov, 
and Wiersma,
J. Quant. Electron., 
35, 459 (1999).

Figure 9.19: FROG measurement of a 4.5 fs laser pulse.

Since the intensity autocorrelation function and the integrated spectrum
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can be measured simultaneously, this gives redundancy to check the correct-
ness of all measurements via the marginals (9.38, 9.39). Figure 9.19 shows
the SHG-FROG trace of the shortest pulses measured sofar with FROG.

9.3.4 FROG Geometries

The Frog-signal Hvlj.can also be generated by a nonlinear interaction di�erent
from SHG or PG, see table 9.20[5].
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Figure 9.20: FROG geometries and their pros and cons.
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9.4 Spectral Interferometry and SPIDER

Spectral Phase Interferometry for Direct Electric—Field Reconstruction (SPI-
DER) avoids iterative reconstruction of the phase profile. Iterative Fourier
transform algorithms do have the disadvantage of sometimes being rather
time consuming, preventing real—time pulse characterization. In addition,
for “pathological" pulse forms, reconstruction is di!cult or even impossible.
It is mathematically not proven that the retrieval algorithms are unambigu-
ous especially in the presence of noise.
Spectral shearing interferometry provides an elegant method to overcome

these disadvantages. This technique has been first introduced by C. Iaconis
and I.A. Walmsley in 1999 [11] and called spectral phase interferometry for
direct electric—field reconstruction — SPIDER. Before we discuss SPIDER lets
look at spectral interferometry in general

9.4.1 Spectral Interferometry

The spectrum of a pulse can easily be measured with a spectrometer. The
pulse would be completely know, if we could determine the phase across
the spectrum. To determine this unknown phase spectral interferometry for
pulse measurement has been proposed early on by Froehly and others [12].
If we would have a well referenced pulse with field HU(w), superimpose the
unknown electric field HV(w) delayed with the reference pulse and interfere
them in a spectrometer, see Figure 9.21, we obtain for the spectrometer
output

HL(w) = HU(w) +HV(w� �) (9.42)

V̂($) =

¯̄̄̄Z +"

3"
HL(w)h

3m$wgw

¯̄̄̄2
=
¯̄̄
ĤU($) + ĤV($)

3m$�
¯̄̄2

(9.43)

= V̂GF($) + V̂(3)($)hm$� + V̂(+)($)h3m$� (9.44)

with

V̂(+)($) = ĤWU($)ĤV($) (9.45)

V̂(3)($) = V̂(+)W($) (9.46)

Where (+) and (-) indicate as before, well separted positive and negative
"frequency" signals, where "frequency" is now related to � rather than $=
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Figure 9.21: Spectral Interferometery of a signal pulse with a reference pulse.

If � is chosen large enough, the inverse Fourier transformed spectrum
V(w) = I31{V̂($)} results in well separated signals, see Figure 9.22.

V(w) = VGF(w) + V(3)(w+ �) + V̂(+)(w� �) (9.47)

S(t)

t

S    (t)DC S   (t)(+)S   (t)(-)

�W W0

Figure 9.22: Decomposition of SPIDER signal.

We can isolate either the positive or negative frequency term with a filter
in the time domain. Back transformation of the corresponding term to the
frequency domain and computation of the spectral phase of one of the terms
results in the spectral phase of the signal up to the known phase of the
reference pulse and a linear phase contribution from the delay.

x(+)($) = arg{V̂(+)($)hm$�} = *V($)� *U($) + $� (9.48)
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Figure 9.23: The principle of operation of SPIDER.

9.4.2 SPIDER

What can we do if we don’t have a well characterized reference pulse? C.
Iaconis and I.A. Walmsley [11] came up with the idea of generating two up-
converted spectra slightly shifted in frequency and to investigate the spectral
interference of these two copies, see Figure 9.23. We use

HU(w) = H(w)hm$Vw (9.49)

HV(w) = H(w� �)hm($V+l)w (9.50)

HL(w) = HU(w) + HV(w) (9.51)

where $v and $v + l are the two frequencies used for upconversion and l
is called the spectral shear between the two pulses. H(w) is the unknown
electric field with spectrum

Ĥ($) =
¯̄̄
Ĥ($)

¯̄̄
hm*($) (9.52)

Spectral interferometry using these specially constructed signal and reference
pulses results in

V̂($) =

¯̄̄̄Z +"

3"
HL(w)h

3m$wgw

¯̄̄̄2
= V̂GF($)+ V̂(3)($)hm$� + V̂(+)($)h3m$� (9.53)
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V̂(+)($) = ĤWU($)ĤV($) = ĤW($ � $v)Ĥ($ � $v � l) (9.54)

V̂(3)($) = V̂(+)W($) (9.55)

The phase #($) = arg[V̂(+)($)h3m$� ] derived from the isolated positive spec-
tral component is

#($) = *($ � $v � l)� *($ � $v)� $�= (9.56)

The linear phase $� can be substracted o� after independent determination
of the time delay � = It is obvious that the spectral shear l has to be small
compared to the spectral bandwidth {$ of the pulse, see Fig. 9.23. Then
the phase di�erence in Eq.(9.56) is proportional to the group delay in the
pulse, i.e.

�l
g*

g$
= #($)> (9.57)

or

*($) = �
1

l

Z $

0

#($0)g$0= (9.58)

Note, an error {� in the calibration of the time delay � results in an error
in the chirp of the pulse

{*($) = �
$2

2l
{� = (9.59)

Thus it is important to chose a spectral shear l that is not too small. How
small does it need to be? We essentially sample the phase with a sample
spacing l. The Nyquist theorem states that we can uniquely resolve a pulse
in the time domain if it is only nonzero over a length [�W> W ], where W = �@l=
On the other side the shear l has to be large enough so that the fringes in
the spectrum can be resolved with the available spectrometer.

SPIDER Setup

We follow the work of Gallmann et al. [?] that can be used for characteri-
zation of pulses only a few optical cycles in duration. The setup is shown in
Figure 9.24.
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Figure 9.24: SPIDER setup; SF10: 65mm glass block (GDD/z �
160 fs2/mm), BS: metallic beam splitters (� 200�m, Cr—Ni coating 100nm),
� : adjustable delay between the unchirped replica, �VKJ: delay between
unchirped pulses and strongly chirp pulse, RO: reflective objective (Ealing—
Coherent, x35, NA=0.5, f=5.4mm), TO: refractive objective , L: lens, spec-
trometer: Lot-Oriel MS260i, grating: 400 l/mm, Blaze—angle 350nm, CCD:
Andor DU420 CCI 010, 1024 x 255 pixels, 26�m/pixel [13].

Generation of two replica without additional chirp:

A Michelson—type interferometer generates two unchirped replicas. The
beam—splitters BS have to be broadband, not to distort the pulses. The
delay � between the two replica has to be properly chosen, i.e. in the setup
shown it was about 400-500 fs corresponding to 120-150 �m distance in space.
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Spectral shearing:

The spectrally sheared copies of the pulse are generated by sum-frequency
generation (SFG) with quasi-monochromatic beams at frequencies $v and
$v + l= These quasi monochromatic signals are generated by strong chirp-
ing of a third replica (cf. Fig. 9.24) of the signal pulse that propagates
through a strongly dispersive glass slab. For the current setup we estimate
for the broadening of a Gaussian pulse due to the glass dispersion from 5 fs
to approximately 6ps. Such a stretching of more than a factor of thou-
sand assures that SFG occurs within an optical bandwidth less than 1nm, a
quasi—monochromatic signal. Adjustment of the temporal overlap �VKJ with
the two unchirped replica is possible by a second delay line. The streched
pulse can be computed by propagation of the signal pulse H(w) through the
strongly dispersive medium with transfer characteristic

Kjodvv($) = h3mGjodvv($3$f)2@2 (9.60)

neglecting linear group delay and higher order dispersion terms. We otain for
the analytic part of the electric field of the streched pulse leaving the glass
block by convolution with the transfer characteristic

Hvwuhwfk(w) =

+"Z
3"

Ĥ($)h3mGjodvv($3$f)2@2hm$wg$ = (9.61)

= hmw
2@(2Gjodvv)hm$fw

+"Z
3"

Ĥ($)h3mGjodvv(($3$f)3w@Gjodvv
2)@2g$(9.62)

If the spectrum of the pulse is smooth enough, the stationary phase method
can be applied for evaluation of the integral and we obtain

Hvwuhwfk(w) b hm$f(w+w
2@(2Gjodvv)Ĥ($ = $f + w@Gjodvv) (9.63)

Thus the field strength at the position where the instantaneous frequency is

$lqvw =
g

gw
$f(w+ w2@(2Gjodvv) = $f + w@Gjodvv (9.64)

is given by the spectral amplitude at that frequency, Ĥ($ = $f + w@Gjodvv)=
For large stretching, i.e.

|�s@Gjodvv| ¿ |l| (9.65)

the up-conversion can be assumed to be quasi monochromatic.
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SFG:

A BBO crystal (wedged 10—50�m) is used for type I phase—matched SFG.
Type II phase—matching would allow for higher acceptance bandwidths. The
pulses are focused into the BBO—crystal by a reflective objective composed of
curved mirrors. The signal is collimated by another objective. Due to SFG
with the chirped pulse the spectral shear is related to the delay between both
pulses, � > determined by Eq.(9.64) to be

l = ��@Gjodvv= (9.66)

Note, that conditions (9.65) and (9.66) are consistent with the fact that the
delay between the two pulses should be much larger than the pulse width
�s which also enables the separation of the spectra in Fig.9.22 to determine
the spectral phase using the Fourier transform method. For characterization
of sub-10fs pulses a crystal thickness around 30�m is a good compromise.
E!ciency is still high enough for common cooled CCD—cameras, dispersion
is already su!ciently low and the phase matching bandwidth large enough.

Signal detection and phase reconstruction:

An additional lens focuses the SPIDER signal into a spectrometer with a
CCD camera at the exit plane. Data registration and analysis is performed
with a computer. The initial search for a SPIDER signal is performed by
chopping and Lock—In detection.The chopper wheel is placed in a way that
the unchirped pulses are modulated by the external part of the wheel and the
chirped pulse by the inner part of the wheel. Outer and inner part have dif-
ferent slit frequencies. A SPIDER signal is then modulated by the di�erence
(and sum) frequency which is discriminated by the Lock—In amplifier. Once
a signal is measured, further optimization can be obtained by improving the
spatial and temporal overlap of the beams in the BBO—crystal.
One of the advantages of SPIDER is that only the missing phase informa-

tion is extracted from the measured data. Due to the limited phase—matching
bandwidth of the nonlinear crystal and the spectral response of grating and
CCD, the fundamental spectrum is not imaged in its original form but rather
with reduced intensity in the spectral wings. But as long as the interference
fringes are visible any damping in the spectral wings and deformation of
the spectrum does not impact the phase reconstruction process the SPIDER
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technique delivers the correct information. The SPIDER trace is then gen-
erated by detecting the spectral interference of the pulses

HU(w) = H(w)Ĥ($v)h
m$Vw (9.67)

HV(w) = H(w� �)Ĥ($v + l)hm($V+l)w (9.68)

HL(w) = HU(w) +HV(w) (9.69)

The positive and negative frequency components of the SIDER trace are then
according to Eqs.(??,9.55)

V̂(+)($) = ĤWU($)ĤV($) (9.70)

= ĤW($ � $v)Ĥ($ � $v �l)ĤW($v)Ĥ($v �l)

V̂(3)($) = V̂(+)W($) (9.71)

and the phase #($) = arg[V̂(+)($)h3m$� ] derived from the isolated positive
spectral component substraction already the linear phase o� is

#($) = *($ � $v �l)� *($ � $v) + *($v �l)� *($v)= (9.72)

Thus up to an additional constant it delivers the group delay within the pulse
to be characterized. A constant group delay is of no physical significance.

SPIDER—Calibration

This is the most critical part of the SPIDER measurement. There are three
quantities to be determined with high accuracy and reproducibility:

• delay �

• shift $v

• shear l

Delay � :
The delay � is the temporal shift between the unchirped pulses. It appears
as a frequency dependent phase term in the SPIDER phase, Eqs. (9.56)
and leads to an error in the pulse chirp if not properly substracted out, see
Eq.(9.59).
A determination of � should preferentially be done with the pulses de-

tected by the spectrometer but without the spectral shear so that the ob-
served fringes are all exactly spaced by 1@� . Such an interferogram may
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be obtained by blocking the chirped pulse and overlapping of the individual
SHG signals from the two unchirped pulses. A Fourier transform of the inter-
ferogram delivers the desired delay � .In practice, this technique might be dif-
ficult to use. Experiment and simulation show that already minor changes of
� (±1 fs) significantly alter the reconstructed pulse duration (� ± 1� 10%).
Another way for determination of � is the following. As already men-

tioned, � is accessible by a di�erentiation of the SPIDER phase with respect
to $. The delay � therefore represents a constant GDD. An improper de-
termination of � is thus equivalent to a false GDD measurement. The real
physical GDD of the pulse can be minimized by a simultaneous IAC mea-
surement. Maximum signal level, respectively shortest IAC trace means an
average GDD of zero. The pulse duration is then only limited by higher
order dispersion not depending on � . After the IAC measurement, the delay
� is chosen such that the SPIDER measurement provides the shortest pulse
duration. This is justified because through the IAC we know that the pulse
duration is only limited by higher order dispersion and not by the GDD 2 � .
The disadvantage of this method is that an additional IAC setup is needed.
Shift $v:
The SFG process shifts the original spectrum by a frequency $v � 300THz
towards higher frequencies equivalent to about 450nm when Ti:sapphire
pulses are characterized. If the SPIDER setup is well adjusted, the square of
the SPIDER interferogram measured by the CCD is similar to the fundamen-
tal spectrum. A determination of the shift can be done by correlating both
spectra with each other. Determination of $v only influences the frequency
too which we assign a give phase value, which is not as critical.
Shear l:
The spectral shear is uncritical and can be estimated by the glass dispersion
and the delay � =

9.4.3 Characterization of Sub-Two-Cycle Ti:sapphire

Laser Pulses

The setup and the data registration and processing can be optimized such
that the SPIDER interferogram and the reconstructed phase, GDD and in-
tensity envelope are displayed on a screen with update rates in the range of
0.5-1s.
Real—time SPIDER measurements enabled the optimization of external
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dispersion compensation leading to 4.8 fs pulses directly from a laser [13], see
Figure 9.25.

Figure 9.25: SPIDER measurement of a 4.8 fs Ti:sapphire laser pulse. (a)
SPIDER interferogram on a logarithmic scale. (b) Spectral power density and
spectral phase of the pulse. (c) Calculated GDD of the pulse. (d) Intensity
envelope and temporal phase curve [13].

Figure 9.25(a) shows the SPIDER interferogram as detected by the CCD
camera. The interferogram is modulated up to 90%, the resolutions limit
in the displayed graphic can not resolve this. The large number of interfer-
ence fringes assures reliable phase calculation. Figure (b) displays the laser
spectrum registered by the optical spectrum analyzer on a logarithmic scale.
The calculated spectral phase curve is added in this plot. The small slope of
the phase curve corresponds to a constant GD which is an unimportant time
shift. Fig. 9.25 (c) depicts the GDD obtained from the phase by two deriva-
tives with respect to the angular frequency $. The last Figure (d) shows the
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intensity envelope with a FWHM pulse duration of 4.8 fs together with the
temporal phase curve.

9.4.4 Pros and Cons of SPIDER

Advantages Disadvantages

direct analytical phase extraction complex experimental setup

no moving mirrors or other components precise delay calibration necessary

possible real—time characterization “compact" spectrum necessary
(no zero-intensity intervals)

simple 1—D data acquisition need for expensive CCD—camera

minor dependence on spectral response
of nonlinear crystal and spectrometer

9.5 Two-Dimensional Spectral Shearing In-

terferometry

As in SPIDER, also in two-dimensional spectral shearing interferometry
(2DSI) one does upconvert two frequency components at $ and $ � l of
the pulse to a joint frequency, which then depends on the relative phase
of the two components !($) � !($ � l). In 2DSI, two chirped (quasi-CW)
pulse copies are mixed with the short pulse to be measured in a type II phase
matched BBO crystal, see Fig. 9.26. [14]. As we will see, this technique does
not su�er from the calibration sensitivities of SPIDER nor the bandwidth
limitations of FROG or interferometric autocorrelation (IAC). The advan-
tage of type II upconversion with BBO is that the phase matching bandwidth
is large in one axis (well over an octave) and small in the other, a perfect
match for single-cycle pulse characterization. Furthermore, self-referenced
frequency shifting roughly halves the relative bandwidth of the final signal
allowing the measurement of pulses spanning 2 octaves from 650 nm to 2600
nm.
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�

Figure 9.26: Setup for two-dimensional spectral shearing interferometry.

