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Problem 1.1: Time-Bandwidth Product (10 points in total) 

The time-bandwidth product links the duration of an optical pulse in the time domain 

to its corresponding spectral width in the frequency domain. The values are pulse-shape 

specific, and follow from the Fourier transform relation or the uncertainty principle, as the 

case may be. In ultrafast optical physics, it is common to specify the full width at half-

maximum (FWHM) in both time and frequency domain. The following expression describes a 

parabolic pulse in the time domain, in complex notation: 

 
𝐸(𝑡) = 𝐸0 ∙ (1 −

𝑡2

𝜏2) 𝑒𝑖𝜔0𝑡 
for |𝑡| ≤ 𝜏  (1) 

     
 𝐸(𝑡) = 0 for |𝑡| ≥ 𝜏  (2) 

where  𝜔0 is the angular frequency of the light field of interest. 

(a) Sketch the intensity function |𝐸(𝑡)|2  and calculate the full width at half maximum 

(FWHM) ∆𝑡𝐹𝑊𝐻𝑀 of the intensity function. (4 points) 

 

(b) Calculate the Fourier transform �̃�(𝜔) . Sketch the power spectrum |�̃�(𝜔)|
2

 and 

identify the full width at half maximum ∆𝜈𝐹𝑊𝐻𝑀 = Δ𝜔𝐹𝑊𝐻𝑀 2𝜋⁄ . (4 points) 

 

(Hint: Introduce the variable 𝑥 = (𝜔 − 𝜔0)𝜏 and calculate Δ𝑥𝐹𝑊𝐻𝑀 numerically.) 

(Hint: lim𝑥→0
sin 𝑥−𝑥 cos 𝑥

𝑥3 =
1

3
 ) 

(Hint: www.wolframalpha.com can be helpful for a numerical calculation.) 

 

 

(c) Calculate the time-bandwidth product Δ𝜈𝐹𝑊𝐻𝑀 ∙ Δ𝑡𝐹𝑊𝐻𝑀  for this pulse shape. (2 

points)  

http://www.wolframalpha.com/


Problem 1.2: Material dispersion, phase velocity and group velocity (20 points in total) 

Two Gaussian pulses are launched into a piece of optical fiber. Their center 

frequencies are located at 𝑓1 = 205 𝑇𝐻𝑧  and 𝑓2 = 210 𝑇𝐻𝑧 (1 𝑇𝐻𝑧 =  1012 𝐻𝑧) respectively. 

Assume these two pulses’ duration is relatively long so that their spectra are centered 

around𝑓1 𝑎𝑛𝑑 𝑓2 (they do not overlap).  

Dispersion of the fiber can lead to pulse broadening as well as time delay between 

pulses as they propagate through the fiber. You are asked to estimate the pulse broadening 

and time delay from the dispersion characteristics of the fiber. 

(a) The dependence of wave number 𝑘 on frequency is linear as shown in Fig. 1 (a). 

 

i) Which pulse arrives at the output first? Give a brief justification. (2 points) 

ii) Which pulse is broadened by fiber dispersion more? Give a brief justification. 

(2 points) 

 

(b) The dependence of wave number 𝑘 on frequency is composed of linear segments as 

shown in Fig. 1 (b). 

 

i) Which pulse arrives at the output first? Give a brief justification. (2 points) 

ii) Calculate an approximate value for the time delay between the two pulses at 

the output of the fiber given the fiber length is 25 𝑘𝑚. (2 points) 

iii) Which pulse is broadened by fiber dispersion more? Give a brief justification. 

(2 points) 

 

(c) The refractive index of transparent glass can be empirically calculated by Sellmeier 

equation. The Sellmeier equation of an unknown glass is written as follows: 

𝑛2 − 1 =
1.04 ∙ 𝜆2

𝜆2 − 0.006
+

0.23 ∙ 𝜆2

𝜆2 − 0.02
+

1.01 ∙ 𝜆2

𝜆2 − 103.56
 

where n is the refractive index, λ is the wavelength of interest in vacuum with the unit in 

μm. The 𝑛(𝜆) relationship is shown in Fig. 1 (c). 

