# Ultrafast Optical Physics II (SoSe 2019) Lecture 2, April 12 

(1) Susceptibility and Sellmeier equation
(2) Phase velocity and group velocity
(3) Linear pulse propagation and dispersion

## Maxwell's Equations of isotropic and homogeneous media

Maxwell's Equations: Differential Form

$$
\begin{array}{rlr}
\text { Ampere's Law } & \vec{\nabla} \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{J}, \quad \text { Current due to free charges } \\
\text { Faraday's Law } & \vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t}, \\
\text { Gauss's Law } & \vec{\nabla} \cdot \vec{D} & =\rho, \quad \longleftarrow \\
\text { No magnetic charge } \vec{\nabla} \cdot \vec{B} & =0 .
\end{array}
$$

Material Equations: Bring Life into Maxwell's Equations

$$
\begin{array}{ll}
\vec{D}=\epsilon_{0} \vec{E}+\vec{P}, & \text { Polarization } \\
\vec{B}=\mu_{0} \vec{H}+\vec{M} . & \text { Magnetization } \tag{2.2b}
\end{array}
$$

## Derivation of wave equation

No free charges, No currents from free charges, Non magnetization

$$
\begin{equation*}
\left(\Delta-\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{E}=\mu_{0}\left(\frac{\partial \overrightarrow{\not \partial t}}{\partial t}+\frac{\partial^{2}}{\partial t^{2}} \vec{P}\right)+\frac{\partial}{\partial t} \nabla / \times \vec{M}+\nabla(\nabla / \vec{E}) . \tag{2.4}
\end{equation*}
$$

In the linear optics of isotropic media without free charges,

$$
\nabla \cdot \vec{D}=0 \longrightarrow \nabla \cdot \vec{E}=0
$$

Simplified wave equation:

$$
\begin{equation*}
\left(\Delta-\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{E}=\mu_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{P} \tag{2.7}
\end{equation*}
$$

Wave in vacuum Source term

Laplace operator:

$$
\Delta=\vec{\nabla}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

## Dielectric susceptibility and Helmholtz equation

$$
\begin{aligned}
& \vec{P}(\vec{r}, t)=\epsilon_{0} \int d t^{\prime} \chi\left(t-t^{\prime}\right) \vec{E}\left(\vec{r}, t^{\prime}\right) \longleftrightarrow \tilde{\vec{P}}(\vec{r}, \omega)=\epsilon_{0} \tilde{\chi}(\omega) \tilde{\vec{E}}(\vec{r}, \omega) \\
&\left(\Delta-\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{E}=\mu_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{P} \quad \rightleftarrows\left(\Delta+\frac{\omega^{2}}{c_{0}^{2}}\right) \tilde{\vec{E}}(\omega)=-\omega^{2} \mu_{0} \epsilon_{0} \tilde{\chi}(\omega) \tilde{\vec{E}}(\omega)
\end{aligned}
$$

In a linear medium, dielectric susceptibility is independent of optical field

$$
\left(\Delta+\frac{\omega^{2}}{c_{0}^{2}}(1+\tilde{\chi}(\omega))\right) \tilde{\vec{E}}(\omega)=0
$$



Medium speed of light (dependent on frequency): $\quad c(\omega)=c_{0} / \tilde{n}(\omega)$

## Susceptibility calculated using Lorentz model

$$
\underline{\widetilde{\chi}}(\omega)=\widetilde{\chi}_{r}(\omega)+\mathrm{j} \widetilde{\chi}_{i}(\omega) \quad \omega_{p}=\left(\frac{N e^{2}}{\varepsilon_{0} m_{0}}\right)^{1 / 2}
$$

Plasma frequency

$$
\begin{aligned}
& \tilde{\chi}_{r}(\omega)=\omega_{p}^{2} \cdot \frac{\left(\Omega_{0}^{2}-\omega^{2}\right)}{\left(\Omega_{0}^{2}-\omega^{2}\right)^{2}+\left(2 \omega \frac{\Omega_{0}}{Q}\right)^{2}} \\
& \tilde{\chi}_{i}(\omega)=-\omega_{p}^{2} \cdot \frac{2 \omega \frac{\Omega_{0}}{Q}}{\left(\Omega_{0}^{2}-\omega^{2}\right)^{2}+\left(2 \omega \frac{\Omega_{0}}{Q}\right)^{2}}
\end{aligned}
$$

Real and imaginary part of the susceptibility

$$
\underline{\widetilde{\chi}}(\omega)=\widetilde{\chi}_{r}(\omega)+\mathrm{j} \widetilde{\chi}_{i}(\omega)
$$



Real part (dashed line) and imaginary part (solid line) of the susceptibility of the classical oscillator model for the dielectric polarizability

## Real and imaginary part of the susceptibility

$$
\underline{\widetilde{\chi}}(\omega)=\widetilde{\chi}_{r}(\omega)+\mathrm{j} \widetilde{\chi}_{i}(\omega)
$$

Example: EM-Wave polarized along x-axis and propagation along z-direction:

$$
\begin{array}{l|cc}
\underline{\underline{E}}(z, t)=\underline{E}_{0} e^{j(\omega t-k z)} \vec{e}_{x} & \sqrt{-1}=\mathrm{i} & \text { Physics notation } \\
\sqrt{-1}=\mathrm{j} & \text { Engineering notation }
\end{array}
$$