The two up-converted pulses are sheared spectrally, but are collinear form-
ing a single pulse in time. The phase of one of the up-converted pulses is
scanned over several cycles by vibrating the corresponding mirror in the in-
terferometer over a few microns. The spectrum of the up-converted signal
is recorded as a function of phase delay and wavelength, yielding a 2-D in-
tensity function, see Fig. 9.27 (a) for a 5fs pulse and (b) for the same pulse
propagated through 1 mm of fused quartz.

Since only the relative fringe phase matters, the delay scan does not need
to be calibrated in any way, the only required calibration is for the shear a
relatively insensitive parameter as discussed already before. The intensity of
the upconverted signal is

L($> � fz) = |D($)|2 + |D($ �l)|2 + |D($)|2

+2D($)D($ �l) cos [$fz� fz + !($)� !($ �l)] >

where
!($)� !($ � l) = � fz l+R

£
l2
¤
=

Fig. 9.27 (c) and (d), shows the spectrum of the pulse along with the ex-
tracted spectral group delays. The chirp introduced by the glass plate is
reflected in the measurement with high precision demonstrating the high
quality of pulse reconstruction achieved with this method. Fig. 9.28 shows
the directly measured interferometric autocorrelation trace of a 5 fs pulse
together with the computed trace using the reconstructed electric field of the
pulse measured with 2DSI. The two traces agree very well with each other.
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Figure 9.27: Raw 2DSI data from (a) a 5 fs laser pulse and (b) a pulse
dispersed by 1 mm of fused silica. The spectrum is shown in (c) with the
extracted group delay (GD) curves shown in (d) alongside the measured and
Sellmeierderived glass group delay.

Figure 9.28: Calculated interferometric autocorrelation trace from the re-
constructed electric field using 2DSI and directly measured interferometric
autocorrelation of a 5 fs pulse.
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Chapter 10

Femtosecond Laser Frequency

Combs

So far we only considered the deterministic steady state pulse formation in
ultrashort pulse laser systems due to the most important pulse shaping mech-
anisms prevailing in todays femtosecond lasers. Due to the recent interest
in using modelocked lasers for frequency metrology and high-resolution laser
spectroscopy as well as phase sensitive nonlinear optics the noise and tuning
properties of mode combs emitted by modelocked lasers is of much current
interest. Soliton-perturbation theory is well suited to successfully predict
the noise behavior of many solid-state and fiber laser systems [1] as well as
changes in group- and phase velocity in modelocked lasers due to intracavity
nonlinear e�ects [5]. We start o� by reconsidering the derivation of the mas-
ter equation for describing the pulse shaping e�ects in a mode-locked laser.
We assume that in steady-state the laser generates at some position } = 0
(for example at the point of the output coupler) inside the laser a sequence
of pulses with the envelope d(W = pWU> w). These envelopes are the solutions
of the corresponding master equation, where the dynamics per roundtrip is
described on a slow time scale W = pWU. Then the pulse train emitted from
the laser including the carrier is

D(w) =
+"X

p=3"

d(W = pWU> w)h
m
k
$f
�
w3 1

ys
2pO

�l

(10.1)

=
+"X

p=3"

d(W = pWU> w)h
m
k
$f
�
w3pWU+

�
1
yj
3 1
ys

�
2pO

�l

(10.2)

361



362 CHAPTER 10. FEMTOSECOND LASER FREQUENCY COMBS

with repetition rate iU = 1@WU = yj@2O and center frequency $f. Both the
repetition rate and the carrier frequency are in general subject to slow drifts
due to mirror vibrations, changes in intracavity pulse energy that might be
further converted into phase and group velocity changes. Note, the center
frequency and repetition rate are only defined for times long compared to the
roundtrip time in the laser. Usually, they only change on a time scale three
orders of magnitude slower than the expectation value of the repetition rate.

10.1 The Mode Comb

Lets suppose the pulse envelope, repetition rate, and center frequency have
approached there stationary values and any perturbations and noise are ab-
sent. Then the corresponding time domain signal is sketched in Figure 10.1.

Vp

T = 1/fRR

1/fCE

/CE

IA(t)I

Vg

t

Figure 10.1: Pulse train emitted from a noise free mode-locked laser. The
pulses can have chirp. The intensity envelope repeats itself with repetition
rate iU= The electric field is only periodic with the rate iFH if it is related to
the repetion rate by a rational number.

The pulse d(W = pWU> w) is the steady state solution of the master equa-
tion describing the laser system, as studied in chapter 6. Let’s assume that
the steady state solution is a soliton
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d(w> W ) = dv(w) h
3m!0

W
WU (10.3)

with

dv(w) = D0 sech(
w� w0
�

) (10.4)

and the soliton phase shift

!0 =
1

2
�D20 =

|G|
� 2

(10.5)

Thus, there is a carrier envelope phase shift {!FH from pulse to pulse due
to dispersion and self-phase modulation is given by

{!FH>glvsVSP = $f

µ
1

yj
�
1

ys

¶¯̄̄̄
$f

2O� !0 +mod(2�) (10.6)

= $fWU

µ
1�

yj
ys

¶
� !0 +mod(2�)

The full expression for the laser electric field Eq.(10.2) is then, where we
keep the carrier-envelop phase shift {!FH at the moment open to eventually
acquired additional contributions from other nonlinear processes and not just
the contribution due to dispersion and self-phase modulation

D(w) =
+"X

p=3"

dv(w�pWU) h
m[$f(w3pWU)+p{!FH ] (10.7)

The Fourier transform of the unperturbed pulse train is

D̂($) = d̂v($ � $f)
+"X

p=3"

hm({!FH3$WU)p

= d̂v($ � $f)
+"X

p=3"

h
mpWU

�
{!FH
WU

3$
�

= d̂v($ � $f)
2�

WU

+"X
q=3"

�

µ
$ �

µ
{!FH
WU

+ q$U

¶¶
. (10.8)

which is shown in Figure 10.2. Note, that here we used the identity for a
�-comb in time and frequency domain
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+"X
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Each comb line is shifted by the carrier-envelope o�set frequency iFH =
{!FH
2�WU

from the origin
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Figure 10.2: Optical mode comb of a mode-locked laser output.

To obtain self-consistent equations for variations in repetition rate and
center frequency and the other pulse parameters due to intracavity power
fluctions and noise, we employ soliton-perturbation theory. This is for ex-
ample justified for the case of fast saturable absorber modelocking in the
negative dispersion region, where the steady state pulse is close to a soliton
as discussed in chapter 6, especially, when the ratio of gain filtering to dis-
persion is equal to the ratio of SAM action to self-phase modulation, see Eq.
(6.61). Then the steady state solution of the master equation is a soliton-
like pulse, stabilized by the irreversible dynamics and subject to additional
perturbations due to the environment and noise

WU
C

CW
d = mG

C2

Cw2
d� m�|d|2d

+(j � o)d+Gi
C2

Cw2
d+ �|d|2d+ Opert

(10.10)
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Due to the irreversible processes and the perturbations, the solution to
(10.10) is a soliton like pulse with perturbations in amplitude, phase, fre-
quency and timing plus some continuum

d(w> W ) = [dv(w> W ) + df(W> w)]

h3m!rW@WUhm{s(W )wh3m{�
(10.11)

with pulse energy z0 = 2D2r� .
The perturbations cause fluctuations in amplitude, phase, center fre-

quency and timing of the soliton and generate background radiation, i.e.
continuum

{D(W> w) = {z(W )iz(w) +{�(W )i�(w) +{s(W )is(w)

+{w(W )iw(w) + df(W> w)=
(10.12)

where, we rewrote the amplitude perturbation as an energy perturbation.
Note, that the il correspond to the first component of the vector in Eqs.(3.23)
- (3.26). The dynamics of the pulse parameters due to the perturbed Nonlin-
ear Schrödinger Equation (10.10) can be projected out from the perturbation
using the adjoint basis īWl corresponding to the first component of the vector
in Eqs.(3.45) - (3.48) and the new orthogonality relation, see Chapter 3.5.
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We obtain
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Note, that the irreversible dynamics does couple back the generated contin-
uum to the soliton parameters. Here, we assume that this coupling is small
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and neglect it in the following, see [1]. Due to gain saturation, gain filter-
ing and saturable absorber action, the pulse energy and center frequency
fluctuations are damped with normalized decay constants

1

�z
= (2jg � 2�D2r)> (10.18)
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� s
=
4
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jv
l2j�

2

1

WU
= (10.19)

These perturbation equations and time constants can be drived similar to the
case of active modelocking with soliton formation as treated in section 5.5,
one only needs to replace the active modelocker by the saturable absorber.
Here, jv is the saturated gain and jg is related to the di�erential gain by

jv =
jr

1 + zr
SOWU

(10.20)

jg =
gjv
gzr

· zr (10.21)

Note, in this model we assumed that the gain instantaneously follows the
intracavity average power or pulse energy, which is not true in general. How-
ever, it is straight forward to include the relaxation of the gain by adding a
dynamical gain model to the perturbation equations. For simplicity we shall
neglect this here. Since the system is autonomous, there is no retiming and
rephasing in the free running system.

10.2 Group- and Phase Velocity of Solitons

The Kerr-e�ect leads to a change of phase velocity of the pulse, resulting
in the self-phase shift of the soliton, !r> per round-trip. A change in group
velocity does not appear explicitly in the solution of the NLSE. However,
there should be an additional term added in the NLSE that also stems from
the Kerr-e�ect and is called self-steepening. Here, we treat it as perturbation
to the NLSE, (10.10)

Opert = �
�

$f

C

Cw
(|d(W> w)|2d(W> w))= (10.22)
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Usually the impact of this term on the pulse shape is small on the order of

1

$f�
=

W0
2��

>

and, therefore, is only important for few-cycle pulses. However, it turns out
that this term alters the group velocity of the soliton like pulse as much or
as it turns out even twice as much as the nonlinear phase shift changes the
phase velocity of the soliton-like pulse. We take this term into account in the
form of a perturbation. This perturbation term is odd and real and therefore
only leads to a timing shift in the soliton-like pulse, when substituted into
Eq.(10.10).
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This timing shift or group delay per round-trip, together with the nonlinear
phase shift of the soliton leads to a phase change between carrier and envelope
per roundtrip due to the Kerr e�ect in total given by

{!FH>Nhuu = �!0 + $f WU
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(10.25)
The compound e�ect of this phase delay per round-trip in the carrier versus
envelope leads to a carrier-envelope frequency

iFH>Nhuu =
{!FH>Nhuu

2�
iU =

!0
2�

iU= (10.26)

The group delay also changes the optical cavity length of the laser and there-
fore alters the repetition rate according to

{iU = �i2U{w(W )
¯̄
vhoivwhhs

= �2!0
iU
$f

iU = �
2

p0
iFH> (10.27)

where p0 is the mode number of the carrier wave. Eq.(10.8), together with
the linear and nonlinear contributions to the carrier-envelope frequency ac-
cording to Eqs.(10.6), (10.26) and (10.27) determine the location of the m-th
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line of the optical comb ip = iFH + piU with the total carrier-envelope
frequency

iFH =
{!FH>glvs +{!FH>Nhuu
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iU (10.28)
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The shift in iFH due to an intracavity pulse energy modulation and a change
in cavity length is then

{ip = {iFH>Nhuu +p{iU = iFH

µ
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¶
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z0
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= (10.29)

Specifically, Eq. (10.29) predicts, that the mode with number p = p0@2>
i.e. the mode at half the center frequency, does not change its frequency as
a function of intracavity pulse energy. Of course, one has to remember, that
this model is so far based on self-phase modulation and self-steepening as
the cause of a power dependent carrier-envelope o�set frequency. There may
be other mechanisms that cause a power dependent carrier envelope o�set
frequency. One such e�ect is the group delay caused by the laser gain medium
another one is the carrier-envelope phase change due to a change in carrier
frequency, which gives most likely a very strong additional dependence on
pump power. Nevertheless, the formula (10.29) can be used for the control of
the optical frequency comb of a femtosecond laser by controlling the cavity
length and the intracavity pulse energy, via the pump power.

10.3 Femtosecond Laser Frequency Combs

Nevertheless, the formula (10.29) can be used for the control of the optical
frequency comb of a femtosecond laser by controlling the cavity length and
the intracavity pulse energy, via the pump power. According to Fig. 10.2
every line of the optical comb determined by

ip = iFH +piU= (10.30)

Note, if the femtosecond laser emits a spectrum covering more than one
octave, then one can frequency double part of the comb at low frequencies
and beat it with the corresponding high frequency part of the comb on a
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Figure 10.3: f-to-2f interferometry to determine the carrier-envelope o�set
frequency.



370 CHAPTER 10. FEMTOSECOND LASER FREQUENCY COMBS

Figure 10.4: Carrier-envelope phase stabilized 200 MHz octave-spanning
Ti:sapphire laser. The femtosecond laser itself is located inside the grey
area. AOM, acousto-optical modulator; S, silver end mirror; OC, output
coupling mirror; PBS, polarizing beam splitter cube; PMT, photomultiplier
tube; PD, digital phase detector; LF, loop filter; VSA, vector signal analyzer.
The carrier-envelope frequency is phase locked to 36 MHz.

photo detector, see Fig. 10.3. The result is a photodector beat signal that
consists of discrete lines at the beat frequencies

in = niU ± iFH (10.31)

This method for determining the carrier-envelope o�set frequency is called
f-to-2f interferometry.The carrier-envelope o�set frequency can be extracted
with filters and synchronized to a local oscillator or to a fraction of the
repetition rate of the laser, for example iU@4=
Figure 10.4 shows the setup of an octave spanning 200 MHz Ti:sapphire

laser where the carrier envelope o�set frequency iFH is locked to a local
oscillator at 36 MHz using the f-to-2f self-referencing method [6]
The spectral output of this laser is shown in Figure 10.5 The spectral com-

ponents at 1140 are properly delayed in a chirped mirror delay line against
the spectral components at 570 nm. The 1140 nm range is frequency doubled
in a 1mmBBO-crystal and the frequency doubled light together with the fun-
damental at 570 nm is projected into the same polarization via a polarizing
beam splitter. The signal is then filtered through a 10nm wide filter and de-
tected with a photomultiplier tube (PMT). A typical signal from the PMT is
shown in Figure 10.6.Phase locking is achieved by a phase-locked loop (PLL)
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Figure 10.5: Output spectrum of the Ti:sapphire laser on a linear (black
curve) and on a logarithmic scale (grey curve). The wavelengths 570 and
1140 nm used for self-referencing are indicated by two dashed lines.

CE CE

Figure 10.6: Radio-frequency power spectrum measured with a 100 kHz res-
olution bandwidth (RBW). The peak at the carrier-envelope frequency o�set
frequency exhibits a signal-to-noise ratio of ~35 dB.
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by feeding the error signal from a phase detector (mixer or digital phase de-
tector) to an AOM placed in the pump beam (see Fig. 10.4) which modulates
the pump power, which in turn changes the intracavity pulse energy, and thus
changes the carrier-envelope frequency via Eq.(10.29). A bandpass filter is
used to select the carrier-envelope beat signal at 170 MHz. This signal is
amplified, in in the case here, divided by 16 in frequency, and compared with
a reference frequency fOR supplied by a signal generator (Agilent 33250A)
with the phase detector. The division of the carrier-envelope beat signal by
16 is to enhance the locking range of the PLL. The phase detector acts as
a frequency discriminator when the loop is open, the output is thus the dif-
ference frequency between the carrier-envelope frequency and the designated
locking frequency. The output signal is amplified in the loop filter, which in
our case is a proportional and integral controller, and fed back to the AOM,
closing the loop. The output of the phase detector is proportional to the
remaining jitter between the carrier-envelope phase evolution and the local
oscillator reduced by the division ratio 16. The power spectral density (PSD)
of the carrier-envelope phase fluctuations are measured with a low frequency
spectrum analyzer, in this case a vector signal analyzer (VSA) at the out-
put of the phase detector. After proper rescaling by the division factor the
phase error PSD is shown in Fig. 10.7. The measurement was taken in steps
with an equal amount of points per decade. The PSD of the carrier-envelope
phase fluctuations can be integrated to obtain the total phase error. In the
range above 1 MHz (see Fig. 10.7), the accuracy of this measurement is
limited by the noise floor of the vector signal analyzer. Here, an integrated
carrier-envelope phase jitter of about 0.1 radian over the measured frequency
range is obtained. The major contribution to the phase noise comes from low
frequency fluctuations around 10-50 kHz, where the gain of the loop is not
yet high enough. If in addition to the carrier-envelope frequency also the
repetition rate of the laser is locked to a frequency standard, such as for ex-
ample a Cesium clock, the femtosecond laser frequency comb in the optical
domain is completely determined with microwave precision and can be used
for optical frequency measurements [6].