i) Find the refractive index at f1 and f2. (2 points) 

ii) Calculate the phase velocity and group velocity at 1330 nm and 1550 nm. (2 

points) 

iii) Numerically calculate the GVD at 1030 and 1550 nm. Determine the type of 

dispersion at these two wavelengths (positive / negative). (4 points) 

iv) Find the Zero-Dispersion-Wavelength (ZDW) of such glass. (2 points) 

(Hint: it will make life easier if one can plot the GVD as a function of wavelength) 

  



 

 

 

Figure 1  

(a) 

(b) 

(c) 



Problem 1.3: Gires-Tournois Interferometer (20 points in total) 

Gires-Tournois Interferometer (GTI) is essentially a Fabry-Perot resonator with a 100% 

reflector. As with an ideal high-reflectivity mirror, the whole reflectivity of the device stays 

100%. In contrast, the phase-delay is, as with a Fabry-Perot, frequency-dependent. Thus the 

GTI can be used in a laser resonator for dispersion compensation. 

 

Figure 2: Gires-Tournois Interferometer. Intensity reflectivity for the corresponding 

surface is given with 𝑹 and amplitude reflectivity with 𝒓 

Using 𝑟1 = −√𝑅1, 𝑟2 = −√𝑅2 = −1 and  assuming that medium 2 has a refractive index 1, 

the following expression for the amplitude reflectivity can be found, �̃�𝐺𝑇𝐼: 

�̃�𝐺𝑇𝐼 =
−√𝑅1 + 𝑒−𝑖2𝑘𝑑

1 − √𝑅1𝑒−𝑖2𝑘𝑑
 

(5) 

 

where 𝑘 = 2𝜋 𝜆⁄  and 𝑑 is the thickness of Medium 2. 

(a) The relationship between intensity reflectivity 𝑅  and amplitude reflectivity 𝑟  is 𝑅 =

|𝑟|2. Show that the intensity reflectivity 𝑅𝐺𝑇𝐼 is 100%, as long as there is no absorption 

or other loss in Medium 2. (2 points) 

 

(b) Using the relation �̃�𝐺𝑇𝐼 ≝ |�̃�𝐺𝑇𝐼| ∙ 𝑒−𝑖Φ𝐺𝑇𝐼  to calculate the phase Φ𝐺𝑇𝐼  from the 

amplitude reflectivity. Give your answer in term of 𝜔𝑡0 using the relation  𝜔𝑡0 = 2𝑘𝑑 in 

your final answer. (2 points) 

(c) Calculate the group delay 𝑇𝑔 = −
𝜕Φ𝐺𝑇𝐼

𝜕𝜔
 and the group delay dispersion 𝐷𝑔 =

𝜕𝑇𝑔

𝜕𝜔
. (2 

points) 

From problem (d) to problem (h), suppose the thickness of medium 2 is 𝑑 = 150 µ𝑚 and 

the reflectivity at the interface between medium 1 and medium 2 is 𝑅1 = 4%. 

(d) Plot 𝑇𝑔  and 𝐷𝑔  as functions of wavelength 𝜆  in the band from 798 𝑛𝑚  to 803 𝑛𝑚 . 

Indicate proper units. (2 points) 

 

(e) From the answer of (d), in which wavelength range can the GTI be used for 

dispersion compensation inside a laser resonator? Note that the laser crystals and air 

have positive group velocity dispersions. (3 points) 

 



 

(f) Suppose a 100 𝑓𝑠 long Gaussian-shaped optical pulse (peak intensity is normalized 

to 1) centered at 𝜆 = 800 𝑛𝑚 is reflected from the interface between medium 1 and 2 

at 𝑡 = 0. At 𝑡 = 10 𝑝𝑠, how will the reflected pulses look like? Sketch the pulses at this 

point of time and specify as many numeric values (intensity) as possible. (3 points) 

 

(g) Now suppose a 10 𝑝𝑠  long Gaussian-shaped optical pulse (peak intensity is 

normalized to 1 ) centered at 𝜆 = 800 𝑛𝑚  is reflected from the interface between 

medium 1 and 2 at 𝑡 = 0. At 𝑡 = 20 𝑝𝑠, how will the reflected pulse look like? Sketch 

the pulse at this point in time and specify as many numeric values as possible. (3 

points) 

 

(h) The answers for problems (f) and (g) will look quite different. Briefly explain the 

reason in the frequency and/or time domains. (3 points) 


