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5  Active Mode Locking  

5.1 The Master Equation of Mode Locking
5.2 Active Mode Locking by Loss Modulation
5.3 Active Mode Locking by Phase Modulation  
5.4 Active Mode Locking with Additional SPM  



Figure 1.12: Possible cavity configurations
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5. Laser Mode Locking
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Steady State Lasing

Gain and loss:

After propagation through gain medium and air path:

Steady-State Condition:

Mode Condition:

Resonance Frequencies: 
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Figure 1.13: Laser gain and cavity loss spectrum
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Figure 1.14: Gain and loss spectra.

Laser output

Frequency

Small signal gain

Cavity loss

Longitudinal modes

Df=c/2l

Saturated gain

due to filter

Small 
signal 
gain

Saturation 
Intensity

5



Figure 1.15: (a) mode-locked laser output with constant pulse 
(b): with random phase.
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Mode Locking:



Self-consistent Model for Mode-Locked Laser

Medium modeled by pumped two level atoms 
(Polarization and Inversion, at each point in space and time)
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Maxwell Equations describe Field in Resonator

Medium Polarization is source in the Maxwell�s Equations

Resonator included by proper boundary conditions for 
fields at the cavity mirrors.

Directly write field as a sum of modes whose amplitudes change slowly 
with time due to coupling to the gain medium, dispersion, ….



Time-domain picture of mode-locking

RT RT

Each time the pulse hits the output coupler, a small fraction of the 
power is transmitted out of the cavity. The output is a pulse train 
with repetition rate 1/TR. 
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Force laser to generate short-pulse train using a 
�shutter� to modulate cavity loss

RT RT

•Shutter is opened, loss is low à laser is above threshold à peak builds up 
•Shutter is closed, loss is high à laser is blow threshold à wings developed 

Transient process:
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Active mode-locking
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Talking among modes
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The modulator actually takes power out of the central mode and 
redistributes it to the other modes.  This is how mode-locking can occur 
in a homogeneously broadened laser.
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Decompose wave into oscillating modes
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5.1 Master equation of mode-locking

Assume in steady state, the 
change in the pulse caused 
by each element in the 
cavity small. 

A: the pulse envelope
TR: the cavity round-trip time
T: the time that develops on  

a time scale of the order of TR
t: the fast time of the order of 

the pulse duration
∆Ai: the changes of the pulse 

envelope due to different 
elements in the cavity.
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Loss:

Gain:

loss
dispersion

gain

Gain dispersionMode-locking 
element Self-phase modulation
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5.2 Active mode-locking by loss modulation

Gain tends to narrow the spectrum,    
spectrum broadened by modulator.
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Hermite-Gaussian Solutions
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For given g, the eigen solution with n=0 has the largest gain per round-trip 
and saturate the gain to 

All other modes will decay. 

1) Larger modulation depth, M, and higher modulation frequency will give 
shorter pulses because the �low loss� window becomes narrower, thus 
shortening the pulses.

2) A broader gain bandwidth yields shorter pulses because the filtering 
effect of gain narrowing is lower and more modes are lasing.
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Fig. 5.4: Loss modulation results 
in pulse shortening 
in each roudntrip

Fig. 5.5: Gain filtering broadens 
the pulse in each roundtrip
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Example:

Nd:YAG; 2l=2g=10%, 

Ω   = π Δf         =0.65 THz, 

M = 0.2, f   =100 MHz,

D   = 0.24 ps²,

M =4e16 /s².

t     =  99 ps.
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5.2 Active mode-locking by phase modulation

It can be modeled using master equation by replacing M by jM

Pulse duration
Chirp pulse
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5.4 Active mode-locking with additional SPM
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The resulting pulse is shorter due to additional SPM. However, as the 
pulse shortens by a factor of 2, SPM drives the mode-locking unstable.
It is why broadband laser media can not simply generate femtosecond 
pulses via active mode-locking, since SPM drives them unstable. 
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5.5 Active Modelocking with Soliton Formation

Fig. 5.8: Active Modelocking 
with Soliton Formation

Soliton Perturbation Theory
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5.5.1 Steady State and Stability Conditions
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Energy:

Steady State:

Linearization:



5.5.1 Steady State and Stability Conditions
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Pulse width of stable solitons will satisfy: 

Normalized Dispersion:

Generated continuum:

Soliton sheds energy into continuum, but we can neglect coupling back 
of the continuum to the soliton for large normalized dispersion

Drive terms



Continuum
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In parabolic approx. of the modulation function, Hermite Gaussians are again 
the solutions with the complex width:

and associated eigenvalues: 



Stability of Continuum
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with:

Condition for stability: net loss per roundtrip for all continuum modes:

Minimum amount of negative dispersion:

For even larger amounts of dispersion,we define the pulse shortening factor 
in terms of FWHM pulse width



Pulse width reduction

Fig. 5.9: Pulse width reduction

32

Nonlinear phase 
shift  per roundtrip
is limited.
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Fig. 5.10: Time evolution in a Nd:YAG laser D = -17ps2

with initial pulsewidth 68 ps.
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Fig. 5.11: 10000 roundtrips
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Fig. 5.11: 10000 roundtrips
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Fig. 5.12a: D = -10ps2
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Fig. 5.12 b: 50000 roundtrips
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Fig. 5.13: Autocorrelation of the actively mode-locked laser
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Fig. 5.14: Sampling oscilloscope trace
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Fig. 5.15: Drifting pulse dynamics in a detuned laser
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5.6 Active Modelocking with Detuning



Fig. 5.16: Lower order eigenmodes
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Normalized detuning:



Fig. 5.17: Coefficients of envelope in a Hermite-Gaussian Basis 
centered at t=0 for  D = 3.5
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Fig. 5.18: Normalized deviation from steady state gain 
for D = 3.5 44



Fig. 5.19: Temporal evolution to steady state position at
to 21/2 D = 4.9
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Fig. 5.20: Coefficients of envelope in a Hermite-Gaussian Basis 
centered at t=0 for  D = 4
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Fig. 5.21: Temporal evolution of gain deviation from quasi steady 
state 
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Fig. 5.22: Time evolution of pulse envelope for D = 4
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Fig. 5.25: Critical detuning ~ 3.65
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Fig. 5.26: Liapunov coefficient over normalized detuning
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