10.4 Noise in Mode-Locked Lasers

Within the soliton perturbation theory framework the response of the laser to
noise can be easily included. All we need to do is assume know an additional
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Figure 10.7: Carrier-envelope phase noise power spectral density (left) and
integrated phase jitter (right) resulting in only 45 as accumulated carrier-
envelope timing jitter.

perturbation in the master equation (10.10) that describes the stochastic im-
pact of the noise sources in our system. In fact, there are many noise sources,
most importantly noise of the pump laser, acoustics, i.e. mirror vibrations,
air currents, if the laser is not properly covered and so on. However, even
if one eliminates all these technical noise sources by careful design and con-
trol there is a fundamental noise source left over that ensures that quantum
mechanical uncertainty relations are not violated, see [1]. Without going to
much into detail these fundamental noise sources are due to the losses and
the gain compensating the losses in the laser, which necessitates the intro-
duction of fluctuations (noise) into the system via the dissipation-fluctuation
theorem, which has a quantum mechanical analogon. From such considera-
tions follows that the amplifier causes spontaneous emission noise due to the
amplifying medium described by a saturated gain jv. This leads to additive
white noise in the perturbed master equation (10.10) with Opert = �(w> W ),
where � is a white Gaussian noise source with autocorrelation function

h�(w0> W 0)�(w> W )i = W 2USq�(w� w0)�(W � W 0) (10.32)

where the spontaneous emission noise energy Sq · WU with

Sq = X
2jv
WU
~$f = X

~$f

� sk
(10.33)

is added to the pulse within each roundtrip in the laser. Note, the factor
X A 1 is called excess noise factor and describes how much worth the noise
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performance of a real amplifier is in contrast to an ideal amplifier with gain
jv= The factor of 2 in eq.(10.33) comes from the fact that both gain and loss,
which are equal for a steady state laser cause equal amounts of loss, becasue
both result from coupling of the field to a reservoir. In the case of the gain,
this is the amplifier mediuam in the case of loss this is the coupling of the
resontor modes to the outside world, for example via the output coupler.
� sk =

2jv
WU
˜ 2o
WU
is the cavity decay time or photon lifetime in the cavity. Note,

that the noise is approximated by white noise, i.e. uncorrelated noise on
both time scales w> W . The noise between di�erent round-trips is certainly
uncorrelated. However, white noise on the fast time scale w, assumes a flat
gain, which is an approximation. By projecting out the equations of motion
for the pulse parameters in the presence of this noise according to (10.12)—
(10.17), we obtain the additional noise sources which are driving the energy,
center frequency, timing and phase fluctuations in the mode-locked laser
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The new reduced noise sources obey the correlation functions
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hVl(W 0)Vm(W )i = 0 for l 6= m= (10.46)

The power spectra of amplitude, phase, frequency and timing fluctuations
are defined via the Fourier transforms of the autocorrelation functions
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After a short calculation, the power spectra due to amplifier noise are¯̄̄̄
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These equations indicate, that energy and center frequency fluctuations be-
come stationary with mean square fluctuations*µ
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whereas the phase and timing undergo a random walk with variances
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The phase noise causes the fundamental finite width of every line of the
mode-locked comb in the optical domain. The timing jitter leads to a fi-
nite linewidth of the detected microwave signal, which is equivalent to the
lasers fundamental fluctuations in repetition rate. In the strict sense, phase
and timing in a free running mode-locked laser (or autonomous oscillator)
are not anymore stationary processes. Nevertheless, since we know these
are Gaussian distributed variables, we can compute the amplitude spectra of
phasors undergoing phase di�usion processes rather easily. The phase di�er-
ence * = {�(W )�{�(0) is a Gaussian distributed variable with variance �
and probability distribution
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s
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Therefore, the expectation value of a phasor with phase * is
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10.4.1 The Optical Spectrum

In the presence of noise the laser output changes from eq.(10.7) to a random
process. For simplicity, we treat here only the impact of the ever increasing
timing and phase fluctuations of the field, which explains the finite linewidth



10.4. NOISE IN MODE-LOCKED LASERS 377

of the optical and microwave spectrum of the femtosecond laser frequecy
combs in the optical and microwave domain. It is straight forward, but
lengthy, to include also amplitude and carrier-frequency fluctuations. Ne-
glecting the background continuum as well as amplitude fluctuations and
carrier frequency fluctuations, we obtain:
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We assume a stationary process, so that the optical power spectrum can be
computed from averages of the signal truncated in time according to
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with the spectra related to a finite time interval
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where d̂0($) is the Fourier transform of the pulse shape. If D(w) would be
an electronic signal, Eq.(10.59) is exactly what a modern digital microwave
spectrum analyzer measures and computes. In this case
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With (10.59) the optical spectrum of the laser is given by
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(10.62)

Note, that the di�erence between the phases and the timing only depends on
the di�erence n = p�p0. In the current model phase and timing fluctuations
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are uncorrelated. Therefore, for Q $4 we obtain

VDD($) = |d̂v($ � $f)|2 1
WU

P"
n=3" h

mWU

�
{!FH
WU

3$
�
n

hh+m[2�($3$0)({w((p+n)WU)3{w(pWU))]i


h3m({�((p+n)WU)3{�(pWU))

®
=

(10.63)
The expectation values are exactly of the type calculated in (10.57), which
leads to
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Most often we are interested in the noise very close to the lines at frequency
o�sets much smaller than the inverse energy and frequency relaxation times
�z and � s= This is determined by the long term behavior of the variances,
which grow linearly in |W |
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From the Poisson formula
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and Eqs.(10.64) to (10.68) we finally arrive at the optical line spectrum of
the mode-locked laser
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|d̂0($ � $f)|2

W 2U

+"X
q=3"

2{$q

($ � $q)2 +{$2q
(10.71)

which are Lorentzian lines at the mode comb positions

$q = q$U +
{!FH
WU

> (10.72)

with a half width at half maximum of

{$q = {$! + [�($q � $f)]
2{$w= (10.73)

Estimating the number of modes M included in the comb by

P =
WU
�
> (10.74)

we see that the contribution of the timing fluctuations to the linewidth of
the comb lines in the center of the comb is negligible. Thus the linewidth of
the comb in the center is given by 10.67

{$! =
2
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µ
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�2
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+16

� 2z
W 2U

!2r

¶
X2jv
Q0WU

(10.75)

=
2

3

µ
1 +

�2

12
+16

� 2z
W 2U

!2r

¶
X

Q0� sk
(10.76)

where Q0 =
zr
~$f

is the number of photons in the cavity and �sk = WU@(2o) is
the photon lifetime in the cavity. Note that this result for the mode-locked
laser is closely related to the Schawlow-Towns linewidth of a continuous wave
laser which is {i! =

X
2�Q0�sk

= For a solid-state laser at around 1�p wave-
length with a typical intracavity pulse energy of 50 nJ corresponding to
Q0 = 2=5 · 1011 photons and 100 MHz repetition rate with a 10% output
coupler and an excess noise figure of X = 2> we obtain {i!˜

X
3�Q0�sk

= 8�K}

without the amplitude to phase conversion term depending on the nonlinear
phase shift !r= These intrinsic linewidths are due to fluctuations happening
on a time scale faster than the round-trip time and, therefore, can not be
compensated by external servo control mechanisms. For sub-10 fs lasers, the
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spectra fill up the full gain bandwidth and the KLM is rather strong, so that
the amplitude and center frequency relaxation times are on the order of 10-
100 cavity roundtrips. In very short pulse Ti:sapphire lasers nonlinear phase
shifts are on the order of 1 rad per roundtrip. Then most of the fluctuations
are due to amplitude fluctuations converted into phase jitter. This contribu-
tions can increase the linewidth by a factor of 100-10000, which may bring
the linewidth to the mHz and Hz level.

10.4.2 The Microwave Spectrum

Not only the optical spectrum is of interest also the spectrum of the photo
detected output of the laser is of interest. Simple photo detection can con-
vert the low jitter optical pulse stream into a comb of extremely low phase
noise microwave signals. The photo detector current is proportional to the
output power of the laser. Neglecting amplitude fluctuations, we find from
Eq.(10.58)

L(w) = �
h

h$f
|D(W> w)|2 = �

h

h$f�
× (10.77)

+"X
p=3"

z0
2
sech2

µ
w�pWU �{w(pWU)

�

¶
>

where � is the quantum e!ciency. We obtain for the Fourier transform of
the photo current

L̂W ($) = �
hz0
h$0�

|d0|
2 ($)

+QX
p=3Q

h3m$(pWU+{w(pWU))> (10.78)
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=
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2
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> (10.80)

and its power spectrum according to Eq.(10.59)
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Using the Poisson formula again results in

VLL($) =
(�hQ0)

2

W 2U

¯̄
|d0|

2 ($)
¯̄2 +"X

q=3"

2{$L>q

($ � q$U)2 +{$2L>q
(10.82)

with the linewidth {$L>q of the n-th harmonic

{$L>q =

µ
2�q

�

WU

¶2
{$w

=

µ
2�q

P

¶2
{$w= (10.83)

The fundamental line (q = 1) of the microwave spectrum has a width which
is P2�times smaller than the optical linewidth. For a 10-fs laser with 100
MHz repetition rate, the number of modes P is about a million.

10.4.3 Example: Er-fiber laser:

Figure 10.8 shows the schematic of a recently constructed soliton Er-fiber
laser. The noise behavior of such a laser has been discussed in [2][3][4].

EDF
OC SBRDBS L1

980nm
pump

output

measurement

20.7cm
ß2=-20fs2/mm

10% Fsat= 50PJ/cm2

6%, 2ps

Figure 10.8: Schematic of soliton fiber laser modelocked with a semiconductor
saturable Bragg reflector (SBR).

The timing jitter of the soliton laser shown in Figure 10.8 is computed in
Table 10.1.
The soliton perturbation theory used should describe this type of laser

very well, so it is intersting to see how well the theory describes the measure-
ment. In reality, these quantum limited (ASE) and rather small optical and
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Gain Half-Width Half Maximum lj = 2� · 0=3�m/fs(1=�m)2
0=01�m= 19THz

Saturated gain jv = 0=13
Pulse width �IZKP = 180fs, � = �IZKP@1=76 = 100iv
Pulse repetition time WU = 2qv

Decay time for
center freq. fluctuations

1
�s
= 4

3
jv

l2j�
2WU

= 0=05
WU

Intracavity power S = 120mW
Intra cavity pulse energy

/ photon number
zr = 240pJ, Q0 = 0=2 · 1010

Noise power spectral density Sq = X2jv
WU
~$r

Amplifier excess noise factor X = 2

ASE noise Sq
zr
= X 2jv

WUQ0
= 0=13K}

Dispersion �8240iv2

Frequency-to-timing conv. 4
�2
4|G|2

�4
�2s
W2U
=
¡
2
�
· 1=6 · 20

¢2
= (20)2

Timing jitter density
¯̄̄
{ŵ(l)
�

¯̄̄2
= 1

l2
�2

3
Sq
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³
1 + 4

�2
4|G|2

�4
1

(W 2U@�
2
s+W

2
Ul

2)

´
Timing jitter [imin> imax]
for imin ?? 1@� s,
imin = 10nK}>

{w = �

r
1

12·imin
Sq
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³
1 + 4

�2
4|G|2
�4

�2s
W 2U

´
= 2iv

Table 10.1: Parameters for the soliton laser of Figure 10.8.

microwave linewidths are di!cult to observe, because they are most often
swamped by technical noise such as fluctuations in pump power, which may
case gain fluctuations, or mirror vibrations, air-density fluctuations or ther-
mal drifts, which directly cause changes in the lasers repetition rate. Figure
10.9 shows the single-sideband phase noise spectrum L(f) of the N=4 har-
monic of the fundamental repetition rate, i.e 1.963 GHz, in the photo current
spectrum 10.82.

The phase of the N=4nd harmonic of the photocurrent 10.77 is directly
related to the timing jitter by

{*(W ) = 2�QiU{w(W ) (10.84)

The single-sideband phase noise is the power spectral density of these phase
fluctuations defined in the same way as the power spectral density of the
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Figure 10.9: Timing jitter measurement of the output from the streched pulse
modelocked laser measured with a HP 5052 signal analyzer.

photocurrent itself, i.e.
O(i) = V{*{*($) (10.85)

The phase fluctuations in a certain frequency interval can then be easily
evaluated by

{*2 = 2

Z i max

i min

O(i)gi= (10.86)

And the timing jitter is then

{w =
1

2�QiU

s
2

Z i max

i min

O(i)gi= (10.87)

For the measurements shown in Figure 10.9 we obtain for the integrated
timing jitter from 10kHz to 20 MHz of 12 fs. This is somewhat larger than
the value calculated in table 10.1 of 2 fs. The discrepancy may have many
reasons. The most obvious one is the resolution limit of the measurement
instrument itself, which is on the order of 10 fs.
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Chapter 11

Short Pulse Amplification

The first part of this chapter follows to a large extent the presentation [1]. So
far only generation of short pulses directly from laser oscillators was consid-
ered, which typically leads to low energy pulses with energy values ranging
from few pJ to at most few �J in long cavity lasers operating at large average
power levels.

Repetition�Rate,�Pulses�per�Second

10910610310010Ͳ3
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Regenerative�amplifiers

Regen +�multipass amplifiers

1Ͳ10�W�average�
power
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lse

�E
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Figure 11.1: Schemes for generating high energy laser pulses.

Many applications require higher energy pulses. Today laser pulses with
up to Joule and in rare cased to the kJ and MJ energy level are generated. In

387
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the following, we want to understand how this can be accomplished. Figure
11.1 shows the di�erent schemes to generate laser pulses with high pulse
energy. Today, the average power level of ultrashort pulsed laser sources is
in the range of 1-10 W and scaling to the 100 W and kW average power level
is pursued and rapidly progressing.

11.1 Cavity Dumping

One way to generate higher energy pulses than available directly from an
oscillator is to realize that the pulse energy inside an oscillator is actually
higher than outside, if the laser operates with a low output coupling ratio to
achieve lasing at all. Thus by simply opening the cavity, i.e. lowering the Q-
factor of the cavity rapidly, which is oposite to Q-switching, the intracavity
pulse energy can be dumped to the outside and used for experiments, see
Fig. 11.2

R=100% R=98%

Eintracavity

EE

a)

R=100% R=100%

Eintracavityb)

Bragg-
Cell

Figure 11.2: a) Laser with low output coupling. Intracaivty pulse energy is
50-times higher than output coupled energy. b) Laser with Bragg cell for
cavity dumping of the high energy inctracavity laser pulse.[1]

A Bragg cell is an acousto-optic modulator, where a microwave pulse with
a given carrier-frequency imprints an index grating in the material that acts
as a Bragg reflector for the optical pulse. Another way to implement fast
optical switching for cavity dumping is by using a Pockels cell, see Fig, 11.3.
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V Polarizer
If V = 0, the pulse
polarization
doesn’t change.

If V = , the pulse
p

V
olarization switches

to its orthogonal state.

.

Figure 11.3: Abruptly switching a Pockels cell from zero voltage to a high
voltage, Y�> results in a switching of the polarization from one state to
its orthogonal state and therefore redirecting the path of the beam via a
polarizer.[1]

The Pockels e�ect is the linear electro-optic e�ect, where an applied volt-
age, either orthogonal to the pulse propagation or longitudinal results in a
change of refractive index in the medium. If the input polarization is properly
chosen an applied voltage, Y�>of a certain mangitude my induce a di�eren-
tial phase shift of � resulting in a switching between orthogonal polarizaiton
states, which redirects the beam at a polarizer. Typical rise and fall times
of Pockels cells are several nanoseconds and typical voltages Y� are on the
order of kV for few millimeter diameter crystals. After the dumping of the
pulse, the switch returns into the initial position and the laser field builds
up again from whatever is left in the cavity — typically only 80-90% of the
intracavity energy is dumped. In this way 10-50 times higher energy pulses
at 10-50 times lower repetition rate can be generated.