In general:

$$
\begin{gathered}
k(\omega)=\frac{\omega}{c_{0}} \tilde{n}(\omega)=\frac{\omega}{c_{0}} \sqrt{1+\tilde{\chi}(\omega)}=\frac{\omega}{c_{0}}\left(\tilde{n}_{r}(\omega)+j \tilde{n}_{i}(\omega)\right)=k_{r}(\omega)-j \alpha(\omega) \\
\underline{\vec{E}}(z, t)=\underline{E}_{0} e^{-\alpha \cdot z} e^{j\left(\omega t-k_{r} z\right)} \vec{e}_{x}
\end{gathered}
$$

Dispersion relation:

$$
k_{r}(\omega)=\frac{\omega}{c_{0}} n_{r}(\omega)
$$

## Absorption and refractive index Vs. wavelength



Classical Optics $\left\{\begin{array}{c}\frac{d n}{d \lambda}<0: \text { normal dispersion (blue refracts more than red) } \\ \frac{d n}{d \lambda}>0: \text { anomalous dispersion }\end{array}\right.$
Ultrafast Optics $\left\{\begin{array}{c}\frac{d^{2} n}{d \lambda^{2}}>0: \text { normal dispersion } \\ \text { short wavelengths slower than long wavelengths } \\ \frac{d^{2} n}{d \lambda^{2}}<0: \text { anomalous dispersion } \\ \text { short wavelengths faster than long wavelengths }\end{array}\right.$

## Sellmeier equations to model refractive index

If the frequency is far away from the absorption resonance

$$
\left|\Omega_{0}^{2}-\omega^{2}\right| \gg 2 \omega \frac{\Omega_{0}}{Q}
$$

$$
\tilde{\chi}_{r}(\omega)=\omega_{p}^{2} \cdot \frac{\left(\Omega_{0}^{2}-\omega^{2}\right)}{\left(\Omega_{0}^{2}-\omega^{2}\right)^{2}+\left(2 \omega \frac{\Omega_{0}}{Q}\right)^{2}}
$$

$$
\Longrightarrow \quad \tilde{\chi}_{r}(\omega)=\frac{\omega_{p}^{2}}{\Omega_{0}^{2}-\omega^{2}}
$$

Normally there are multiple resonant frequencies for the electronic oscillators. It means in general the refractive index will have the form

$$
n^{2}(\omega)=1+\sum_{i} A_{i} \frac{\omega_{p}^{2}}{\Omega_{i}^{2}-\omega^{2}}=1+\sum_{i} a_{i} \frac{\lambda^{2}}{\lambda^{2}-\lambda_{i}^{2}}
$$

|  | Fused Quartz | Sapphire |
| :--- | :--- | :--- |
| $\mathrm{a}_{1}$ | 0.6961663 | 1.023798 |
| $\mathrm{a}_{2}$ | 0.4079426 | 1.058364 |
| $\mathrm{a}_{3}$ | 0.8974794 | 5.280792 |
| $\lambda_{1}^{2}$ | $4.679148 \cdot 10^{-3}$ | $3.77588 \cdot 10^{-3}$ |
| $\lambda_{2}^{2}$ | $1.3512063 \cdot 10^{-2}$ | $1.22544 \cdot 10^{-2}$ |
| $\lambda_{3}^{2}$ | $0.9793400 \cdot 10^{2}$ | $3.213616 \cdot 10^{2}$ |

## Linear propagation of a pulse


$n(\omega)$
$?$

$$
\left(\Delta+\frac{\omega^{2}}{c_{0}^{2}}(1+\tilde{\chi}(\omega))\right) \tilde{\vec{E}}(\omega)=0 \quad \xrightarrow{1+\chi(\omega)=n^{2}(\omega)}\left(\nabla^{2}+\frac{n^{2}(\omega) \omega^{2}}{c_{0}^{2}}\right) E(\omega)=0
$$

$$
\begin{aligned}
& \text { Neglecting diffraction (e.g. inside an optical waveguide) } \\
& \underset{\text { fransform }}{\text { Fourier }}\left\{\begin{array}{l}
E(z, t)=A(z, t) e^{j\left(\omega_{0} t-k_{0} z\right)} \\
E(z, \omega)=A\left(\mathrm{z}, \omega-\omega_{0}\right) e^{-j k_{0} z}
\end{array}\right. \\
& \frac{d^{2} A}{d z^{2}}-2 j k_{0} \frac{d A}{d z}+\left[k^{2}(\omega)-k_{0}^{2}\right] A=0 \\
& \frac{d^{2} A}{d z^{2}}-2 j k_{0} \frac{d A}{d z}+[\underbrace{k(\omega)+k_{0}}_{\approx 2 k_{0}}]\left[k(\omega)-k_{0}\right] A=0 \\
& {\left[\frac{d^{2}}{d z^{2}}+k^{2}(\omega)\right] E(z, \omega)=0} \\
& k(\omega)=\frac{n(\omega) \omega}{c_{0}} \\
& \text { Slowly varying amplitude } \\
& \text { approximation } \\
& \frac{d A}{d z}=-j\left[k(\omega)-k_{0}\right] A
\end{aligned}
$$

