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Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322  

Email & phone: franz.kaertner@cfel.de, 040 8998 6350   

  Thorsten.Uphues@cfel.de, 040 8998 2706  

  

Lectures:  Tuesday 09.00-11.00 Geb 99, Sem Raum IV (1.OG) 

                 Thursday 09.00-11.00 Geb 99, Sem Raum IV (1.OG)  

 

Start: 18.02.2014  

 

 

Course Secretary: Christine Berber 

O3.095, phone x-6351, E-mail: christine.berber@cfel.de.  

 

Class  website: http://desy.cfel.de/ultrafast_optics_and_x_rays_division/      

  teaching/ imprs_summer_semester_2014/lecture_notes 



Recommended Texts:  

Fundamentals of Photonics, B.E.A. Saleh and M.C. Teich, Wiley, 1991.  

Ultrafast Optics, A. M. Weiner, Hoboken, NJ, Wiley 2009. 

Ultrashort Laser Pulse Phenomena, Diels and Rudolph,  

Elsevier/Academic Press, 2006 

Optics, Hecht and Zajac, Addison and Wesley Publishing Co., 1979. 

Principles of Lasers, O. Svelto, Plenum Press, NY, 1998. 

Waves and Fields in Optoelectronics, H. A. Haus, Prentice Hall, NJ, 1984. 

 

 

Prerequisites: Basic course in electrodynamics  

 

Text: Class notes will be distributed in class.     

 

Grade:  None 

 

Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron Radiation 

Sources,  

W. B. Peatman, Gordon and Breach Science Publishers, 1997. 

Soft X-ray and Extreme Ultraviolet Radiation, David Attwood, Cambridge University 

Press, 1999 

General Information 
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Schedule 

Lecturer Topic Time Location 

Kärtner Classical Optics Tuesday 

Feb. 18, 9-11am 

Geb. 99 

Raum IV, 1.OG 

Uphues X-ray Optics Thursday 

Feb. 20, 9-11am 

Geb. 99 

Raum IV, 1.OG 

Kärtner Ultrafast Lasers Tuesday 

Feb. 25, 9-11am 

Geb. 99 

Raum IV, 1.OG 

Uphues Synchrotron 

Radiation 

Thursday 

Feb. 27, 9-11am 

Geb. 99 

Raum IV, 1.OG 

Kärtner Electron Sources 

and Accelerators 

Tuesday 

Mar. 04, 9-11am 

Geb. 99 

Raum IV, 1.OG 

Uphues High Order 

Harmonic Gen. 

Thursday 

Mar. 06, 9-11am 

Geb. 99 

Raum IV, 1.OG 
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2 Classical Optics   

2.1 Maxwell’s Equations and Helmholtz Equation   

  2.1.1 Helmholtz Equation   

 2.1.2 Plane-Wave Solutions (TEM-Waves) and Complex Notation  

 2.1.3 Poynting Vectors, Energy Density and Intensity 

2.2 Paraxial Wave Equation 

2.3 Gaussian Beams 

2.4 Ray Propagation 

2.5 Gaussian Beam Propagation 

2.6 Optical Resonators 

Classical Optics 



2.1 Maxwell’s Equations of Isotropic Media 

Maxwell’s Equations:  Differential Form 

Material Equations:  

Ampere’s Law 

Faraday’s Law 

Gauss’s Law 

No magnetic charge 

Polarization 

Magnetization 

Current due to free charges 

Free charge density 

Bring Life into Maxwell’s Equations 

2. Classical Optics   
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Vector Identity:   

Vacuum speed of light: 
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Classical Optics  



No free charges, No currents from free charges, Non magnetic 

Every field can be written as the sum of tansverse and longitudinal fields: 

Only free charges create a longitudinal electric field: 

Pure radiation field 

Simplified wave equation: 

Wave in vacuum Source term 
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Classical Optics  



2.1.1 Helmholtz Equation 

Linear, local medium 

dielectric susceptibility 

Medium speed of light: with 

Refractive Index 
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Real field: 

Dispersion relation:  

2.1.2 Plane-Wave Solutions (TEM-Waves) and Compl. Notation 

Artificial, complex field: 

Into wave equation (2.16): 

Wavelength 
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TEM-Waves 



What about the magnetic field? 

Faraday’s Law: 

TEM-Waves 
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Characteristic Impedance 

Vacuum Impedance: 

Example:  EM-Wave polarized along x-axis and propagation along z-direction: 

1 ( )r   
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Backwards Traveling Wave 

Backwards 
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2.1.3 Poynting Vector, Energy Density and Intensity 

1r  relative permittivity: 

Example: Plane Wave: 

14 
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A plane wave is described by: 

 zjkyjkxjkEezyxE zyxx  exp
~

),,(
~

0



Although a plane wave is a useful model, strictly speaking it cannot be 

realized in practice, because it fills whole space and carries infinite energy. 