11.2 Laser Amplifiers

A much more scalable way towards higher energy laser pulses is of course
continuous amplification of a single pulse selected from a pulse train emitted
from an oscillator or a cavity dumped oscillator to higher energy levels by
propagating the laser pulse through an inverted laser medium. Here, it is
of great advantage that the laser medium can store energy over a period of
time equal to the upper state lifetime. Thus it is possible to optically pump
the laser medium with a very high energy pump pulse, that is shorter than
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the upper state life time of the laser amplifier transition. Then the medium
is inverted and stores the energy of the pump pulse, see Fig. 11.4. The
seed pulse to be amplified should arrive at the laser medium in a time much
shorter than the upper state lifetime, propagate through the laser medium,
gets amplified and hopefully is able to extract as much energy as stored in the
medium minus the qunatum defect in the laser emission. Since upper state
lifetimes of typical solid-state laser media are in the range of �v �pv high
energy pulses generated from Q-switched solid-state lasers, which typically
have 10-100 ns duration can be used as pump pulses.

Laser�
oscillator

Amplifier�
medium

Pump�pulse

Energy�levels�of�
amplifier�medium

Seed
pulse

Amplified
pulse

Figure 11.4: Laser amplifier: Pump pulse should be shorter than upper state
lifetime. Signal pulse arrives at medium after pumping and well within the
upper state lifetime to extract the energy stored in the medium, before it is
lost due to energy relaxation.[1]

If the repetition rate of the pulses to be amplified is higher then the inverse
upper state lifetime, the amplifier medium can also be pumped continuously
without loosing e!ciency.

11.2.1 Frantz-Nodvick Equation

From the treatment of laser matter interaction and laser oscillation in chapter
4, we found that the power gain, 2j, of a light beam with intensity L(}),
propagating through an inverted medium is proportional to the inversion,
z(}) or in an ideal four level laser amplifier medium to the upper state
population, and the interaction cross section �of the amplifier transition

2j(}) = �z(})= (11.1)
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The initial inversion or small signal gain is related to the absorbed pump
fluence I 0

sxps per unit length>see Fig. 11.5.

Amplifier  medium
FExt ,  Fsat

pump

Fin

F

Fout

z=0 z=L

Figure 11.5: Pumping, seeding and amplification in a laser amplifier.[1]

=Assuming a pump quantum e!ciency �sxps for the transfer of pump
photons into inverted transistions the small signal gain is given by,

2j0(}) = �z0(}) = �
I 0
sxps

kis
�sxps (11.2)

=
I 0
sxps

Ivdw

kiO
kis

�sxps> (11.3)

where Ivdw =
kiO
�
, is the saturation fluence of the amplifier and

R O
0
I 0
sxps(})g} =

Isxps is the integrated pump fluence pumping the amplifier. A light beam
with intensity L(}) propagating in an amplifying mediumwith gain j(}) along
the z-direction obeys the equations of motion

gL(}> w)

g}
= 2j(}> w) L(}> w)> (11.4)

gj(}> w)

gw
= �

j(}> w)

�O
�

jL(}> w)

Ivdw
= (11.5)

In each slice of the medium with lenght g}, there is an inversion and therefore
a gain j(}> w). Typically, amplifier media with a long upperstate lifetime are
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chosen, such that the light pulse propagates through the gain medium in a
time much shorter than the upper state lifetime. Therefore, the relaxation
of the of the gain medium during the amplification process can be neglected.
Immediately before the arrival of the pulse to be amplified the medium is
pumped with a short and intense optical or electrical pulse that brings the
medium into the upper amplifier state resulting in a maximum initial gain
j0(}) of the amplifier medium. Neglecting gain relaxation during the pulse
propagation and introducing the fluence or energy flux

I (}) =

Z +"

3"
L(}> w) gw= (11.6)

Neglecting gain relaxation, the equation for the gain in each length element
g} along the propagation direction, Eq.(11.5), can be integrated

j(}> w) = j0(}) exp

�
�
1

Ivdw

Z w

3"
L(}> w0) gw0

¸
= (11.7)

Substitution of this result into Eq.(11.4) gives

gL(}> w)

g}
= 2j0(}) exp

�
�
1

Ivdw

Z w

3"
L(}> w0) gw0

¸
L(}> w)= (11.8)

This equation can by converted into an equation for the fluence by integration
over time w> over the pulse length

gI (})
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= 2j0(}) exp
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¸
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This equation can be solved by separation of variables
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and finally gives the Frantz-Nodvick equation

exp
h
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Ivdw
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� 1
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Ilq
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= J0 = exp
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0

j0(})g}
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(11.12)

where J0 is the input to output small signal gain of the amplfiier, which can
be also expressed in terms of the total extractable energy fluence

Ih{w = Isxps
iO
is
�sxps= (11.13)

according to Eq.(11.3)
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¸
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The Frantz-Nodvick equation takes a more transparent form when introduct-
ing the normalized fluences i = I@Ivdw for input, output and extractable flu-
ence. This equation shows the important relationship between energy gain
achieveable in an amplifier and extraction e!ciency. This becomes more
obvious when computing the actual gain achieved in the overall amplifier
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This equation simply states, that as long as the input energy, seed energy, is
so low that the amplifier does not saturate, the gain is the maximum total
small signal gain of the amplifier. As soon as the output energy approaches
saturation energy, the gain saturates and in the limit of total saturation
the maximum gain is the ratio of the maximum extractable energy to input
energy. The extraction e!ciency showing how much of the extrable energy
got actually extracted from the amplifier is
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=(11.16)
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This shows that one can not use the maximum gain and simultaneously
extract the maximum energy. As an example, Figure 11.6 shows the gain
and extraction e!ciency for an amplifier with a small signal gain of 3. In
this case, for an input energy equal to the saturation energy one can extract
80% of the extractable energy with a gain of about 2.2, roughly doubling the
input energy.

1
1.2
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1.6
1.8

2
2.2
2.4
2.6

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
f  =F /Fin in sat

G0=3

Figure 11.6: Gain and extraction e!ciency of an amplifier for a small signal
gain of J0 = 3=[1]

Thus in a low gain amplifier one can only e!ciently extract energy by
seeding already with the a pulse fluence equal to the saturation fluence. This
often needs amplification by many passes through the gain material in order
to reach saturation energy. This multipass arrangement can be achieved in
various ways. Figure 11.7 shows the two standard arrangements: a) multi-
pass amplifier and b) regenerative amplifier. In case a) the beam path is
arranged geometrically to pass the pumped gain region many times in such
a way that there is good overlap of all beams in the gain medium for e!cient
gain extraction. Thermal distortions of the crystal and unsymmetric thermal
lenses in the crystal may lead to a distortions in the laser beam. Therfore, for
up to few mJ pulse energy most often the configuration b) is prefered. There
a pulse from the pulse train coming in from an oscillator is selcted and kept
in the laser cavity for a certain number of round-trips until it is amplified to
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large enough pulse energy extracting most of the available energy stored in
the crystal. Then the pulse is switched out and the energy in the gain medium
is replenished by receiving the next pump pulse, which prepares the system
for the next amplification cycle. Typical repetition rates for this process are
1-500 kHz repetition rate. Depending on the upper state lifetime of the gain
medium, the regenerative amplifier maybe pumped with a continuous wave
(cw) operating pump laser.

a)�MultiͲpass�amplifier

pump

input
output

gain

Pockels�cell

polarizer

gain

pump

input/output

b)�Regenerative�amplifier

Figure 11.7: Multiple pass arrangements: a) Multi-pass amplifier, by re-
directing the beam through the pumped crystal several times. b) Multi-pass
amplification by switching a laser pulse in and out of a laser cavity after the
pulse has propagated through the crystal a given number of time.[1]

11.2.2 Regenerative Amplifiers

Figure 11.8 shows two di�erent configurations for regenerative amplifiers.
Configuration (a) shows a regular
V-cavity Ti:sapphire laser with a Pockels cell placed in one arm, which will
flip the polarization in a double pass when activated. The polarization of the
input and intracavity beam is controlled by thinfilm polarizers (TFPs). In
configuration (b) the spotsize in the crystal is enlarged by the concave mirror
M1 to enable higher output pulse energies.
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thinͲfilm�polarizer

Pockels�cell

Faraday�rotator

Figure 11.8: Di�erent configurations for regenerative amplifiers. [1]

11.2.3 Multipass Amplifier

Figure 11.7 a) showed a multi-pass amplifier with only a few passes through
the crystal. The configuration shown in Figure 11.9 shows a slighlty missaligned
ring cavity such that the beam passes many times on slightly di�erent passes
through the crystal. The pulse is selcted from a pulse stream by a pockels
cell.
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Figure 11.9: Multipass amplifier with many passes folded up many times in
a cavity with slightly missaligned mirrors. [1]

11.3 Chirped Pulse Amplification

The extraction of pulse energy from the crystal in the form of pico and fem-
tosecond pulses is rapidly limited by the nonlinearities of the amplifier crystal
occuring due to the high peak power of short amplified pulses. Most notably
self-focusing that occurs for peak power greater then the critical power for
self-focusing or small scale self-focusing [ref]. It was recognized by Strickland
and Mourou [2] that one can use chirping of the pulses and compression af-
ter the amplification to dramatically overcome those limitations and increase
the peak powers and withit peak intensities achievable by the stretching ratio
which can be as large as 104 � 105, see Fig. 11.10.
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Figure 11.10: Principle of chirped pulse amplification. [1]

The amplifiers used can be only a regenerative amplifier or a regenerative
amplifier folowed by one or two stages of multipass amplification.

11.4 Stretchers and Compressors

Large stretching of pulses requires physically a large group delay between
di�erent spectral components. For femtosecond laser pulses with 10-50 fs
duration stretching to almost 1 ns duration is typically achieved with grating
pairs. The spatial dispersion of the di�erent colors and with it the path length
of the di�erent colors can be further enlarged with an objective. In the design
of these stretchers, one can start from the zero dispersion stretcher using the
standard 4-f imaging system shown in Fig. 11.11 for the case that g = i= If
g 6= i the dispersion is not any longer zero and can reach stretching ratios
as large as 104=
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Figure 11.11: Principle arrangement of a grating based stretcher. [1]

To acommodate large beam diameters, avoiding the chromatic abbera-
tions of lenses and utilizing only one grating such stretchers use reflective
optics and are aranged in a bac- folded geometry, see Fig. 11.12 as demon-
strated by Lawrence Livermore National Laboratories, realizing a stretching
ratio of 30,000.

Pulse stretcher characteristics:
Input pulse width: 18 fs
Output pulse duration: 600 ps
Bandwidth passed: >105 nm
Pulse energy out: ~0.5 nJ

Figure 11.12: Backfolded stretcher designed by Lawrence Livermore National
Laboratories. [1]
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Software for the design of stretchers and compressors has been developed
by Craig Siders and can be found under http://dom.creol.ucf.edu/. Figure
11.13 shows the typical fluences achievable from di�erent laser materials due
to the saturation fluence, doping of the material and the damage threshold of
the material for various pulse lengths. Compression of the pulses enables to
generate femtosecond pulses at these high energy fluences. Large cross section
laser crystals of high optical quality are necessary to generate multiple 10 J
pulses from Ti:sapphire lasers enabling Petawatt lasers.
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Figure 11.13: Achieveable fluences using chirped pulse amplification for vari-
ous stretching ratios. Compression of the pulses enables femtosecond pulses.
[1]

Figure 11.14 shows the necessary beam diameters for a Ti:sapphire am-
plifier to extract various pulse energies. Note, the saturation fluence for
Ti:sapphier is Ivdw = kiO@� = 0=82 J/cm2= Therefore, the saturation energy
of a beam with diameter 1mm is about 6 mJ.
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Figure 11.14: Beam diameter for Ti:sapphire amplifiers pumped by 100W of
average power with a typical e!ciency of 20% for various repetiton rates and
therefore extracted pulse energies after [1]

11.5 Gain Narrowing

For large amplification factors gain narrowing seriously restricts the achie-
veable amplifier bandwidth. The impact of this e�ect on a 10 fs pulse in
a Ti:sapphire amplifier is shown in Figure 11.15. Despite the large gain
bandwidth of Ti:sapphire supporting 10 fs pulses and below from oscillators,
amplifiers are typically lmited to 20-30 fs pulses depending on amplification
factor.
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Figure 11.15: Influence of gain narrowing in a Ti:sapphire amplifier on a 10
fs seed pulse [1]
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In fiber amplifieres, gain narrowing can be compensated by additional
nonlinear spectral broadening. In bulk amplifiers gain narrowing has been
partially compenstated by intracavity filters, that are flattening the overall
gain profile, see Fig. 11.16. Using dielectric filters for gain flattening sub-10
fs pulses from Ti:sapphire amplifiers have been demonstrated recently.
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Figure 11.16: Gain flattening by intracavity filter. [1]

11.6 Pulse Contrast

Amplified laser pulses often have pure contrast both on a short and long time
scale. Fig. 11.17 shows the pulse power as a function of time of a typical
amplified pulse. There are pre pulses on the time scale of the repetiton rate of
the oscillator due to the limited contrast of the pockels cell during switching.
This can be improved by using several pockels cells in sequence. Then there
may be a back ground due to ASE, which eventually needs to be cleaned
up between amplifier stages. Finally there can be a limited contrast due to
the residual spectral phase, i.e. higher order dispersion. This background
is a very serious problem for high intensity laser pulses where laser matter
interaction at 1020Z@fp2 may be pursued. Even a background of 1038 is
high enough to preionize material before the main laser pulse arrives at the
target.
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Figure 11.17: Contrast of amplified laser pulses. [1]

Figure 11.18 shows a typical third-order high resolution autocorrelation
of an amplified laser pulse.

Figure 11.18: Typical high resolution autocorrelation of an amplified laser
pulse. [1]
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11.7 Scaling to Large Average Power by Cryo-

genic cooling

With increase of average power a thermal lens is building up in the laser crys-
tal where the residual pump energy both due to the qunatum defect and the
imperfect energy extraction is dissipated into heat. This is problematic both
in oscillators and amplifiers. In fiber lasers the thermal lensing is unprob-
lematic since the mode is usually guided by a much stronger refractive index
profile. Up to a certain extent this thermal lens can also be compensated in
bulk lasers by including it in the resonator design or beam path design. But
at a certain power level this is no longer possible. One way out of this dilema
is by cryogenic cooling of the crystal, see Fig. 11.19.

Figure 11.19: Reduction in thermal lensing due to cooling of a Ti:sapphire
crystal.

It turns out, that it is a general feature of dielectric materials. Fig.
11.20 shows the thermal properties of YAG on which many very e!cient
picosecond laser materials such as Nd:YAG and Yb:YAG are based. The
thermal lensing for a given heat load to the crystal is proportional to the
ratio between the temperature coe!cient of the refractive index or thermal
expansion coe!icient and the thermal conductivity. These ratios change by
a factor of 30 when the crystal is cooled from 300 K to 100 K, which can be
achieved using liquid nitrogen cooling.
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Figure 11.20: Thermal properties of undoped YAG as a function of temper-
ature. [3]

Figure 11.21 shows a cyrogenically cooled Yb:YAG power amplifier pro-
ducing 287 W of 5.5-ps pulses with an excellent beam quality [4].

Figure 11.21: (a) Fiber CPA chain generating a 6W picosecond seed source
for seeding of a 300W cryogenically cooled Yb:YAG power amplifier produc-
ing 287 W, average power 5.5-ps pulses.
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11.8 Optical Parametric Amplifiers and Os-
cillators

Advances in laser technology together with the discovery of high quality
nonlinear optical crystals have lead to the introduction of ultrafast opti-
cal parametric amplifiers as practical sources for femtosecond pulses tunable
across the visible, near and far infrared spectral ranges. Here, we give a brief
overview on ultrafast optical parametric amplifiers (OPA), giving the basic
design principles for di�erent frequency ranges and in addition presenting
some advanced designs for the generation of ultrabroadband, few-optical-
cycle pulses. Finally, we also briefly discuss the possibility of applying para-
metric amplification schemes to large-scale, high energy systems using op-
tical parametric chirped pulse amplification (OPCPA). This chapter follows
closely the review paper of Cerullo et al. [5].