## Linear pulse propagation



$$
\begin{gathered}
k(\omega)=\frac{n(\omega) \omega}{c_{0}} \approx k\left(\omega_{0}\right)+\left.\frac{d k}{d \omega}\right|_{\omega_{0}}\left(\omega-\omega_{0}\right)+\left.\frac{1}{2} \frac{d^{2} k}{d \omega^{2}}\right|_{\omega_{0}}\left(\omega-\omega_{0}\right)^{2}+\left.\frac{1}{6} \frac{d^{3} k}{d \omega^{3}}\right|_{\omega_{0}}\left(\omega-\omega_{0}\right)^{3}+\ldots \\
=k_{0}+k_{1}\left(\omega-\omega_{0}\right)+\frac{1}{2} k_{2}\left(\omega-\omega_{0}\right)^{2}+\frac{1}{2} k_{3}\left(\omega-\omega_{0}\right)^{3}+\ldots \\
k_{0}=\frac{\omega_{0}}{c_{0}} n\left(\omega_{0}\right) \quad k_{1}=\left.\frac{d k}{d \omega}\right|_{\omega_{0}} \quad k_{2}=\left.\frac{d^{2} k}{d \omega^{2}}\right|_{\omega_{0}} \quad k_{3}=\left.\frac{d^{3} k}{d \omega^{3}}\right|_{\omega_{0}}
\end{gathered}
$$

## Group velocity Vs phase velocity

$$
\frac{d A\left(z, \omega-\omega_{0}\right)}{d z}=-j\left[k(\omega)-k_{0}\right] A\left(z, \omega-\omega_{0}\right) \quad k(\omega)=k_{0}+\left.\frac{d k}{d \omega}\right|_{\omega=\omega_{0}}\left(\omega-\omega_{0}\right)+\left.\frac{1}{2} \frac{d^{2} k}{d \omega^{2}}\right|_{\omega=\omega_{0}}\left(\omega-\omega_{0}\right)^{2}+\ldots
$$

Let's first take a look at the effect of the first two terms

$$
k(\omega)=k_{0}+k^{(1)}\left(\omega-\omega_{0}\right) \quad k^{(1)}=\left.\frac{d k}{d \omega}\right|_{\omega=\omega_{0}}
$$

$$
\frac{d A\left(z, \omega-\omega_{0}\right)}{d z}=-j k^{(1)}\left(\omega-\omega_{0}\right) A\left(z, \omega-\omega_{0}\right) \longrightarrow A\left(\mathrm{z}, \omega-\omega_{0}\right)=A\left(0, \omega-\omega_{0}\right) e^{-j k^{(1)}\left(\omega-\omega_{0}\right) z}
$$

$$
E(z, \omega)=A\left(\mathrm{z}, \omega-\omega_{0}\right) e^{-j k_{0} z}=A\left(0, \omega-\omega_{0}\right) e^{-j\left[k_{0}+k^{(1)}\left(\omega-\omega_{0}\right)\right] z}
$$

$E(z, t)=A\left(0, t-k^{(1)} z\right) e^{j\left(\omega_{0} t-k_{0} z\right)}=A\left(0, t-\frac{z}{V_{g}}\right) e^{j \omega_{0}}$
Group velocity: travelling speed of the pulse envelope.

$$
V_{g}=\frac{1}{k^{(1)}}=1 /\left.\frac{d k}{d \omega}\right|_{\omega=\omega_{0}}=\frac{c_{0}}{n\left(\omega_{0}\right)+\left.\omega_{0} \frac{d n(\omega)}{d \omega}\right|_{\omega=\omega_{0}}}
$$

Phase velocity: travelling speed of the carrier wave under the pulse envelope.

$$
V_{p}=\frac{\omega_{0}}{k_{0}}=\frac{c_{0}}{n\left(\omega_{0}\right)}
$$

## Group velocity Vs phase velocity


isvr

## Calculating group velocity vs. wavelength

We more often think of the refractive index in terms of wavelength, so let's write the group velocity in terms of the vacuum wavelength $\lambda_{0}$.
Use the chain rule : $\frac{d n}{d \omega}=\frac{d n}{d \lambda_{0}} \frac{d \lambda_{0}}{d \omega}$
Now, $\lambda_{0}=2 \pi c_{0} / \omega$, so: $\quad \frac{d \lambda_{0}}{d \omega}=\frac{-2 \pi c_{0}}{\omega^{2}}=\frac{-2 \pi c_{0}}{\left(2 \pi c_{0} / \lambda_{0}\right)^{2}}=\frac{-\lambda_{0}^{2}}{2 \pi c_{0}}$
Recalling that: $\quad \mathrm{v}_{g}=\left(\frac{c_{0}}{n}\right) /\left[1+\frac{\omega}{n} \frac{d n}{d \omega}\right]$
we have:

$$
\mathrm{v}_{g}=\left(\frac{c_{0}}{n}\right) /\left[1+\frac{2 \pi c_{0}}{n \lambda_{0}}\left\{\frac{d n}{d \lambda_{0}}\left(\frac{-\lambda_{0}^{2}}{2 \pi c_{0}}\right)\right\}\right]
$$

or:

$$
\mathrm{v}_{g}=\left(\frac{c_{0}}{n}\right) /\left(1-\frac{\lambda_{0}}{n} \frac{d n}{d \lambda_{0}}\right)
$$

## Group-velocity dispersion (GVD)

What's effect of the $3^{\text {rd }}$ term in the Taylor expansion of wave vector?