2222
0 zyx kkkk  free space wavenumber 

Maxwell’s equations are linear, so a sum of solutions is also a solution. 

An arbitrary beam can be can be formed as a superposition of multiple plane 

waves: 

  yxzyx dkdkzjkyjkxjkEzyxE  







 exp

~
),,(

~
0

2222
0 zyx kkkk 

there is no integral over kz because once kx and ky 

are fixed, kz is constrained by dispersion relation 

2.2 Paraxial Wave Equation 
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Figure 2.2: Construction of paraxial beam by superimposing 

many plane waves with a dominant k-component in z-direction 

Consider a beam which consists of plane waves propagating at small angles 

with z axis 

z 
k 

y 
x 

zx kk 

zy kk 

kz can be approximated as 

(paraxial approximation) 

such a beam 

is called a 

paraxial beam 

Paraxial Beam 
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The beam 

can then be expressed as 
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slowly varying envelope 

(changing slowly along z) 

quickly varying 

carrier wave 

Allows to find field distribution at any point in space. 

The beam profile is changing as it propagates in free space. 

This is called diffraction. 

Paraxial Diffraction Integral 
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From the previous slide 

yxyx

yx

yx
zjk

dkdkyjkxjkz
k

kk
jkkEezyxE  






































 


0

22

0
2

exp),(
~

),,(
~

0

At z=0 
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This is Fourier integral. Using Fourier transforms:  

 dxdyyjkxjkzyxEkkE yxyx  
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Given the field at some plane (e.g. z=0), how to find the field at any z? 

)0,,(
~

zyxEKnowing can find ),(
~
0 yx kkE and then ),,(

~
zyxE at any z. 

Paraxial Diffraction Integral – Finding Field at Arbitrary z 
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Choose transverse Gaussian distribution of plane wave amplitudes: 

called  Rayleigh range. 

Performing the integration (i.e. taking Fourier transforms of a Gaussian) 

with 

(Via Fourier transforms, this is equivalent to choosing Gaussian transversal 

field distribution at z=0) 

Substitution into paraxial diffraction integral gives 

2.3 Gaussian Beam 
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The quantity                        can be expressed as 
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where R(z) and w(z) are introduced according to 

The pre-factor                         can be expressed as )/( Rjzzj 
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Finally, the field is normalized, giving 
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Field of a 

Gaussian beam 

Normalization means that the total power carried by the beam is P: 

Final Expression for Gaussian Beam Field 
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Gaussian Beams: Spot Size and Rayleigh Range 









 )(
)(2)(

exp
)(

14
),(

~
2

02

2
0

0 zj
zR

r
jk

zw

r

zw

PZ
zrE F 


Field of a 

Gaussian beam 

We derived 
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Spot size at 

z=0 is min 
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Defines transversal 

intensity distribution 
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Gaussian Beams: Phase Distribution 
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Field of a 

Gaussian beam 

We derived 

defines phase 

distribution 
We have 

Phase fronts (surfaces of constant phase) are parabolic, can be approximated 

as spherical for small r. R(z) turns out to be the radius of the sphere. 

Radius of 

wavefront 

curvature 

Defines extra phase shift as compared to plane wave 
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Gaussian Beams: All Equations in One Slide 
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(2.54) 

(2.55) 

(2.65) 
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Intensity Distribution 

Figure 2.3: The normalized beam intensity I/I₀ as a function of the radial 

distance r at different axial distances: (a) z=0, (b) z=zR (c) z=2zR. 

z=0 z=zR z=2zR 
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Spot Size as a Function of z 
2
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Figure 2.5: Gaussian beam and its characteristics 

Beam Divergence: 

Confocal parameter and depth of focus: 

RR z

z
w
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For large z 

Divergence 

angle 
Rz

w

z
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Divergence Angle and Confocal Parameter 

Smaller spot size → 

larger divergence 



Figure 2.4: Normalized beam intensity I(r=0)/I₀ on the beam axis as a function of 

propagation distance z.  

r=0 
Intensity distribution along Z 

axis (r=0) 

Axial Intensity Distribution 
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Power Confinement 

99% of the power is within radius of 1.5 w(z) from the axis 

Which fraction of the total power is confined within radius r0 from the axis? 