11.8.1 Optical Parametric Generation (OPG)

The principle of OPG is quite simple: In a suitable nonlinear crystal, a high
frequency and high intensity beam, called the pump beam, at frequency $s,
amplifies a lower frequency, lower intensity beam, called the signal beam, at
frequency $v; in addition a third beam, called the idler beam, at frequency
$l is generated[6]. In the OPG process, the signal and idler beams play
an interchangeable role. For simplicity, we assume in the following, that
the signal is at higher frequency, i.e. $v A $l. The nomenclature is again
taken from microwave engineering, where parametric amplifiers have been
greatly used at highest frequencies until the arrival of High Electron Mobility
Transistors (HEMTs) and GaAs-FET technology in the 80s. Parametric
interaction often occurs in lossless media and then energy conservation has
to be maintained, which enforces

~$s = ~$v + ~$l= (11.17)

That is, a pump photon can be converted into a signal and an idler photon
under energy conservation. As we will see from the propagation equation
later, for the conversion to be e!icent also momentum conservation has to
be fulfilled, i.e. the process should be phase matched

~�ns = ~�nv + ~�nl= (11.18)
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Thus for a given pump frequency the signal and idler frequency can range
from $s@2 ? $v ? $s and the corresponding idler ranges from $s@2 A $l A 0>
see Fig. 11.22. The case where signal and idler are both $s@2 is called
degenerate parametric amplification, which is a delicate process especially if
both the signal and idler beam occupy the same mode, i.e. they can not be
distinguished and are identical. This case will not be considered here.

Figure 11.22: Optical parametric generation

Optical parametric generation in short crystals — necessary for broadband
operation — is only possible with high e!ciency at high intensities, typically
on the order of GW/cm2 or even tens of GW/cm2= Such high intenisties can
easily be generated using pico- and femtosecond pulses at moderate pulse
energies of a few �J.

pump

Signal�and�idler resonant

Figure 11.23: Schematic of a doubly resonat OPO. It is resonant for signal
and idler. In addition the cavity length also has to match the pump repetition
rate within a few micrometer, if the OPO is pulsed.

OPG can be exploited in two principle configurations. If the OPG crystal
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is enclosed in a suitable optical cavity and the parametric gain exceeds the
losses, the cavity starts oscillating like an ordinary laser and an optical para-
metric oscillator (OPO) is obtained. In this case either the signal and/or the
idler can be resonant, see Fig.11.23.The second way consists in amplifying a
weak signal beam, the so-called “seed” beam, thus obtaining an optical para-
metric amplifier (OPA). Like in a laser amplifier, amplification may occur in
several stages. Both schemes are employed with ultrashort pulses, as well
as in continuous wave (cw) and nanosecond pulse systems depending on the
application. OPOs can be pumped by a small-scale femtosecond oscillator,
and provide pulses at very high repetition rates, e.g. 100 MHz - 1 GHz.
As with lasers, at average power levels of 1 W output energies of OPOs are
low, typically a few nanojoules, and they require a cavity whose length is
matched to the repetiton rate of the pump laser within micrometers. Their
tunability is limited by the bandwidth of the mirror coatings, so that several
mirror sets may be required to span the whole tuning range. In contrast
to OPOs, which may operate at moderate single pass gains, OPAs require
high pump intensities, provided only by an amplified system, and operate at
lower repetition rates ~typically from 1 to 100 kHz. on the other hand, they
provide high output energies, broad frequency tunability and are simpler to
operate, since they do not require any cavity length stabilization. Therefore,
femtosecond OPOs and OPAs are complementary systems, used in di�erent
types of applications.

In the following, we will focus on femtosecond OPAs, which have reached
a high level of stability and reliability. These systems are usually pumped
by amplified Ti:sapphire lasers, providing pulses with millijoule-level energy
depending on repetition rate and about 100 fs duration. Pumping can occur
either at the fundamental wavelength (FW) at 800 nm or at the second
harmonic (SH) at 400 nm of the laser beam. Femtosecond OPAs tunable
from the ultraviolet (UV) to the mid-infrared (IR) have been demonstrated
and produce pulse energies up to the 100 �J level and higher if higher pump
pulse energies are available. Typical overall e!ciencies are on the order
of 10%. In addition, femtosecond OPAs have the capability of generating
pulses significantly shorter than the pump pulses, exploiting the large gain
bandwidths available in the parametric interactions. They can therefore be
used as e�ective pulse compressors. Recently ultrabroadband pulses with
durations down to 5 fs in the visible and 10-15 fs in the near-IR have been
demonstrated containing only a few optical cycles of the carrier frequency.
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11.8.2 Nonlinear Optical Suszeptibilities

The total electric field propagating in the amplifier crystal can be described
as a sum of pump, signal and idler field

�H(�u> w) =
X
$dA0

3X
l=1

1

2

n
Ĥl($d)h

m($dw3�nd�u) + f=f=
o
�hl= (11.19)

where Hl($d) is the i-th cartesian component of the complex electric field
vector with polarization �hl. As usual the term f=f= (complex conjugate) con-
tains the negative frequency components of the field Hl(�$d) = Hl($d)

W= The
nonlinear polarization is order with respect to powers of the electric field and
since the polarization needs to be real it can also be sorted into positive and
negative frequency components

�S (�u> w) =
X
q

�S (q)(�u> w) (11.20)

with

�S (q)(�u> w) =
X
$eA0

3X
l=1

1

2

n
S
(q)
l ($e)h

m($ew3�n0e�u) + f=f=
o
�hl= (11.21)

The i-th cartesian component of the n-th order nonlinear polarization with
frequency $e defines the n-th order nonlinear dielectric suszeptibility-Tensor
via

S
(q)
l ($e) =

%0
2p31

X
S

X
m===n

"
(q)
lm===n($e : $1> ====> $q)Hm($1) · · ·Hn($q)>(11.22)

$e =
qX
l=1

$l and k0e =
qX
l=1

kl= (11.23)

Here, the summation S indicates summation over all permutations of $1> ====> $q>
leading to the same generated frequency $e and p is the number of all fields
with non vanishing frequency (no DC-fields). Here a few examples:

S
(2)
l ($3) = %0

X
mn

"
(2)
lmn($3 : $1> $2)Ĥm($1)Ĥn($2)> (11.24)

$3 = $1 + $2 und k03 = k1 + k2= (11.25)
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( �$ Sum Frequency Generation (SFG))

Ŝ
(2)
l ($3) = %0

X
mn

"
(2)
lmn($3 : $1>�$2)Ĥm($1)Ĥ

W
n($2)> (11.26)

$3 = $1 � $2 und k03 = k1 � k2= (11.27)

( �$ Di�erence Frequency Generation (DFG))

Ŝ
(2)
l ($2) = %0

X
mn

"
(2)
lmn($2 : $3>�$1)Ĥm($3)Ĥ

W
n($1)> (11.28)

$2 = $3 � $1 und k02 = k3 � k1= (11.29)

( �$ Parametric Generation (OPG))

Ŝ
(3)
l ($4) =

6%0
4

X
mno

"
(3)
lmno($4 : $1> $2>�$3)Ĥm($1)Ĥn($2)Ĥ

W
o ($3)>(11.30)

$4 = $1 + $2 � $3 und k04 = k1 + k2 � k3= (11.31)

( �$ Four Wave Mixing (FWM))
Note, that the suszeptibilities are symmetric with respect to a permutation
of the frequencies {$l} together with the corresponding index, since it is
arbitrary, which of the frequencies is denoted as $1, e.g.

"
(q)
lmn($ : $1> $2> ===) = "

(q)
lnm($ : $2> $1> ===)= (11.32)

In the following, we consider only the case of OPG.

11.8.3 Continuous Wave OPA

Optical parametric amplification occurs due to the nonlinear interaction of
the three waves: pump, signal and idler wave during propagation in the
nonlinear medium. We can derive these three coupled equations by starting
from the general wave equation (2.7), and adding to the linear polarization
of the medium �S (o)(�u> w) also the second order nonlinear contribution (11.28)µ

{�
1

f20

C2

Cw2

¶
�H = �0

C2

Cw2

³
�S (o)(�u> w) + �S (2)(�u> w)

´
= (11.33)

The linear term will lead to a change in group and phase velocities of the
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three waves described by the dispersion relation of the medium n($)= Assum-
ing that the three waves are di�erent in frequency and propoagating along
the z-direction, this equation can be separated in three equations for the
amplitudes Hs>v>l(}) for each frequency component, where

�Hs>v>l(}> w) = Re
©
Hs>v>l(}) h

m($s>v>lw3ns>v>l })�hs>v>l
ª
= (11.34)

To do so, we also write the nonlinear polarization in its three contributions
oscillating at di�erent frequencies

�S
(2)
s>v>l(}> w) = Re

½
S
(2)
s>v>l(}) h

m
�
$s>v>lw3n0s>v>l}

�

�hs>v>l

¾
= (11.35)

and assuming the slowly-varying-envelope approximation g2s>v>lH(}) @g}
2 ??

2n gHs>v>l(}) @g}, we obtain

CHs>v>l(})

C}
= �

mf20$s>v>l

2q($s>v>l)
S
(2)
s>v>l(}) h

3m
�
n0
s>v>l

3n
s>v>l

�
}
= (11.36)

Here, f0 is the speed of light in vacuum and q is the refractive index
at the correponding frequency of the wave amplitude considered. Equation
11.36 shows that the nonlinear polarization acts as a source term changeing
the amplitude of the corresponding wave. Introducing the phase mismatch
of the three waves

{n = n($s)� n($v)� n($l)= (11.37)

and the e�ective nonlinearity and coupling coe!cients

ghii =
1

2
"
(2)
lmn($s : $v> $l)> �s>v>l = $s>v>l ghii@(qs>v>lf0)= (11.38)

we obtain

CHs(})

C}
= �m�s Hv(})Hl(}) h

m{n} > (11.39)

CHv(})

C}
= �m�v Hs(})H

W
l (}) h

3m{n}> (11.40)

CHl(})

C}
= �m�l Hs(})H

W
v (}) h

3m{n}= (11.41)
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Using the intensity in each beam Ls>v>l =
qs>v>l
2]I0

|Hs>v>l|2 and multiply each
equation in (11.39) to (11.41) with qs>v>lf0%0H

W
s>v>l@2> and add the complex

conjugate to it, one finds withµ
1

$s

¶
gLs
g}

=
m%0ghii
2

HWsHvHl h
3m{n} + f=f=>

and similarly for the other equations, the Manley-Rowe relation

�
1
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gLs
g}

=
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$v

gLv
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=
1

$l

gLl
g}

= (11.42)

This equation, which involves the change in photon flux at pump, signal
and idler, guarantees that for each pump photon a signal and idler pho-
ton is generated. Due to the scaling of photon energy with frequency the
corresponding intensities and with them the power flow has to scale propor-
tional to the frequencies. Note, this follows from energy conservation and
the Maxwell equations, no qunatum theory has been invoked.

11.8.4 Theory of Optical Parametric Amplification

Also, the parametric amplifier equations (11.39) to (11.41) can be solved ex-
actly and the solutions can be expressed in terms of Jacobi-Elliptic functions,
they do not give much insight at first. For the purpose here, we solve the
parametric amplifier equations in the undeplete pump approximation, i.e. we
assume the signal and idler fields are weak compared to the pump. Then the
pump amplitude can be assumed as fixed, Hs = frqvw=, unchanged by signal
and idler

CHv(})

C}
= �m�v HsH

W
l (}) h

3m{n}> (11.43)

CHl(})

C}
= �m�l HsH

W
v (}) h

3m{n}= (11.44)

Solution of these equations for initial conditions of a small input signal field,
Hv(} = 0) = Hv(0)> and no idler, Hl(} = 0) = 0 can be attempted using the
trial solutions Hv(}) � Hv(0) h

j}3m{n}@2 and Hl(}) � Hl(0) h
j}3m{n}@2> where

j is the parametric gain in amplitude that follows from the determinatal
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condition =These equations look similar to coupled mode equations also not
exactly. Using ¯̄̄̄

j � m{n
2

m�v Hs

m�l H
W
s j + m{n

2

¯̄̄̄
= 0

or

j =

s
K2 �

µ
{n

2

¶2
> with K =

q
�l �v |Hs|2= (11.45)

Here, K is the maximum gain achieved under phase matching, i.e. {n = 0>
which can be also expressed in terms of the pump intensity

K2 =
$v$l

qvqlf20
g2hii |Hs|

2 =
2]I0$v$l

qsqvqlf20
g2hii |Ls|

2 = (11.46)

The general soluitons to Eqs. (11.43) - (11.44 ) are

Hv(}) = {Hv (0) cosh j} +E sinh j}} h3m{n}@2 (11.47)

Hl(}) = {Hl (0) cosh j} +G sinh j}} h3m{n}@2 (11.48)

where the missing constants E and G have to be matched to fulfill Eqs.
(11.43) - (11.44 )
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2j
Hv (0)� m

�1
j
HsH

W
l (0) (11.49)

G = �m
{n

2j
Hl (0)� m

�2
j
HWsH

W
v (0) (11.50)

For the case of our initial conditions, vanishing idler input, we obtain finally
for the intensities of signal and idler beam after a propagation distance O

Lv(O) = Lv(0)

�
1 +

K2

j2
sinh2 jO

¸
> (11.51)

Ll(O) = Lv(0)
$l

$v

K2

j2
sinh2 jO= (11.52)

For the case of perfect phase matchingl j = K and the case of large gain
KO AA 1> these equations simplify to



414 CHAPTER 11. SHORT PULSE AMPLIFICATION

Lv(O) =
1

4
Lv(0) h

2KO> (11.53)

Ll(O) =
1

4
Lv(0)

$l

$v
h2KO= (11.54)

The parametric gain is

J =
Lv(O)

Lv(0)
=
1

4
h2KO> (11.55)

growing exponentially with the crystal length O and gain K= Note, that the
exponential growth of signal and idler waves along the crystal is qualitatively
di�erent from the quadratic growth occurring in other second order nonlinear
phenomena, such as sum frequency generation or second harmonic genera-
tion. This di�erence can be understood intuitively in the following way: in
a strongpump field, the presence of a seed photon at the signal wavelength
stimulates the generation of an additional signal photon and of a photon at
the idler wavelength. Likewise, due to the symmetry of signal and idler, the
amplification of an idler photon stimulates the generation of a signal photon.
Therefore, the generation of the signal field reinforces the generation of the
idler field and vice versa, giving rise to a positivefeedback that is responsible
for the exponential growth of the waves. Equation (11.46) shows that the
gain coe!cient K depends on: (i) the pump intensity; (ii) the signal and
idler wavelengths; (iii) the nonlinear coe!cient ghii ; and (iv) the refractive
indexes at the three interacting wavelengths. To characterize a parametric
interaction and compare di�erent nonlinear materials, one defines the follow-
ing figure of merit:

IRP =
ghiip

�v�lqsqvql
(11.56)

In the following we discuss some examples of parametric gain calculation
relevant to ultrashort pulses, assuming perfect phase matching. Figure 11.24
shows a plot of the parametric gain in BBO, at the infrared pump wavelength
�s = 0=8 �p and the signal wavelength �v = 1=2 �p as a function of pump
intensity and for di�erent crystal lengths. The gain scales as the exponential
of the square root of the pump intensity: J � h{s(�Ls). At a pump intensity
Ls = 25 GW/cm2, a gain J ' 6 is calculated for a crystal length O = 1 mm;
however, it rapidly increases toJ A 106 for O = 5mm. The same gain can be
obtained with a 3 mm crystal increasing the pump intensity to 75 GW/cm2.
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Figure 11.24: Parametric gain for an OPA at the pump wavelength �s = 0=8
�p and the signal wavelength �v = 1=2 �p, using type I phase matching in
BBO (ghii = 2 pm/V). [5]

The same plot for BBO at the visible pump wavelength �s = 0=4 �p and
the signal wavelength �v = 0=6 �p is shown in Fig. 2.

Figure 11.25: Parametric gain for an OPA at the pump wavelength �s = 0=4
�p and the signal wavelength �v = 0=6 �p, using type I phase matching in
BBO (ghii = 2 pm/V). [5]

In this case, at a pump intensity Ls = 25 GW/cm2, a gain J A 128 is
calculated for a crystal length O = 1 mm, about a factor of 20 larger than
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in the case of the infrared pump wavelength. The higher gain is due to
the smaller values of �v and �l , which increases the figure of merit of the
parametric interaction. Despite the improvement in figure of merit using a
visible pump, the group velocity mismatch between the interacting pulses,
as we will see later, prevents the use of long nonlinear crystals in this case.
We now address the problem of phase matching.