$$
\begin{aligned}
& \frac{d A\left(z, \omega-\omega_{0}\right)}{d z}=-j\left[k(\omega)-k_{0}\right] A\left(z, \omega-\omega_{0}\right) \quad k(\omega)=k_{0}+\left.\frac{d k}{d \omega}\right|_{\omega=\omega_{0}}\left(\omega-\omega_{0}\right)+\left.\frac{1}{2} \frac{d^{2} k}{d \omega^{2}}\right|_{\omega=\omega_{0}}\left(\omega-\omega_{0}\right)^{2}+\ldots \\
& k(\omega)=k_{0}+k^{(1)}\left(\omega-\omega_{0}\right)+\frac{1}{2} k^{(2)}\left(\omega-\omega_{0}\right)^{2} \quad k^{(1)}=\left.\frac{d k}{d \omega}\right|_{\omega=\omega_{0}} \quad k^{(2)}=\left.\frac{d^{2} k}{d \omega^{2}}\right|_{\omega=\omega_{0}} \\
& \frac{d A\left(z, \omega-\omega_{0}\right)}{d z}=-j\left[\frac{1}{V_{g}}+\frac{1}{2} k^{(2)}\left(\omega-\omega_{0}\right)\right]\left(\omega-\omega_{0}\right) A\left(z, \omega-\omega_{0}\right) \quad V_{g}=\frac{1}{k^{(1)}} \\
& \text { Group velocity becomes } \\
& \text { frequency dependent. } \\
& \underset{\text { Group velocity }}{\text { dispersion (GVD) }} \quad k^{(2)}=\frac{d}{d \omega}\left(\frac{d k}{d \omega}\right)=\frac{d}{d \omega}\left(\frac{1}{V_{g}}\right) \\
& A\left(z, \omega-\omega_{0}\right)=A\left(0, \omega-\omega_{0}\right) e^{-j\left[\frac{1}{V_{g}}+\frac{1}{2} k^{(2)}\left(\omega-\omega_{0}\right)\right]\left(\omega-\omega_{0}\right) z} \longrightarrow\left|A\left(z, \omega-\omega_{0}\right)\right|=\left|A\left(0, \omega-\omega_{0}\right)\right|
\end{aligned}
$$

The pulse maintains its optical spectrum shape but acquires a quadratic spectral phase from GVD, which will change the pulse's temporal profile.

## Group-velocity dispersion (GVD)

$$
k^{(2)}=\frac{d}{d \omega}\left(\frac{1}{v_{g}}\right)=-\frac{1}{v_{g}^{2}\left(\omega_{0}\right)} \frac{d v_{g}}{d \omega}=\left(\frac{\lambda}{2 \pi c}\right) \frac{\lambda^{2}}{c} \frac{d^{2} n}{d \lambda^{2}}
$$

Positive GVD or normal dispersion

$$
\begin{aligned}
& k^{(2)}>0 \\
& \frac{d v_{g}}{d \omega}<0
\end{aligned}
$$

Low frequency travels faster

Negative GVD or anomalous dispersion

$$
\begin{aligned}
& k^{(2)}<0 \\
& \frac{d v_{g}}{d \omega}>0
\end{aligned}
$$

High frequency travels faster

## Effect of GVD on pulse propagation

Gaussian Pulse:

$$
\begin{aligned}
& \underline{E}(z=0, t)=\underline{A}(z=0, t) e^{\mathrm{j} \omega_{0} t} \\
& \underline{A}\left(z=0, t=t^{\prime}\right)=\underline{A}_{0} \exp \left[-\frac{1}{2} \frac{t^{\prime 2}}{\tau^{2}}\right] \\
& \quad \frac{\partial \underline{\tilde{A}}(z, \omega)}{\partial z}=-\mathrm{j} \frac{k^{\prime \prime} \omega^{2}}{2} \underline{\tilde{A}}(z, \omega)
\end{aligned}
$$

Pulse width

Substitute:

$$
\underline{\tilde{A}}(z, \omega)=\underline{\tilde{A}}(z=0, \omega) \exp \left[-\mathrm{j} \frac{k^{\prime \prime} \omega^{2}}{2} z\right]
$$

Gaussian Integral:

$$
\frac{1}{\sqrt{2 \pi \sigma}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2 \sigma}} e^{-j x \varsigma} d x=e^{-\frac{\sigma}{2} \varsigma^{2}} \text { for } \operatorname{Re}\{\sigma\} \geq 0
$$

$$
\underline{\tilde{A}}(z=0, \omega)=A_{0} \sqrt{2 \pi} \tau \exp \left[-\frac{1}{2} \tau^{2} \omega^{2}\right]
$$

Propagation of z distance:

$$
\begin{aligned}
& \underline{\tilde{A}}(z, \omega)=A_{0} \sqrt{2 \pi} \tau \exp \left[-\frac{1}{2}\left(\tau^{2}+\mathrm{j} k^{\prime \prime} z\right) \omega^{2}\right] \\
& \underline{A}\left(z, t^{\prime}\right)=A_{0}\left(\frac{\tau^{2}}{\left(\tau^{2}+\mathrm{j} k^{\prime \prime} z\right)}\right)^{1 / 2} \exp \left[-\frac{1}{2} \frac{t^{\prime 2}}{\left(\tau^{2}+\mathrm{j} k^{\prime \prime} z\right)}\right]
\end{aligned}
$$