Dependence is 

exponential 
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Figure 2.8: Wavefronts of Gaussian beam 

Wavefronts, i.e. surfaces of constant phase, are parabolic 

constant 

Wavefront 
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Figure 2.7: Radius of curvature R(z) 

Wavefront radius of curvature: 
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Wavefront and Radius of Curvature 
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Comparison to Plane and Spherical Waves 

Figure 2.9: Wave fronts of (a) a uniform plane wave, (b) a spherical wave;  

  (c) a Gaussian beam. 
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Figure 2.6: Phase delay of Gaussian beam, Guoy-Phase-Shift 

Phase delay of Gaussian Beam, Guoy-Phase Shift: 

Guoy Phase Shift 
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Planes of const.
 Phase

Beam Waist

z/z R

Gaussian Beams: Summary 
• Solution of wave equation in paraxial approximation 

• Wave confined in space and with finite amount of power 

• Intensity distribution in any cross-section has the same shape (Gaussian), 

only size and magnitude is scaled 

• At the waist, the spot size is minimum and wave fronts are flat 

• Lasers are usually built to generate Gaussian beams 



Figure 2.10: Description of optical ray propagation by its distance and 

inclination from the optical axis. 
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2.4 Ray Propagation 



Figure 2.11: Snell’s law for paraxial rays. 
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Ray Matrix: Transition medium 1 to 2 

M =
1 0

0 1

æ

è
çç

ö

ø
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Figure 2.12: Free space propagation 
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Ray Matrix: Propagation over Distance L 



Figure 2.13: Ray propagation through a medium with refractive index n. 
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Prop. in Medium with Index n over Distance L 



Figure 2.14: Derivation of ABCD-matrix of a thin plano-convex lens. 
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Thin Plano-convex Lens 

for 



f

r1

z
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Biconvex Lens and Focussing 

Figure 2.15: Imaging of parallel rays through a lens with focal length f 

Biconvex Lens  
M =

1 0

-
1

f
1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷



Figure 2.16: Derivation of Ray matrix for concave mirror with Radius R. 
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Concave Mirror with ROC R 
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Table of Ray Matrices 



Figure 2.17: Gauss’ lens formula. 

f
r1

z

d1 d2

r2

I II
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Application: Gauss’ Lens Formula 
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An Image is formed? 



Figure 2.18: Gaussian beam transformation by ABCD law. 
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Gaussian Beam Propagation   

28 CHAPTER 2. CLASSICAL OPTICS

ABCD-marix is given by

2 =
1 +

1 +
(2.83)

where 1 and 2 are the beam parameters at the input and the output planes

of the optical system or component, see Figure 2.18

Figure 2.18: Gaussian beam transformation by ABCD law, [6], p. 99.

To proove this law, we realize that it is true for the case of free space

propagation, i.e. pure di raction, comparing (2.83) with (2.53) and (2.70). If

we can proove that it is additionally true for a thin lens, then we are finished,

because every ABCD matrix (2x2 matrix) can be written as a product of a

lower and upper triangular matrix (LR-decomposition) like the one for free

space propagation and the thin lens. Note, the action of the lens is identical

to the action of free space propagation, but in the Fourier-domain. In the

Fourier domain the Gaussian beam parameter is replaced by its inverse (2.46)

e
0( ) =

( )
exp 0

µ
2 + 2

2 ( )

¶¸
(2.84)

e
0( ) = 2 exp ( )

µ 2 + 2

2 0

¶¸
(2.85)

But the inverse q-parameter transforms according to (2.83)

1

2

=

1

1
+

1

1
+

(2.86)

which leads for a thin lens to

1

2

=
1

1

1
(2.87)
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Figure 2.19: Focussing of a Gaussian beam by a lens. 

d1 d2

zR1 zR2
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Telescope 
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Gaussian Beam Optics: Physical Optics 

Ray Optics:  B = 0 

Physical Optics:  Real part of Eq. (2.90) = 0 

Gauss’ lens formula: 



Figure 2.20: Fabry-Perot Resonator with finite beam size. 
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L

z2

R1
R2

2.6 Optical Resonators 
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Figure 2.21: Curved-Flat Mirror 

Resonator 

Curved - Flat Mirror Resonator 

with 
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      Figure 2.22: Beam waists of the curved-flat mirror resonator as a  

    function of L/R1. 

For given R1 
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Curved - Flat Mirror Resonator 



Figure 2.20: Fabry-Perot Resonator with finite beam size. 

z1

w0

L

z2
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Two Curved Mirror Resonator 
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Two Curved Mirror Resonator 

by symmetry: 

and: 

Or: 
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Figure 2.23: Two curved  

mirror resonator. 
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Figure 2.75: Stable regions (black) for the two-mirror resonator 

L

0 R2 1R  +R  
2

R1

Resonator Stability 

Or introduce cavity parameters: 
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Figure 2.24: Stability Criterion 

Geometrical Interpretation 
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Figure 2.26: Stable and unstable resonators 
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Hermite Gaussian Beams 

Other solutions to the paraxial wave equation: 

Hermite Polynomials: 
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Figure 2.27: Hermite Gaussians Gl(u) 

Hermite Gaussian Beams 
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Figure 2.28: Intensity profile of TEMlm-beams. by ABCD law. 

59 

Hermite Gaussian Beams 



Special Case: Confocal Resonator: L = R    

Axial Mode Structure: 

Roundtrip Phase = 2 p : 

Resonance Frequencies: 

2 1( ) ( )
2

z z
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Figure 2.29: Resonance frequencies of the confocal Fabry-Perot resonator, 

d=L 

Resonance Frequencies 

61 