11.8.5 Phase Matching

To achieve maximum gain, we must satisfy the phase matching condition,
{n = 0, which can be recast in the form

qs =
qv$v + ql$l

$s
(11.57)

It is easy to show that this condition cannot be fulfilled in bulk isotropic
materials in the normal dispersion region (ql ? qv ? qs). In some birefrin-
gent crystals, phase matching can be achieved by choosing for the higher
frequency pump wave the polarization direction giving the lower refractive
index. In the case, common in femtosecond OPAs, of negative uniaxial crys-
tals (qh ? qr), the pump beam is polarized along the extraordinary direction,
see Fig. 11.26

n
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Wavelength0i0p

Index: n

0s

Figure 11.26: Type I noncritical phase matching.

If both signal and idler beams have the same ordinary polarization (per-
pendicular to that of the pump beam, this scheme is called type I phase
matching (or rv + rl $ hs). If one of the two is polarized parallel to the
pump beam, we talk about type II phase matching; in this case either the
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signal (hv + rl $ hs) or the idler (rv + hl $ hs) can have the extraordinary
polarization [7]. Both types of phase matching can be used and have their
specific advantages according to the system under consideration. Usually the
phase matching condition is achieved by adjusting the angle � between the
wave vector of the propagating beams and the optical axis of the nonlinear
crystal, angular phase matching, see Figure 11.27
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Index: n
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Figure 11.27: Type I critical phase matching by adjusting the angle � between
wave vector of the propagating beam and the optical axis.

Alternatively, the refractive indices can be changed by adjusting the crys-
tal temperature (temperature phase matching). As an example, we consider
the case of a negative uniaxial crystal, for which type I phase matching is
achieved when

qhs(�)$s = qrv$v + qrl$l

1

qhs(�)2
=
sin2 �

q2hs
+
cos2 �

q2rs

which leads to

� = arcsin

"
qhs

qhs(�)

s
q2rs � q2hs(�)

q2rs � q2hs

#
=

Figures 11.28 and 11.29 show the phase matching angles as a function of
wavelength for BBO types I and II OPAs at the pump wavelengths 0=8 and
0=4 �m.
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Figure 11.28: Angle tuning curves for a BBO OPA at the pump wavelength
�s = 0=8 �m for type I phase matching (dotted line), type II (rv + hl $ hs
) phase matching (solid line), and type II (hv + rl $ hs ) phase matching
(dashed line).

Figure 11.29: Angle tuning curves for a BBO OPA at the pump wavelength
�s = 0=4 �m for type I phase matching (dotted line), type II (rv + hl $ hs
) phase matching (solid line), and type II (hv + rl $ hs ) phase matching
(dashed line).

Note, that in general, the phase matching angle shows a less pronounced
wavelength dependence for type I with respect to type II phase matching.
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11.8.6 Quasi-Phase Matching

If in a given crystal, phase matching by using birefringents is not possible,
one can eventually perform quasi-phase matching. [8], see Fig. 11.30. By
periodic poling with a strong applied electric field, the nonlinear coe�ecient
ghii in a quasi phase matched material will be peridically modulated with a
period 2cf=2�@{n=

z

! !c c

Periodically poled crystal

Figure 11.30: Variation of ghii in a quasi phase matched material as a
function of propagation distance.

The nonlinear coe!cient can therefore be expanded into a taylor series

ghii(}) =
+"X

p=3"

gph
mp�}= (11.58)

with � = 2�@ (2cf)={n= It is obvious, that if this expression is substi-
tuted into equation (11.39), the term proportional to g31 can facilitate phase
matching.

11.8.7 Ultrashort Pulse Optical Parametric Amplifica-
tion

So far we have studied the interaction of three monochromatic waves, i.e.,
cw beams. Now, we consider the case, relevant for femtosecond OPAs, where
three pulses described by complex pulse envelopes

�Hs>v>l(}> w) = Re
©
Hs>v>l(}> w) h

m($s>v>lw3ns>v>l })�hs>v>l
ª

(11.59)

are considered. Each pulse envelope is now propagating at its group velocity
and the equations for the pulse envelope change from teh amplitude equations
(11.39) - (11.41) to
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CHs

C}
+
1

ys

CHs

Cw
= �m�s HvHl h

m{n} > (11.60)

CHv
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+
1

yv

CHv

Cw
= �m�v HsH

W
l h3m{n}> (11.61)

CHl
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yl

CHv

Cw
= �m�l HsH

W
v h3m{n}> (11.62)

where ys>v>l = gn@g$|$s>v>l are the corresponding group velocities of pump,
signal and idler. Note, it is straight forward to include other nonlinearities,
that might become important, like self phase modulation or higher order
dispersion terms. For numerical simulations, it is convenient to introduce
the retarded time w0 = w � }@ys, to take out the trival motion of the pump
pulse, which leads to

CHs

C}
= �m�s HvHl h

m{n} > (11.63)
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= �m�l HsH

W
v h3m{n}= (11.65)

Despite the many simplifications, these equations capture the main issues of
parametric amplification with ultrashort pulses, that are related to group ve-
locity mismatch (GVM) between the interacting pulses. In particular, GVM
between the pump and the amplified signal and idler pulses limits the inter-
action length over which parametric amplification takes place, while GVM
between the signal and the idler beams limits the phase matching bandwidth.
The useful interaction length for parametric interaction is quantified by the
pulse splitting length, which is defined as the propagation length after which
the signal (or the idler) pulse separates from the pump pulse in the absence
of gain, and is expressed as

cms =
�

�ms
> with �ms =

µ
1

ym
�
1

ys

¶
> (11.66)

where � is the pump pulse duration and �ms is the GVM between pump
and signal/idler. Note that the pulse splitting length becomes shorter for
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decreasing pulse duration and for increasing GVM. GVM depends on the
crystal type, pump wavelength, and type of phase matching. Figures 11.31
and 11.32 show examples of GVM curves for a BBO OPA pumped by 0=8
and 0=4 �m pulses, respectively. Note that, due to greater dispersion values
in the visible, GVM is in general larger in this wavelength range. For crystal
lengths shorter than the pulse splitting length, GVM e�ects can be neglected,
to a first approximation, and Eqs. (11.45) and (11.46), valid for cw beams,
can be used for gain calculations. For crystals longer than or comparable to
the pulse splitting length, GVM plays a crucial role and Eqs.(11.63) - (11.65)
must be solved numerically to properly account for it.

There is a qualitatively significant di�erence between the cases in which
�vs and �ls have the same or di�erent signs.

Figure 11.31: Pump-signal (�vs) and pump-idler (�ls) group velocity mis-
match curves for a BBO OPA at the pump wavelength �s=0.8 �m for type
I phase matching (solid line) and type II (rv + hl $ hs) phase matching
(dashed line).
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Figure 11.32: Pump-signal (�vs) and pump-idler (�ls) group velocity mis-
match curves for a BBO OPA at the pump wavelength �s=0.4 �m for type
I phase matching (solid line) and type II (rv + hl $ hs) phase matching
(dashed line).

When �vs�ls A 0, both the signal and the idler pulses walk away from the
pump in the same direction so that the gain rapidly decreases for propagation
distances longer than the pulse splitting length and eventually saturates. On
the other hand, when �vs�ls ? 0 signal and idler pulses move in opposite
direction with respect to the pump; in this way the signal and idler pulses
tend to stay localized under the pump pulse and the gain grows exponentially
even for crystal lengths well in excess of the pulse splitting length. To try to
rationalize this e�ect, we can consider the situation in which the signal pulse
has moved slightly to the left and the idler pulse to the right of the pump
pulse: during the parametric process, the signal pulse generates idler photons,
which move to the right, i.e., towards the peak of the pump; on the other hand
the idler pulse will generate signal photons which in turnmove to the left,
again towards the peak of the pump. This concentration of photons under
the peak of the pump explainsthe exponential gain growth. In Fig. 11.33 we
show an example of solution of Eqs. (11.63)-(11.65) for the case �vs�ls A 0;
we consider a type I BBO OPA pumped at 0.4 �m with signal wavelength
�v = 0=7�m, with GVMs �vs=167 fs/mm and �ls =220 fs/mm. We see that,
after an initial growth, the gain rapidly tends to saturate because both signal
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and idler pulsestemporally separate from the pump. Note that, because the
trailing edge of the pulse resides for a longer time in the amplification region,
there is a modest pulse shortening (20%—30%) and asymmetry.

Figure 11.33: Signal pulse evolution for a BBO type I OPA with �s = 0=4
�m, �v = 0=7�m, for di�erent lengths O of the nonlinear crystal. Pump
intensity is 20 GW/cm2. Time is normalized to the pump pulse duration
and the crystal length to the pump-signal pulse splitting length.[5]

The case �vs�ls ? 0 is shown in Fig. 11.34; we consider a type II BBO
OPA pumped at 0.8 �m with signal wavelength �v = 0=8�m, having group
velocity mismatches �vs=-47.5 fs/mm and �ls =34.6 fs/mm. Here we see that
the signal growth stays exponential for propagation distances well exceeding
the pulse splitting length and that the signal pulse tends to stay localized
under the pump.
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Figure 11.34: Signal pulse evolution for a BBO type II OPA with �s = 0=8
�m, �v = 1=5 �m, for di�erent lengths O of the nonlinear crystal. Pump
intensity is 20 GW/cm2. Time is normalized to the pump pulse duration
and the crystal length to the pump-signal pulse splitting length.[5]

In the following, we will show that GVM between signal and idler pulses
determines the phase matching bandwidth for the parametric amplification
process. Let us assume that perfect phase matching is achieved for a given
signal frequency $v (and for the corresponding idler frequency $l = $s � $v

). If the signal frequency increases to $v +{$ energy conservation requires
that the idler frequency decreases to $l � {$. The wave vector mismatch
can then be approximated to the first order as

{n = �
gnv
g$

{$ +
gnl
g$

{$ =

µ
1

yl
�
1

yv

¶
{$> (11.67)

Within the large-gain approximation, the full width at half maximum (FWHM)
phase matching bandwidth can then be calculated as

{i = �
2
s
ln 2

�

r
K

O

1¯̄̄
1
yl
� 1

yv

¯̄̄ = (11.68)

Large GVM between signal and idler waves dramatically decreases the phase
matching bandwidth; large gain bandwidth can be expected when the OPA
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approaches degeneracy, i.e.$v = $l, in type I phase matching or in the case
of group velocity matching between signal and idler (yv = yl). Obviously, in
this case Eq. (e:opg.ubw) loses validity and the phase mismatch {n must be
expanded to the second order, giving

{i = �
2 4
s
ln 2

�
4

r
K

O

1¯̄
g2nv
g$2

+ g2nv
g$2

¯̄ = (11.69)

Figures 11.35 and 11.36 show typical plots of phase matching bandwidths for
BBO OPAs, pumped at 0.8 and 0.4 �m, respectively.We see a remarkable
di�erence between types I and II phase matching: for type II interaction,
the bandwidth is smaller than in type I and stays more or less constant
over the tuning range, while for type I interaction, as previously said, the
bandwidth increases as the OPA approaches degeneracy. These features can
be exploited for di�erent applications: type I phase matching is used to
achieve the shortest pulses, while type II phase matching allows to obtain
relatively narrow bandwidths over broad tuning ranges, which are required
for many spectroscopic investigations.

Figure 11.35: Phase matching bandwidth for a BBO OPA at the pump
wavelength �s=0.8 �m for type I phase matching (solid line) and type II
rv + hl $ hs phase matching (dashed line). Crystal length is 4 mm and
pump intensity 50 GW/cm2.
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Figure 11.36: Phase matching bandwidth for a BBO OPA at the pump
wavelength �s=0.4 �m for type I phase matching (solid line) and type II
rv + hl $ hs phase matching (dashed line). Crystal length is 2 mm and
pump intensity 100 GW/cm2.

So far we have only considered a collinear interaction, in which, once the
phase matching condition ({n = 0) is achieved, the group velocities of signal
and idler, and thus the phase matching bandwidth, are set. Later, we will see
that in a noncollinear interaction there is an additional degree of freedom,
the pump-signal angle �. Suitably selecting this angle, it is often possible to
achieve simultaneously phase matching and group velocity matching between
signal and idler, thus obtaining very broad gain bandwidths.

11.8.8 Optical Parametric Amplifier Designs

Before illustrating in detail some of the most common OPA designs, we will
try to present a very general description of the operating principles of an
OPA, according to the scheme shown in Fig. 11.37.Femtosecond OPAs are
in general pumped by amplified Ti:sapphire lasers: standard systems typ-
ically run at 1 kHz repetition rate and generate pulses at the wavelength
�A0.8 mm, with 0.5—1 mJ energy and duration ranging from 50 to 150 fs.
Also higher repetition rates using lower pulse enegies are possible. Pumping
can take place at the FW or at the SH of the Ti:sapphire laser, i.e., 800 or
400 nm. Since the optical parametric amplification process consists of the
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interaction of a weak signal beam with a strong pump beam, the first stage
of any OPA system is the generation of the initial signal beam, the so-called
seed beam. Since the seed beam is at a di�erent frequency from the pump
beam, a nonlinear optical process is required for its generation. Two di�erent
techniques have been used for the seed generation: parametric superfluores-
cence and white-light continuum generation. Parametric superfluorescence
is high gain parametric amplification of the vacuum or quantum noise. In
practice it is simply achieved by pumping a suitable nonlinear crystal, which
is often of the same types as the ones used in the subsequent OPA stages;
amplification will occur at those wavelengths for which the parametric in-
teraction is phase matched. The advantage of parametric superfluorescence
is the possibility of achieving large amplification and substantial seed pulse
energies; its disadvantages are the inherent fluctuations of a process starting
from quantum noise, and the poor spatial quality of the generated seed beam.

Figure 11.37: Scheme of an ultrafast optical parametric amplifier. SEED:
seed generation stage; DL1, DL2: delay lines; OPA1, OPA2 parametric am-
plification stages; COMP: compressor.

It is essentially a noise burst. White light generation occurs when an in-
tense ultrashort pulse is focused inside a transparent material, such as fused
silica or sapphire: as a result of the interplay between self-focusing and self-
phase modulation, a large spectral broadening takes place. Although the
processes occurring during the generation of white-light continuum are still
not fully understood, its properties are very good for generation of an OPA
seed pulse. When focusing 0.8 �m, 100 fs pulses into a sapphire plate, with
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thickness ranging from 1 to 3 mm, the threshold for white-light generation
is around 1 �J. The exact value depends on the focusing conditions. The
continuum spectrum extends throughout the visible down to 0.42 �m and
the near-IR up to 1.5 �m, with an energy of approximately 10 pJ per nm
of bandwidth. Under the correct conditions (i.e., a single self-focused fila-
ment) the white light has an excellent spatial quality, with a circular gaussian
beam, and a very high pulse-to-pulse stability. When using materials with
high thermal conductivity and low UV absorption such as sapphire, no long-
term degradation of the material is experienced. Following generation of the
seed pulse, the pump and seed pulses are combined in a suitable nonlinear
crystal, in a first parametric amplification stage, preamplifier. To achieve
temporal overlap, their relative timing must be adjusted by a delay line. Of-
ten the pump spot size in the nonlinear crystal is set by a telescope and is
chosen to achieve the highest possible gain without causing optical damage of
the crystal, or inducing third-order nonlinear e�ects (self-focusing, selfphase
modulation, or white light generation) that would cause beam distortion or
breakup. In case of parametric superfluorescence seed, the preamplifier is
also used as a spatial filter, to improve the spatial coherence of the signal
beam by amplifying only those spatial components of the superfluorescence
that overlap the pump beam in the crystal. After the first amplification
stage, the signal beam can be further amplified in a second stage, power am-
plifier. Usually this stage is driven into saturation, i.e., with significant pump
depletion and conversion e!ciency above 30%. In this regime, the amplified
energy is less sensitive to seed fluctuations, and high pulse stability can be
achieved. The purpose of using two amplification stages instead of one long
crystal is twofold: (i) the GVM between pump and signal pulses in the first
stage can be compensated by a delay line; and (ii) this scheme gives the flex-
ibility of separately adjusting the pump intensity, and thus the parametric
gain, in the two stages. After the power amplifier, signal and idler beams are
separated from the pump and from each other using dichroic filters or mir-
rors. Finally, in case of broadband amplification, a pulse compressor is used
to obtain transform-limited pulse duration. Figure 11.38 shows a specific
design for a near IR-OPA.
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Figure 11.38: Scheme of a near-IR OPA DL: delay lines; WL: white light
generation stage; DF: dichroic filter.