Exponent Real and Imaginary Part:

$$
\underline{A}\left(z, t^{\prime}\right)=A_{0} A_{\begin{array}{c}
\text { z-dependent phase } \\
\text { shift, independent } \\
\text { on time }
\end{array}}^{\left(\frac{\tau^{2}}{\left(\tau^{2}+\mathrm{j} k^{\prime \prime} z\right)}\right)^{1 / 2}} \exp \left[\frac{-\frac{1}{2} \frac{\tau^{2} t^{\prime 2}}{\left(\tau^{4}+\left(k^{\prime \prime} z\right)^{2}\right)}}{\begin{array}{c}
\text { determines } \\
\text { pulse width }
\end{array}}+\frac{\mathrm{j} \frac{1}{2} k^{\prime \prime} z \frac{t^{\prime 2}}{\left(\tau^{4}+\left(k^{\prime \prime} z\right)^{2}\right)}}{}\right.
$$

FWHM Pulse width:

$$
\exp \left[-\frac{\tau^{2}\left(\tau_{F W H M}^{\prime} / 2\right)^{2}}{\left(\tau^{4}+\left(k^{\prime \prime} z\right)^{2}\right)}\right]=0.5
$$

Initial pulse width:

$$
\tau_{F W H M}=2 \sqrt{\ln 2} \tau
$$

Initial pulse width:

$$
\tau_{F W H M}=2 \sqrt{\ln 2} \tau
$$

After propagation over a distance $z=\mathrm{L}$ :

$$
\tau_{F W H M}^{\prime}=2 \sqrt{\ln 2} \tau \sqrt{1+\left(\frac{k^{\prime \prime} L}{\tau^{2}}\right)^{2}}=\tau_{F W H M} \sqrt{1+\left(\frac{k^{\prime \prime} L}{\tau^{2}}\right)^{2}}
$$

For large distances: $\quad \tau_{F W H M}^{\prime}=2 \sqrt{\ln 2}\left|\frac{k^{\prime \prime} L}{\tau}\right|$ for $\left|\frac{k^{\prime \prime} L}{\tau^{2}}\right| \gg 1$



Decomposition of a pulse into wave packets with different center frequency. In a medium with dispersion the wave packets move at different relative group velocity

## Instantaneous frequency and chirp

$$
\underline{A}\left(z, t^{\prime}\right)=A_{0} \frac{A_{0}\left(\frac{\tau^{2}}{\left(\tau^{2}+\mathrm{j} k^{\prime \prime} z\right)}\right)^{1 / 2}}{\begin{array}{c}
\text { z-dependent phase } \\
\text { shift, independent } \\
\text { on time }
\end{array}} \exp \left[\frac{-\frac{1}{2} \frac{\tau^{2} t^{\prime 2}}{\left(\tau^{4}+\left(k^{\prime \prime} z\right)^{2}\right)}}{\boldsymbol{c}_{\text {determines }}^{\text {pulse width }}}+\frac{\mathrm{j} \frac{1}{2} k^{\prime \prime} z \frac{t^{\prime 2}}{\left(\tau^{4}+\left(k^{\prime \prime} z\right)^{2}\right)}}{}\right.
$$

After propagation of $L$ distance: $\omega\left(z=L, t^{\prime}\right)=\frac{\partial}{\partial t^{\prime}} \phi\left(L, t^{\prime}\right)=\frac{k^{\prime \prime} L}{\left(\tau^{4}+\left(k^{\prime \prime} L\right)^{2}\right)} t^{\prime}$

$$
\begin{aligned}
& E\left(L, t^{\prime}\right)=\underline{A}\left(L, t^{\prime}\right) \exp \left(j \omega_{0} t^{\prime}\right) \propto \exp \left[j \omega_{0} t^{\prime}+j \phi\left(L, t^{\prime}\right)\right] \\
& \phi\left(z=L, t^{\prime}\right)=-\frac{1}{2} \arctan \left[\frac{k^{\prime \prime} L}{\tau^{2}}\right]+\frac{1}{2} k^{\prime \prime} L \frac{t^{\prime 2}}{\left(\tau^{4}+\left(k^{\prime \prime} L\right)^{2}\right)}
\end{aligned}
$$

Instantaneous Frequency:

$$
\begin{aligned}
\omega_{i n s t}(t) \equiv \frac{\partial\left[\omega_{0} t^{\prime}+\phi\left(L, t^{\prime}\right)\right]}{\partial t^{\prime}} & =\omega_{0}+\frac{\partial \phi\left(L, t^{\prime}\right)}{\partial t^{\prime}} \\
& =\omega_{0}+\frac{k^{\prime \prime} L}{\left(\tau^{4}+\left(k^{\prime \prime} L\right)^{2}\right)} t^{\prime}
\end{aligned}
$$

## Linearly chirped Gaussian pulse: positive chirp

$$
\omega_{\text {ins }}\left(t^{\prime}\right)=\omega_{0}+\frac{k^{\prime \prime} L}{\left(\tau^{4}+\left(k^{\prime \prime} L\right)^{2}\right)} t^{\prime}
$$

For positive GVD, i.e., $\mathrm{k}^{\prime \prime}>0$, lower frequency travels faster, and the instantaneous frequency linearly INCREASES with time.


## Linearly chirped Gaussian pulse: negative chirp

$$
\omega_{\text {ins }}\left(t^{\prime}\right)=\omega_{0}+\frac{k^{\prime \prime} L}{\left(\tau^{4}+\left(k^{\prime \prime} L\right)^{2}\right)} t^{\prime}
$$

For negative GVD, i.e., k"<0, higher frequency travels faster.
The instantaneous frequency linearly DECREASES with time.


$$
\phi\left(z=L, t^{\prime}\right)=-\frac{1}{2} \arctan \left[\frac{k^{\prime \prime} L}{\tau^{2}}\right]+\frac{1}{2} k^{\prime \prime} L \frac{t^{\prime 2}}{\left(\tau^{4}+\left(k^{\prime \prime} L\right)^{2}\right)}
$$

Instantaneous Frequency:

$$
\omega_{\text {ins }}\left(t^{\prime}\right)=\omega_{0}+\frac{k^{\prime \prime} L}{\left(\tau^{4}+\left(k^{\prime \prime} L\right)^{2}\right)} t^{\prime}
$$

(a)

(a) temporal Phase and (b) instantaneous frequency of a Gaussian pulse during propagation through a medium with positive or negative dispersion

## Transform-limited pulse

$$
\widetilde{E}(\omega)=\int_{-\infty}^{\infty} E(t) \exp (-j \omega t) d t \quad E(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{E}(\omega) \exp (j \omega t) d \omega
$$

$|\widetilde{E}(\omega)|^{2}$
$|E(t)|^{2} \quad$ has a pulse duration of at full-width at half-

Uncertainty principle:

Time Bandwidth Product (TBP)
 only on pulse shape

For a given optical spectrum, there exist a lower limit for the pulse duration. If the equality is reached, we say the pulse is a transform-limited pulse.

To get a shorter transform-limited pulse, one needs a broader optical spectrum.

Common pulse envelopes (with $\tau_{\mathrm{p}}=$ Intensity FWHM ):

## Temporal and spectral shapes and TBPs of typical ultrashort pulses

Diels and Rudolph, Femtosecond Phenomena

## Some definitions

$$
\begin{aligned}
& k(\omega)=n(\omega) \frac{\omega}{c}=k_{0}+k_{1}\left(\omega-\omega_{0}\right)+\frac{1}{2} k_{2}\left(\omega-\omega_{0}\right)^{2}+\ldots \\
& k_{1}=\frac{1}{v_{g}}=\frac{1}{c}\left(n+\omega \frac{d n}{d \omega}\right)=\frac{1}{c}\left(n-\lambda \frac{d n}{d \lambda}\right) \quad \text { Unit: } \mathrm{s} / \mathrm{m} \quad k_{m}=\left(\frac{d^{m} k}{d \omega^{m}}\right)_{\omega=\omega_{0}} \\
& v_{g} \quad \text { Group velocity } \\
& k_{2}=\frac{d}{d \omega}\left(\frac{1}{v_{g}}\right)=-\frac{1}{v_{g}^{2}\left(\omega_{0}\right)} \frac{d v_{g}}{d \omega}=\frac{1}{c}\left(2 \frac{d n}{d \omega}+\omega \frac{d^{2} n}{d \omega^{2}}\right)=\left(\frac{\lambda}{2 \pi c}\right) \frac{\lambda^{2}}{c} \frac{d^{2} n}{d \lambda^{2}}
\end{aligned}
$$

$$
k_{2} \quad \text { Group velocity dispersion (GVD) Unit: } \mathrm{s}^{2} / \mathrm{m}
$$

Note: more often, $\beta(\omega)$ is used to replace $k(\omega)$ and $\beta_{2}$ is GVD.

## GVD changes the pulse duration and introduces chirp

$$
k_{2}=\frac{d}{d \omega}\left(\frac{1}{v_{g}}\right)=-\frac{1}{v_{g}^{2}\left(\omega_{0}\right)} \frac{d v_{g}}{d \omega}=\left(\frac{\lambda}{2 \pi c}\right) \frac{\lambda^{2}}{c} \frac{d^{2} n}{d \lambda^{2}}
$$

Positive GVD or normal dispersion

$$
k_{2}>0 \quad \frac{d v_{g}}{d \omega}<0
$$

Red faster, positive chirp


Negative GVD or anomalous dispersion

$$
k_{2}<0 \quad \frac{d v_{g}}{d \omega}>0
$$

Blue faster, negative chirp


## Pulse travels through a dispersive bulk medium



Transform-limited pulse
Positive chirp

## Group Delay \& Group Delay Dispersion

$$
\begin{gathered}
\varphi(\omega)=k(\omega) z=\varphi_{0}+\varphi_{1}\left(\omega-\omega_{0}\right)+\frac{1}{2} \varphi_{2}\left(\omega-\omega_{0}\right)^{2}+\frac{1}{6} \varphi_{3}\left(\omega-\omega_{0}\right)^{3}+\ldots \\
\varphi_{1}=\frac{z}{v_{g}}=\tau_{g} \quad \begin{array}{l}
\text { Group delay, in fs } \\
\varphi_{2}=\frac{d \tau_{g}}{d \omega} \quad \begin{array}{l}
\text { Group delay dispersion (GDD), in fs }{ }^{2} \\
\text { GDD }>0, \text {, positive dispersion } \\
\text { GDD }<0, \text { negative dispersion }
\end{array} \\
\varphi_{3} \quad \begin{array}{l}
\text { Third order dispersion (TOD), in fs }{ }^{3} \\
\varphi_{4}
\end{array} \quad \begin{array}{l}
\text { Fourth order dispersion, in fs }{ }^{4}
\end{array}
\end{array} .\left\{\begin{array}{l}
\varphi_{m}
\end{array}\right.
\end{gathered}
$$

Group delay shift the time origin of the pulse envelope while GDD changes its shape.