11.8.9 Noncollinear Optical Parametric Amplifier (NOPA)

Until recently the shortest pulses achieved from OPAs have been in the 30—
50 fs range, limited either by the narrow phase matching bandwidths or by
the long pump pulse duration. In the following we discuss a OPA scheme
which overcome these di!culties and generate few-opticalcycle pulses with
microjoule-level energy in the visible as well as in the infrared. In the visible,
relatively long pump pulses (~100 fs) are used and the properties of non-
collinear phase matching are exploited to achieve broadband amplification of
the white-light seed; the amplified pulses are then compressed to sub-10 fs du-
ration using suitable dispersive delay lines. In the infrared, ultrabroadband
pulses can be generated using short (20—40 fs) pump pulses and exploiting
nonlinear compression e�ects arising in the parametric amplification process
at high conversion e!ciencies.
In an OPA using a collinear interaction geometry, the propagation direc-

tion in the nonlinear crystal is selected to satisfy, for a given signal wave-
length, the phase-matching condition {n = 0. In this condition the signal
and idler group velocities are fixed and so the phase matching bandwidth
of the process, see Eq. (11.68). An additional degree of freedom can be
introduced using a noncollinear geometry, such as that shown in Fig. 11.39
a): pump and signal wave vectors form an angle � (independent of signal
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wavelength) and the idler is emitted at an angle l with respect to the signal.

Figure 11.39: a) Schematic of a noncollinear interaction geometry; b) repre-
sentation of signal and idler pulses in the case of collinear interaction; and
c) same as b) for noncollinear interaction.

In this case the phase matching condition becomes a vector equation,
which, projected on directions parallel and perpendicular to the signal wave
vector, becomes

{nsdu = nv cos�� nv � nl cosl = 0 (11.70)

{nshus = nv sin�� nl sinl = 0 (11.71)

Note, that the angle l is not fixed, but depends on the signal wavelength. If
the signal frequency increases by{$, the idler frequency decreases by{$ and

the wave vector mismatches along the two directions can be approximated,
to the first order, as

{nsdu = �
gnv
g$v

{$ +
gnl
g$l

cosl {$ � nl sinl
gl

g$l
{$ = 0 (11.72)

{nshus =
gnl
g$l

sinl {$ + nl cosl
gl

g$l
{$ = 0 (11.73)

To achieve broadband phase matching, both {nsduand {nshus must vanish.
Upon multiplying Eq. (11.72) by cos(l) and Eq. (11.73) by sin(l) and
adding the results, we get

gnl
g$l
� cosl

gnv
g$v

= 0 (11.74)
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which is equivalent to
yl � yv cosl = 0 (11.75)

This equation shows that broadband phase matching can be achieved for a
signal-idler angle l such that the signal group velocity equals the projection
of the idler group velocity along the signal direction. This e�ect is shown
pictorially in Fig. 11.39 for a collinear geometry [Fig. 16b], signal and idler
moving with di�erent group velocities get quickly separated giving rise to
pulse lengthening and bandwidth reduction, while in the noncollinear case
[Fig. 16c] the two pulsesmanage to stay e�ectively overlapped. Note, that Eq.
(11.75) can be satisfied only if ylAyv; this is, however, always the case in the
commonly used type I phase matching in negative uniaxial crystals, where
both signal and idler see the ordinary refractive index. Equation (11.75)
allows to determine the signal-idler angle l required for broadband phase
matching; from a practical point of view, it is more useful to know the pump-
signal angle �, which is given by

� = arcsin

5

7
1� y2v

y2l

1 + 2yvqv�l@ylql�v + (qv�l@ql�v)
2

6

8 (11.76)

As an example, in a type I BBO OPA pumped at �s=0.4 �m for a signal
wavelength �v=0.6 �m broadband phase matching is achieved for � =53.7�.
To better illustrate the e�ect of noncollinear phase matching, in Fig. 11.40
we plot, for a type I BBO OPA pumped at 0.4 �m, the phase matching angle
� as a function of signal wavelength for di�erent values of pump-signal angle
�.For a collinear configuration (� =0�) � shows a strong dependence on the
signal wavelength so that, for a fixed crystal orientation, phase matching
can be achieved only over a narrow signal frequency range. By going to a
noncollinear configuration and increasing �, the wavelength dependence of
� becomes progressively weaker until, for the optimum value � = 3=7�, a
given crystal orientation (� '31.3�) allows to achieve simultaneously phase
matching over an ultrabroad bandwidth, extending from 0.5 to 0.75 �m.
Note that, in this configuration, the symmetry between signal and idler is
lost, because they propagate at di�erent angles. This favorable property of
the noncollinear geometry for broadband parametric amplification was first
recognized by Gale et al.[9] and was exploited to build broadband OPOs
generating pulses as short as 13 fs. Over the last decade, the same concept
was extended by many research groups to OPAs seeded by the white-light
continuum.



432 CHAPTER 11. SHORT PULSE AMPLIFICATION

Figure 11.40: Phase-matching curves for a noncollinear type I BBO OPA
pumped atpumped at �s=0.4 �m, as a function of the pump-signal angle a.
[5]

A schematic of a experimental setup for an ultrabroadband noncollinear
OPA (NOPA) is reported in Fig. 11.41

Figure 11.41: Scheme of a noncollinear visible OPA. BS: beam splitter; VA:
variable attenuator; S: 1-mm-thick sapphire plate; DF: dichroic filter; M1
,M2 , M3 , spherical mirrors.[5]

The system is pumped by an amplified Ti:sapphire laser, generating 140
fs pulses at 0.78 �m and 1 kHz repetition rate with energy up to 500 �J.



11.8. OPTICAL PARAMETRIC AMPLIFIERS AND OSCILLATORS 433

The pump pulses ~0.39 �m wavelength, 10 �J energy, 180 fs duration are
obtained by frequency doubling a fraction of the light in a 1-mm-thick lithium
triborate crystal. The seed pulses are generated by focusing another small
fraction of the FW beam, with energy of approximately 2 �J, into a 1-mm-
thick sapphire plate; by carefully controlling the energy incident on the plate
(using a variable optical - density attenuator) and the position of the plate
around the focus, a highly stable single-filament white-light continuum is
generated. To avoid the introduction of additional chirp, reflective optics are
employed to guide the white light to the amplification stage. Parametric gain
is achieved in a 1-mm-thick BBO crystal, cut at u532�, using a singlepass
configuration to increase the gain bandwidth. The chosen crystal length is
close to the pulse-splitting length for signal and pump in the wavelength range
of interest. The white light seed is imaged into the BBO crystal by spherical
mirror M2 , with a spot size nearly matching that of the pump beam. The
amplified pulses have energy of approximately 2 �J, peak-to-peak fluctuations
of less than 7% and maintain a good TEM00 beam quality. Higher energies,
up to 10 �J, can be extracted by a second pass in the BBO crystal. After the
gain stage the amplified pulses are collimated by the spherical mirror M3 and
sent to the compressor. This design is quite similar to the OPAs reported
in the last section, the main di�erences being the noncollinear geometry and
the use of reflective optics to prevent pulse chirping.

The NOPA pulse bandwidth strongly depends on the system alignment
and on the chirp of the white-light seed. A typical spectrum obtained un-
der optimum alignment conditions is shown in Fig. 11.42 as a solid line: it
extends over a FWHM bandwidth of 180 THz and is virtually not tunable,
since it covers the maximum available gain bandwidth. Experimentally, this
condition can be easily achieved by adjusting the pump-signal angle to match
the apex angle of the strong parametric superfluorescence cone emitted by
the BBO crystal when illuminated by the pump pulse. Narrower gain band-
widths, which may be required for some experiments, can be simply achieved
by detuning the pump-seed angle from the optimum value and/or deliber-
ately increasing the white light chirp: in this case, the NOPA can be tuned
by slightly tilting the BBO crystal and/or varying the pump-seed delay. A
typical sequence of amplified pulse spectra obtained under these conditions
is shown in Fig. 11.42 as dashed lines.
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Figure 11.42: a) Solid line: NOPA spectrum under optimum alignment con-
ditions; dashed line: sequence of spectra obtained by increasing the white
light chirp; b) points: measured GD of the NOPA pulses; dashed line: GD
after ten bounces on the ultrabroadband chirped mirrors.

The group delay (GD) versus frequency characteristics of the pulses gen-
erated was measured by upconversion and is shown in Fig. 11.42 (b). The
measurement gives an overall GD of 400 fs between the red and the blue
components of the spectrum; the main contributions to the dispersion are
the sapphire plate, the BBO crystal, and the path ~3.5 m in air. Accu-
rately correcting the phase over such broad bandwidths poses a challenge on
the compression system. The shortest pulses generated by the NOPA were
obtained by a prism-chirped mirror combination and have a nearly transform-
limited duration of 4.4 fs. Note the dramatic shortening of the pulsewidths
with respect to the pump pulse duration, which is in the 100 fs range. As
a matter of fact, using short pump pulses does not help in getting shorter
pulses from the OPA, but on the contrary could be detrimental to the broad-
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band amplification process, because of the reduced temporal overlap between
the pump pulses and the chirped white-light seed.As an example for an all
chirped mirror dispersion compensation, Fig. 11.42 (b) as a solid line the
opposite of the GD generated by ten bounces on chirped mirrors which were
custom designed to compensate for the NOPA dispersion: it can be seen
that it matches the required GD very accurately over the wavelength range
0.51—0.71 �m, with a root-mean-square deviation of only 1.8 fs.
For the pulses generated by the NOPA shown in Fig. 11.41 and com-

pressed by the chirped mirror compressor, a full amplitude and phase char-
acterization using the SPIDER technique resulted in the reconstructed pulse
amplitude profile shown in Fig. 11.43.

Figure 11.43: Reconstructed temporal intensity of the compressed NOPA
pulse measured by the SPIDER technique. The inset shows the correspond-
ing pulse spectrum.[5]

11.8.10 Optical Parametric Chirped Pulse Amplifiers
OPCPA

Scaling to higher pulse energies and the use of high average power picosecond
pump lasers can be achieved by applying chirped pulse amplification to the
OPA concept. An example is given in Fig. 11.44.



436 CHAPTER 11. SHORT PULSE AMPLIFICATION

MgO:PPLN
31.0µm

MgO:PPLN
13.1µm

DCM

Nd:YLF�regen�amp
@1047nm

120ps,�1�mJ�@1kHz

OPA�1

YDFA

2pJ,�2.0µm,�5.0�ps
100µJ

Si

30�mm

>200�µJ

suprasil
300�mm

10 �nJ,�6.7�ps

MgO:PPSLT
31.4µm

OPA�2

3.5mJ

AOPDF Si
30�mm

BBO

OPA�3

400µJ

2�Nd:YLFͲMPS�modules
120ps,�6mJ�@1kHz

12�ps,�4�mJ800�nm�
OPCPA 800�nm�OPCPA

YDFA

120ps

Grating�Pair�
Compressor

CFBG�stretcher
Circulator

Ti:S
oscillator

Figure 11.44: OPCPA system generating 200 �M> 20iv pulses at 2 �m. It con-
sists of a bradband Ti:sapphire laser. Seed pulses are generated via DFG in
a quasi-phase matched MgO:PPLN. The 1060 nm portion of the Ti:sapphire
spectrum is chirped in a fiber Bragg grating and seeds a Nd:YLF CPA gener-
ating 12-ps long 4 mJ pulses to pump a 3-stage OPCPA based on quasi-phase
matched PPLN at 2 �p. Pulse compression is achieved by a bulk suprasil
and a AOPDF.
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Chapter 13

High Harmonic Generation

High harmonic generation (HHG) is a technique for producing spatially and
temporally coherent extreme-ultraviolet (EUV) light, as well as light pulses
as short as hundred attoseconds (1 attosecond = 10318 seconds). To sup-
port pulses at such short duration light with a frequency higher than the
inverse pulse duration is required corresponding to EUV wavlength of tenth
of nanometers and shorter. Construction of lasers at these wavelengths is
challenging and other means of producing significant EUV radiation, such as
synchrotrons and Free-Electron Lasers (FELs) are rather expensive. HHG
has the potential for generating significant coherent EUV radiation, even in
the form of ultrashort pulses with attosecond duration opening up the new
field of ultrafast x-ray spectroscopy.

HHG occurs when an intense pulsed laser beam is focused into a (noble)
gas jet or solid. The intensity of the laser light is chosen such that its elec-
tric field amplitude is comparable to the electric field in atoms. Such fields
are able to detach electrons from atoms by tunnel ionization, as opposed to
photo-ionization by a weak field with high enough photon energy. The de-
tached electron is accelerated in the field and under certain conditions has
significant probability to hit the ion left behind upon return. The "collision"
results in the emission of high energy photons. This description is called
three step model and depicted in Figure 13.1

439
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Figure 13.1: Three step model of High Order Harmonic Generation.

13.1 Atomic units

The dynamics of electrons in electric fields of atomic strength is most con-
veniently described in atomic units. Then typically atomic magnitudes are
numbers of order one, which is very convenient. Atomic units are used in
the vast majority of atomic physics literature, and in particular in the HHG
literature.
In atomic units Planck’s constant ~, the electron mass, m, and the elec-

tron charge, q, are set to one. Mass, charge and angular momentum are
therefore measured relative to these magnitudes, and once three of them are
given, the atomic unit for every other physical magnitude can be defined.
In order to gain some intuition about atomic units, it is instructive to think
about the Bohr hydrogen atom, with the electron moving around the proton
in a circular orbit whose radius is the Bohr radius (see Fig. 13.2). Table 13.1
lists the definitions of some atomic units and conversion ratios to SI units:
For example, the hydrogen ionization energy is 1

2
au, and that of helium

is about 0.9au. Another example is the dielectric susceptibility of matter.
Ignoring for the moment tensorial and non-instantaneous e�ects we can write
for the polarization of a medium

S = �0
¡
"(1)H + "(2)H2 + "(3)H3 + ===

¢
(13.1)

The nonlinear susceptibilities in SI units are of the order of 10312 for "(2)
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+

–E=1
Radius=1

m = 1

q = 1

Figure 13.2: Definitions of atomic units through the Bohr model of the hydrogen
atom.

and 10323 for "(3). When S and H are expressed in atomic units, all the "-s
are of order one, because the electric field is then expressed in units of the
electric field in an atom. We can argue that once the electric field reaches
atomic fields, all harmonics of the fundamental laser wave will be observed,
with intensities of similar orders of magnitude. Indeed HHG occurs only
when such intensities are reached.
A typical field amplitude for HHG in helium is 0=3 au � 1=7× 109V/cm.

The corresponding intensity is 0=5 · H2@377l � 4 × 1015W@cm2. For a
Ti:sapphire beam (800 nm wavelength) focused to a 25�m2 spot and for
a pulse duration of 10 fs we find that the pulses should carry about 0=1 mJ
of energy.

13.2 The three step model

HHG photon energies achieved today reach up to 1.3 keV, which is about
50au. This high photon energy was achieved in helium. If we adopt the
familiar picture (see Fig. 13.1), according to which a photon at certain energy
is emitted when an electron “falls" from an excited state to the ground state,
we see that the electron must “fall" from a very highly excited free state
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Atomic unit of... Definition In SI units

Electric charge The electron charge 1=602× 10319 C
Mass The electron mass 9=109× 10331kg
Length The Bohr radius 5=2917× 10311m
Time 1@2� of the first Bohr orbit period 24.189 asec

Energy The potential energy of the elec-
tron in the first Bohr orbit

27.21eV=
= 4=359× 10318M

Electric field The electric field at the first Bohr
orbit

5=142× 1011V/m

Table 13.1: Definitions of atomic units for some often used quantities and con-
version to the SI system.

(50 times the binding energy). Since the potential is negative, high energy
necessarily means high kinetic energy i. e. high velocity.
In order that a force of �1au accelerates the electron to such high kinetic

energy, it should travel a long distance away from the atom. According to
the three step model, the electron is released from the atom by the laser
field, accelerated in the free field away from the atom, then accelerated back
towards the atom and collides with it. The energy lost in the collision shows
up as a UV photon. The sequence of tunnel ionization, acceleration in the
laser field and recollision is the called the three step model of HHG [2][3].
In order to estimate the energy acquired by the accelerating electron,

we consider a free electron in a harmonic field of amplitude H and angular
frequency $. The time-averaged kinetic energy equals

Xs =

µ
tH

2p$

¶2
=

µ
H

2$

¶2
> (13.2)

where the first expression is in general units (t is the electron charge) and
the second one in atomic units. Note that this is a purely classical object
since it does not involve ~. Xs is commonly referred to as the ponderomotive
energy.
In order to achieve high ponderomotive energy, $ must be a small number,

that is, the optical frequency of the laser pulses must be much slower than
atomic timescales.
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13.2.1 Ionization

There are three regimes of ionization of an atom by an optical field. We
consider here only fields of frequency $ such that $ ? Ls (~$ ? Ls in general
units. Ls is the ionization potential of the atom). Therefore photoionization
by a single photon is impossible.

1. Multiphoton ionization.

This is the dominant regime for “small" fields, i.e. large Keldysh parameter
� = $

p
2Ls@H A 1. It is characterized by a power law dependence of the

ionization rate on the laser intensity, where the exponent is the minimal num-
ber of photons required for ionization (see Fig. 13.3). This regime is of less
importance to HHG and we do not further discuss it here. The multiphoton
regime takes place when H ¿ 1au and Xs ¿ Ls.

n

Figure 13.3: Ionization by q photons.

2. Tunnelling regime.

Tunnelling is the dominant regime when Xs & Ls, i.e. � ? 1> but H is small
enough such that the barrier-suppression regime (the next one) is not yet
reached, see Figure 13.4 and 13.5. The electron is released through tunnelling.
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This regime is characterized by an exponential dependence of the ionization
rate on the instantaneous electric field [4]:

z(H) � exp
µ
�
2(2Ls)

3@2

3H

¶
> (13.3)

where the ‘�’ sign stands for "equal up to a sub-exponential factor in H".

Figure 13.4: Ionization by tunnelling. She shaded area is the barrier, the classi-
cally forbidden region. The rate of tunnel ionization is exponential in the “area"
under the barrier.

3. Barrier-suppression regime.

This regime is reached when the field is strong enough such that the there is
no energy barrier separating the electron from the free space (see Fig. 13.5).
The barrier suppression regime is characterized by a nearly linear dependence
of the ionization rate on the incident electric field.
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Figure 13.5: Ionization in the barrier-suppression regime.

When $ ¿ Ls the two last regimes are well described by the quasi-static
approximation. The reason for this terminology is that the variation of the
laser field is so slow that the instantaneous ionization rate coincides with a
static one. Let then z(H) be the static ionization rate as function of the
electric field. In the tunnelling and the barrier suppression regimes, with
$ ¿ Ls, we therefore have

|d(w)|2 = exp

3

C�
wZ
0

z(H(w0))gw0

4

D > (13.4)

where d(w) is the probability amplitude of finding the atom in the ground
state. Note, that for $wÀ 1 the ionization rate does not depend on $. This
is in contrast with the multiphoton regime, where the rate exponentially
decreases as $ $ 0.

The static ionization rate z(H) is well described in the tunnelling regime
by the Ammosov-Delone-Krainov formula [4]. For hydrogen and heliumz(H)
has been numerically calculated to high precision, and is shown in Fig. 13.6
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Figure 13.6: Static ionization rate for Hydrogen on a linear and logarithmic
scale.
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Figure 13.7: Static ionization rate for Helium on a linear and logarithmic
scale..

13.2.2 Propagation

According to the correspondence principle, at high energies quantum me-
chanics should resemble classical mechanics. Indeed it turns out that the
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propagation of the freed electron can be very well described classically. Since
the Coulomb force exerted on the electron by the ion is negligible compared
to the laser field during most of the electron excursion, the motion of the
electron is well described by a free electron accelerated in the presence of the
electric field of the laser pulse. Since we expect that the electrons do not
reach relativistic speeds, we can neglect the Lorentz Force. It also turns out
that the right after the tunneling, the velocity of the electron vanishes, i.e.
the electron starts with zero velocity in the external field.

{̈(w) = H0 cos$w (13.5)

{̇(w) =
H0
$
sin$w�

H0
$
sin$w0 (13.6)

{(w) = �
H0
$2
cos$w� (w� w0)

H0
$
sin$w0 +

H0
$2
cos$w0> (13.7)

see Figure 13.8. Here, w0 is the time at which the electron was released from
the atom. It is assumed that the electron is released with zero initial velocity.
This assumption can be justified quantum mechanically. Since the electron
is a quantum particle, it is released at all possible times w0 “together". Each
moment there is a probability amplitude to be released, depending (in the
quasi-static approximation) on the electric field at that moment.

Time
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tio
n

E(t)

Most energetic trajectory

Figure 13.8: The position of the electron as function of time for di�erent “ioniza-
tion times" w0. The “most energetic trajectory” refers ro the solution where the
elctron encounters the nucleus with the maximal kinetic energy.



448 CHAPTER 13. HIGH HARMONIC GENERATION

According to the three step model, the energy lost by the electron when
it recollides with the nucleus is released as an HHG photon. We therefore
wish to know how much kinetic energy the electron has when it returns. To
this end we need to solve the Eq. (13.5) for {(w) = 0 for some w and compute
the kinetic energy {̇2(w)@2 at that instant.
The solution cannot be expressed in terms of elementary functions. How-

ever, it can be easily found on a computer. It is easy to see that electrons
re-encounter the nucleus only if they are released when the magnitude of the
field is decreasing (see Fig. 13.8). The kinetic energy upon the first encounter
of the electron with the nucleus is plotted in Fig. 13.9 as function of the ion-
ization time w0. It reaches a maximum for $w � 0=31, and the maximum
approximately equals 3=17Xs, whith the ponderomotive energy Xs =

¡
H
2$

¢2
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Figure 13.9: Kinetic energy upon return to the nucleus as function of the “ion-
ization time". The maximum is achieved about 0.31 radians after the peak of the
electric field. For that case, the kinetic energy upon return reaches 3=17Xs. The
dashed curve is the electric field.

13.2.3 Recombination

A proper description of the recombination stage requires a quantum mechan-
ical treatment of the rescattering problem and the emission of radiation. We
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need to start from the Schroedinger equation of an electron bound to the
atom, later partially tunneling ionzied and accelerated. This is described by
the Schroedinger equation of a single active electron in dipole approximation

l
g

gw
|#i = K |#i�H(w){ (13.8)

with the atomic Hamiltonian

K = �
1

2
u+ Y (�u)> (13.9)

where, Y (�u) is the e�ective atomic potential confining the electron to the
atom. Due to the interaction with the laser field we expect that the wave-
function of the electon, that is initially in the ground state |0i with energy
eigenvalue �LS , where LS is the ionization potential, evolves into a superpo-
sition state between the ground state with probability amplitude d(w) and a
wavefunction describing the freed electron

|#(w)i = d(w) |0i+ |*(w)i = (13.10)

The freed electron together with the remaining ion forms a dipole and the
expected value of the dipole moment is like for a a two level system atom

�g(w) = h#(w)| �{ |#(w)i = (13.11)

However, what acts as the source for electromagnetic radiation is not the
dipolmoment but rather the dipole acceleration. With the Ehrenfest The-
orem in Quantum Mechanics, which is simply the Heisenberg equation of
motion for the electrons kinetic momentum

··
�{ = �uY (�u) +H(w)== (13.12)

and neglecting the external field coming from the laser, since it doesn’t con-
tain Harmonics, the dipole acceleration contributing to HHG can be written
as
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··
�gKKJ(w) = � h#(w)|uY (�u) |#(w)i (13.13)

= � |d(w)|2 h0|uY (�u) |0i� d(w) h*(w)|uY (�u) |0i
�dW(w) h#(w)|uY (�u) |0i� h*(w)|uY (�u) |*(w)i = (13.14)

˜� dW(w) h*(w)|uY (�u) |0i� d(w) h0|uY (�u) |*(w)i (13.15)
= �̈(w) + �̈

W
(w)> with �̈(w) = �dW(w) h*(w)|uY (�u) |0i (13.16)

The first term vanishes, because of inversion symmetry of the atomic ground
state and the last term is neglected, because it is expected to be small.
After some calculations, the result is [5]

�̈(w) = 23@2� (2LS )
1@4 hl�@4

X
q

d(wqe(w)d(w)
p
z(Hwqe(w))

H(wqe(w))(w� wqe(w))3@2
��uhfh

3lVq(w)=

Here, the probability amplitudes of the ground state enter at the birthtime
wqe(w)> and w> if w is the recollision time of the trajectory. The recombination

matrix element ��uhf = hn(w)|uY (�u) |0i and Vq(w) =
1
2

wZ
wqe(w)

n(w0)2gw0 + LS (w �

wqe(w)) is the classical action, the electron picks up during acceleration. The
sum over n is the sum over all trajectories arriving at time w.
It is plausible that the energy released during recombination equals the

kinetic energy the electron acquired plus the ionization potential, since the
electron transitions from the continuum to a state with energy �Ls. In par-
ticular, we can expect the maximal energy released in the collision to be

$hmax = Ls + 3=17Xs= (13.17)

Figure 13.10 shows the Fourier transform of the calculated dipole acceleration
for hydrogen excited by Ti:sapphire (800mn, corresponding to $ = 0=057au)
pulses with an ideal sinusoidal single cycle pulse (H(w) = H0 sin$w). The
field amplitude used is shown near each spectrum. ($hmax = Ls + 3=17Xs in
atomic units). Remarkably Eq. (13.17), which is obtained from very simple
considerations, gives the correct prediction for the cuto� of the spectrum. No
harmonics above $hmax are observed1, see Fig. 13.10. However, below the

1To be more precise, quantum mechanical analysis reveals that the cuto� formula
$hmax = 1=28Ls + 3=17Xs=
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cuto� energy we observe oscillations in the high harmonic spectrum. This
results from interference of contributions from the long and short trajectories,
which contribute to the same frequency, energy, as can be seen from Fig. 13.8.
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Figure 13.10: Simulated HHG spectra for hydrogen excited by Ti:sapphire
(800mn, corresponding to $ = 0=057au) pulses with an ideal sinusoidal single
cycle pulse (H(w) = H0 sin$w). The field amplitude is denoted near each
spectrum.

Figure 13.11 shows the kinetic energy normailized to the pondermotive
potential that each trajectory contributes as a function of arrival time.

Figure 13.11: Kinetic Energy of long and short trajectories as a function of
arrival time.
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Figure 13.12 shows the Fourier transform of the calculated dipole accel-
eration for hydrogen excited by Ti:sapphire pulses with a secant hyperbolic
pulses hape, 5fs FWHM duration and a maximal field amplitude of 0.12au.
The spectrum is the cummulative e�ect of several cycles
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Figure 13.12: Simulated HHG spectra for hydrogen excited by Ti:sapphire
(800mn, corresponding to $ = 0=057au) pulses with a secant hyperbolic pulse
with 5fs FWHM duration and a maximal field amplitude of 0.12au.

The spectrum is the cummulative e�ect of several cycles, where in each
half cycle a small fraction of the atoms are ionized, see Fig. fch13_multicyclehhg
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Figure 13.13: High harmonic generation dynamics in a multicycle pulse.
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13.3 Attosecond pulses

The electron which acquires the largest amount of kinetic energy leaves the
atom 0=31$31 after each peak of the field and hits the nucleus back at time
4=4$31 (about 3/4 of a cycle) after that peak (see Figs. 13.8, 13.14). Electrons
that hit the nucleus later (short trajectories) or earlier (long trajectories)
have less kinetic energy upon return. Thus the HHG radiation emitted by
the recolliding electron has two contributions, one from the long and one
from the short trajectories, both of which are down or up chirped (see Fig.
13.15).
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Figure 13.14: A single cycle, with a single recollision, leading to an isolated
attosend pulse. Most energetic trajectory (dash dotted line).
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Figure 13.15: Neighborhood of the most energetic trajectory, which is re-
sponsible for the highest frequency radiation emitted.
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Figure 13.16: The same as Fig. 13.14a, before and after high-pass filtering.

There are several possibilities to select attosecond duration pulses, from
this emission. First it was proposed to select isolated attosecond pulses, by
using about two-cycle pulses and using high pass filtering of the emitted HHG
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radiation to select the cut-o� spectrum produced by the highest field cycle.
Such a filtering is possible by using a multilayer MoSi-mirrors. Fig. 13.16
shows simulated electric field amplitude of the emitted HHG radiation before
and after high-pass filtering. At the output of the filter we observe isolated
pulses of several hundreds of attoseconds [7][9]. Other possibilities are to use
polarization gating to achieve HHG in a single cycle from a few-cycle pulse
and select the emission from the short or long trajectories and compression of
these chirped emission using material dispersion in thin metal films [8]. The
gating techniques have been further refined over the last years to a scheme
called double-optical gating where both polarization and second harmonic
field is used to further constrain HHG within a multicycle pulse.

13.3.1 The intensity challenge

HHG was discovered in 1987. Due to the progress in short pulse high energy
Ti:sapphire lasers (30fs, 1mJ) it became possible to expose atoms to very
high field strength before complete ionization and in 1997 EUV radiation
down to 2.5 nm wavelength was demonstrated using HHG [6]. The shortest
HHG wavelength demonstrated so far is 1qp (2005), however the e!ciencies
are very small at these short wavelengths.

13.3.2 The necessity of short drive pulses

Short pulses are a necessity for HHG in order to avoid depletion of the ground
state during previous pulse maxima.
Fig. 13.17 shows the population of the ground state of Helium calculated

with Eq. (13.4). When the pulses are not short enough (50fs in that particular
example) most of the ground state is already depleted before the peak of the
pulse is reached. Therefore the HHG radiation is released by electric fields
of lower amplitude than the peak of the pulse, and most of the intensity of
the pulse is “wasted".
The shorter the pulses become, the higher will be the ground state pop-

ulation when the atom experiences the peak of the electric field. Therefore
short (few-cycle) pulses are a necessity for HHG, even when su!cient peak
power is available.
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Figure 13.17: Ionization of helium in the presence of a linearly polarized
electric field of a laser pulse with 800nm wavelength and a peak intensity
4 × 1015W@cm2: (a) electric field; (b) fraction of ionized electrons; (c) in-
stantaneous ionization rate. The thin and the thick lines represent pulses of
durations of 50fs and 5fs FWHM, respectively.[1]
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13.3.3 Quantum di�usion

The simple classical picture of the propagation stage gives the correct cuto�
law. However quantum mechanically the electron propagates along many
trajectories at the same time. In particular, there is an uncertainty in the
lateral initial velocity of the electron, and it therefore has returning electron
wave packet has components that miss the nucleus.
The above described behavior is called quantum di�usion: free electron

wavepackets expand as they propagate, just like a light pulse in a disper-
sive medium. The electron wavepacket expands as

s
� (� is the time of

propagation between ionization and recombination) in each spatial direction.
Therefore the amplitude in the center of the wavepacket decreases as �33@2.
The amplitude of the emitted HHG electric field therefore scales like �33@2,
and the intensity — like �33. The travel time is about an optical cycle.
The intensity of the HHG radiation therefore cubically decreases with

increasing drive wavelength. However the spectral cuto� energy quadratically
increases with it and the ionization of the atom can be reduced. The question
what is the ideal drive wavelength to achieve maximum HHG for a desired
wavelength range is not yet resolved.

13.3.4 Propagation e�ects — phase matching

In order to achieve e!cient HHG, the contributions from single atoms emit-
ting at di�erent cycles and positions in the medium must interfere construc-
tively with one another. Just like in second harmonic generation or opti-
cal parametric generation, phase matching is required. Phase matching is
achieved, if the refractive index of the generated EUV radiation is equal to
the index experienced by the driver laser pulse in the gas. The EUV radia-
tion only weakly interacts with the gas and therefore propagates at the speed
of light. However, the drive laser pulse experiences the dispersion from the
gas, which increases the refractive index and the negative index of the free
electrons generated (plasma). Chosing the proper ionization level and gas
pressure is therefore important to achieve phase matching of the driver pulse
and the generated EUV radiation.
Because of the phase mismatch and also because the spatial profile of the

driver pulses, the pulse is distorted by the index profile of the free electrons,
i.e. plasma defocusing of the laser beam occurs. Another limitation on the
length comes from absorption: the longer the gas jet, the more it begins to
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absorb the HHG photons. These e�ects severely limit the HHG conversion
e!ciency.
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