Effect of absolute ohase

$$
\lambda=1 \mu \mathrm{~m}, \mathrm{t}_{0}=5 \mathrm{fs} .
$$





## Effect of group delay

$$
\lambda=1 \mu \mathrm{~m}, \mathrm{t}_{0}=5 \mathrm{fs}
$$





Effect of positive $2^{\text {nd }}$ order dispersion

$$
\lambda=1 \mu \mathrm{~m}, \mathrm{t}_{0}=5 \mathrm{fs} .
$$





Effect of positive $3^{\text {rd }}$ order dispersion

$$
\lambda=1 \mu \mathrm{~m}, \mathrm{t}_{0}=5 \mathrm{fs} .
$$





## Effect of negative $3^{\text {rd }}$ order dispersion

$$
\lambda=1 \mu \mathrm{~m}, \mathrm{t}_{0}=5 \mathrm{fs} .
$$





## Effect of positive $4^{\text {th }}$ order dispersion

$$
\lambda=1 \mu \mathrm{~m}, \mathrm{t}_{0}=5 \mathrm{fs} .
$$





Dispersion parameters for various materials


## Linear propagation equation for pulse envelope

$$
\widetilde{E}(z, \omega)=\widetilde{E}(0, \omega) \exp [-j k(\omega) z]
$$

$$
\frac{\partial}{\partial z} \widetilde{E}(z, \omega)=-j k \widetilde{E}(z, \omega)
$$

$$
\begin{gathered}
E(z, t)=A(z, t) \exp \left[j\left(\omega_{0} t-k_{0} z\right)\right] \Longrightarrow \widetilde{E}(z, \omega)=\widetilde{A}\left(z, \omega-\omega_{0}\right) \exp \left(-j k_{0} z\right) \\
\frac{\partial}{\partial z} \widetilde{A}\left(z, \omega-\omega_{0}\right)-j k_{0} \widetilde{A}\left(z, \omega-\omega_{0}\right)=-j k \widetilde{A}\left(z, \omega-\omega_{0}\right) \\
\frac{\partial}{\partial z} \widetilde{A}\left(z, \omega-\omega_{0}\right)=-j\left[\sum_{n=1}^{\infty} \frac{k^{(n)}}{n!}\left(\omega-\omega_{0}\right)^{n}\right] \widetilde{A}\left(z, \omega-\omega_{0}\right) \\
\omega-\omega_{0} \xrightarrow{ } \quad \omega \\
\frac{\partial}{\partial z} \widetilde{A}(z, \omega)=-j\left[\sum_{n=1}^{\infty} \frac{k^{(n)}}{n!} \omega^{n}\right] \widetilde{A}(z, \omega)
\end{gathered}
$$

In the time domain

$$
\frac{\partial}{\partial z} A(z, t)=-j\left[\sum_{n=1}^{\infty} \frac{k^{(n)}}{n!}\left(-j \frac{\partial}{\partial t}\right)^{n}\right] A(z, t)
$$

## Linear propagation equation for pulse envelope

$$
\begin{aligned}
& \frac{\partial}{\partial z} A(z, t)=-k_{1} \frac{\partial}{\partial t} A(z, t)-j\left[\sum_{n=2}^{\infty} \frac{k^{(n)}}{n!}\left(-j \frac{\partial}{\partial t}\right)^{n}\right] A(z, t) \\
& \downarrow \\
& \frac{\partial}{\partial z} A(z, t)+\frac{1}{V_{g}} \frac{\partial}{\partial t} A(z, t)=-j\left[\sum_{n=2}^{\infty} \frac{k^{(n)}}{n!}\left(-j \frac{\partial}{\partial t}\right)^{n}\right] A(z, t) \\
& t-\frac{z}{V_{g}} \longrightarrow t^{\prime} \Longrightarrow \frac{\partial}{\partial z} A\left(z, t^{\prime}\right)=-j\left[\sum_{n=2}^{\infty} \frac{k^{(n)}}{n!}\left(-j \frac{\partial}{\partial t^{\prime}}\right)^{n}\right] A\left(z, t^{\prime}\right) \\
& \begin{array}{l}
\text { In a frame of reference moving with the pulse } \\
\text { at the group velocity: }
\end{array}
\end{aligned}
$$

$$
\frac{\partial}{\partial z} \widetilde{A}(z, \omega)=-j\left[\sum_{n=2}^{\infty} \frac{k^{(n)}}{n!} \omega^{n}\right] \widetilde{A}(z, \omega)
$$

## Effect of negative GVD



GVD $\beta_{2}=-25 p s^{2} / \mathrm{km}$

## Effect of positive GVD



GVD $\beta_{2}=25 p s^{2} / \mathrm{km} \quad$ The output of last slide is taken as the input here.

## Real and imaginary part of the susceptibility

$$
\underline{\widetilde{\chi}}(\omega)=\widetilde{\chi}_{r}(\omega)+\mathrm{j} \widetilde{\chi}_{i}(\omega)
$$

Example: EM-Wave polarized along x-axis and propagation along z-direction:

$$
\underline{\vec{E}}(z, t)=\underline{E}_{0} e^{j(\omega t-k z)} \vec{e}_{x}
$$

In general:

$$
\begin{gathered}
k(\omega)=\frac{\omega}{c_{0}} \tilde{n}(\omega)=\frac{\omega}{c_{0}} \sqrt{1+\tilde{\chi}(\omega)}=\frac{\omega}{c_{0}}\left(\tilde{n}_{r}(\omega)+j \tilde{n}_{i}(\omega)\right)=k_{r}(\omega)-j \alpha(\omega) \\
\underline{\vec{E}}(z, t)=\underline{E}_{0} e^{-\alpha \cdot z} e^{j\left(\omega t-k_{r} z\right)} \vec{e}_{x}
\end{gathered}
$$

Dispersion relation:

$$
k_{r}(\omega)=\frac{\omega}{c_{0}} n_{r}(\omega)
$$

# Besides dispersion, a medium may introduce loss or gain <br> $$
\underline{\tilde{n}}(\Omega)=n_{r}(\Omega)+\mathrm{j} n_{i}(\Omega)
$$ 

Refractive index + gain and/or loss

$$
\underline{\tilde{n}}(\Omega)=\sqrt{1+\underline{\tilde{\chi}}(\Omega)}
$$

for: $|\underline{\tilde{\chi}}(\Omega)| \ll 1$

$$
\underline{\tilde{n}}(\Omega) \approx 1+\frac{\tilde{\tilde{\chi}}(\Omega)}{2}
$$

Complex Lorentzian close to resonance : $\Omega \approx \Omega_{0}$

$$
\underline{\chi}(\omega)=\frac{\omega_{p}^{2}}{\left(\Omega_{0}^{2}-\omega^{2}\right)+2 \mathrm{j} \omega \frac{\Omega_{0}}{Q}} \longrightarrow \underline{\tilde{\chi}}(\Omega)=\frac{-\mathrm{j} \chi_{0}}{1+\mathrm{j} Q \frac{\Omega-\Omega_{0}}{\Omega_{0}}}
$$

Maximum absorption: $\quad \chi_{0}=Q \frac{\omega_{p}^{2}}{2 \Omega_{0}^{2}}$
Half Width Half Maximum linewidth (HWHM): $\quad \Delta \Omega=\frac{\Omega_{0}}{Q}$

Real and imaginary parts:

$$
\begin{aligned}
& \tilde{\chi}_{r}(\Omega)=\frac{-\chi_{0} \frac{\left(\Omega-\Omega_{0}\right)}{\Delta \Omega}}{1+\left(\frac{\Omega-\Omega_{0}}{\Delta \Omega}\right)^{2}}, \\
& \widetilde{\chi}_{i}(\Omega)=\frac{-\chi_{0}}{1+\left(\frac{\Omega-\Omega_{0}}{\Delta \Omega}\right)^{2}},
\end{aligned}
$$

Complex wave number in lossy medium:

$$
\underline{\tilde{K}}(\Omega)=\frac{\Omega}{c_{0}}\left(1+\frac{1}{2}\left(\widetilde{\chi}_{r}(\Omega)+\mathrm{j} \widetilde{\chi}_{i}(\Omega)\right)\right)
$$

Redefine group velocity: e.g. at line center:

$$
v_{g}^{-1}=\left.\frac{\partial K_{r}(\Omega)}{\partial \Omega}\right|_{\Omega_{0}}=\frac{1}{c_{0}}\left(1-\frac{\chi_{0}}{2} \frac{\Omega_{0}}{\Delta \Omega}\right)
$$

Change in group velocity can be positive or negative

Absorption:

$$
K=\frac{\Omega}{c_{0}} \quad \alpha(\Omega)=-\frac{K}{2} \widetilde{\chi}_{i}(\Omega)
$$

For a wavepacket (optical pulse) with carrier frequency $\omega_{0}=\Omega_{0} \quad K_{0}=\frac{\Omega_{0}}{c_{0}}$

$$
\left.\frac{\partial \underline{\tilde{A}}(z, \omega)}{\partial z}\right|_{(\text {loss })}=-\alpha\left(\Omega_{0}+\omega\right) \tilde{A}(z, \omega)=\frac{-\chi_{0} K_{0} / 2}{1+\left(\frac{\omega}{\Delta \Omega}\right)^{2}} \underline{\tilde{A}}(z, \omega)
$$

Parabolic loss or gain approximation:

$$
\left.\frac{\partial \underline{A}\left(z, t^{\prime}\right)}{\partial z}\right|_{(\text {loss })}=-\frac{\chi_{0} K_{0}}{2}\left(1+\frac{1}{\Delta \Omega^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \underline{A}\left(z, t^{\prime}\right)
$$

Gain: $g=-\frac{\chi_{0} K_{0}}{2}$

$$
\begin{aligned}
& \left.\frac{\partial \underline{A}\left(z, t^{\prime}\right)}{\partial z}\right|_{(\text {gain })}=g\left(1+\frac{1}{\Omega_{g}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \underline{A}\left(z, t^{\prime}\right) \\
& \text { HWHM - gain bandwidth }
\end{aligned}
$$

