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Ultrafast Optical Physics II (SoSe 2019) 

Lecture 2, April 12 

 
       (1) Susceptibility and Sellmeier equation 

 

       (2) Phase velocity and group velocity 

        

       (3) Linear pulse propagation and dispersion  
 

         



Maxwell’s Equations of isotropic and homogeneous media 

Maxwell’s Equations:  Differential Form 

Material Equations:  

Ampere’s Law 

Faraday’s Law 

Gauss’s Law 

No magnetic charge 

Polarization 

Magnetization 

Current due to free charges 

Free charge density 

Bring Life into Maxwell’s Equations 
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No free charges, No currents from free charges, Non magnetization 

Simplified wave equation: 

Wave in vacuum Source term 
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Laplace operator: 
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Derivation of wave equation 

In the linear optics of isotropic media without free charges, 



Dielectric susceptibility and Helmholtz equation 

Medium speed of light (dependent on frequency): 

Refractive Index 
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Can be complex 

In a linear medium, dielectric susceptibility is independent of optical field  
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Susceptibility calculated using Lorentz model 
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Plasma frequency 
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Real and imaginary part of the susceptibility 

Real part (dashed line) and imaginary part (solid line) of the susceptibility of the 

classical oscillator model for the dielectric polarizability 

Q=10 
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Example:  EM-Wave polarized along x-axis and propagation along z-direction: 

In general:  
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k Dispersion relation: 

Physics notation 

Engineering notation 

Real and imaginary part of the susceptibility 
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Absorption 

and refractive 

index Vs. 

wavelength 
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 Sellmeier equations to model refractive index 

Normally there are multiple resonant frequencies for the electronic oscillators. 

It means in general the refractive index will have the form 

If the frequency is far away from the absorption resonance 
Q
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Linear propagation of a pulse 
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Slowly varying amplitude 

approximation 
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Neglecting diffraction (e.g. inside an optical waveguide) 
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Fourier  

transform 



11 

...)(
6

1
)(

2

1
)()(

)(
)( 3

03

3
2

02

2

00

0
000

 












 d

kd

d

kd

d

dk
k

c

n
k

...)(
2

1
)(

2

1
)( 3

03

2

02010   kkkk

0

1

d

dk
k 

0

3

3

3


d

kd
k 

0

2

2

2


d

kd
k )( 0

0

0
0 


n

c
k 

Linear pulse propagation 
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Group velocity Vs phase velocity 
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Group velocity: travelling speed of the pulse envelope. 

Phase velocity: travelling speed of the carrier wave 

under the pulse envelope. 

Electric field and pulse envelope 

in time domain 
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Unrealistic 
Unrealistic 

In vacuum 

Most 

common 

case 

Unrealistic 

Possible 

Adapted from Rick Trebino’s course slides 

Group velocity Vs phase velocity 
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Use the chain rule : 

Now, , so :      

Recalling that :     

we have :             
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or :

Calculating group velocity vs. wavelength 

We more often think of the refractive index in terms of wavelength, 

so let's write the group velocity in terms of the vacuum wavelength 0. 

0 0

0

v / 1g

c dn

n n d





  
   
   

Adapted from Rick Trebino’s course slides 
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Group-velocity dispersion (GVD) 

What’s effect of the 3rd term in the Taylor expansion of wave vector? 
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Group velocity becomes 

frequency dependent. )
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Group velocity 

dispersion (GVD) 
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The pulse maintains its optical spectrum shape but acquires a quadratic spectral 

phase from GVD, which will change the pulse’s temporal profile. 
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Positive GVD or normal dispersion   Negative GVD or anomalous dispersion   
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Low frequency travels faster 

 

High frequency travels faster 
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Group-velocity dispersion (GVD) 



Gaussian Pulse: 

Substitute: 

Gaussian Integral: 
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Pulse width 

Effect of GVD on pulse propagation 



Initial pulse width: 

Exponent Real and Imaginary Part: 

FWHM Pulse width: 

determines  

pulse width 
temporal 

quadratic phase 

z-dependent phase 

shift, independent 

on time 
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Propagation of z distance: 



After propagation over a distance z=L: 
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Initial pulse width: 

For large distances:  

Magnitude of the complex 

envelope of a Gaussian pulse, 

|A(z, t’ )|, in a dispersive medium 



Decomposition of a pulse into wave packets with different center frequency. 

In a medium with dispersion the wave packets move at different relative 

group velocity 
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determines  

pulse width 
temporal 

quadratic phase 

z-dependent phase 

shift, independent 

on time 
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Instantaneous frequency and chirp 
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After propagation of L distance:  

Instantaneous Frequency: 

)]',('exp[)'exp()',()',( 00 tLjtjtjtLAtLE  

'

)',(
0

t

tL











Linearly chirped Gaussian pulse: positive chirp 

Time t 

For positive GVD, i.e., k”>0, lower frequency travels faster, and the 

instantaneous frequency linearly INCREASES with time. 

In analogy to bird sounds, this 
pulse is called a chirped pulse, 
or positively chirped pulse. 
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Linearly chirped Gaussian pulse: negative chirp 

Time t 

For negative GVD, i.e., k”<0, higher frequency travels faster. 

The instantaneous frequency linearly DECREASES with time. 
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This pulse is called a negatively 
chirped pulse. 



(a) temporal Phase and (b) instantaneous frequency of a Gaussian pulse during 

propagation through a medium with positive or negative dispersion 

Instantaneous Frequency: 
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Transform-limited pulse 
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has a spectrum bandwidth of  

has a pulse duration of  t

Both are measured 

at full-width at half-

maximum (FWHM). 

Uncertainty principle:  
Kt 

Time Bandwidth Product (TBP) 
A number depending 

only on pulse shape 

For a given optical spectrum, there exist a lower limit for the pulse duration. 

If the equality is reached, we say the pulse is a transform-limited pulse. 

 

To get a shorter transform-limited pulse, one needs a broader optical 

spectrum.  



Temporal and 

spectral 

shapes  

and  

TBPs of 

typical 

ultrashort 

pulses 

Diels and Rudolph, 

Femtosecond 

Phenomena 



Some definitions 
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gv Group velocity 

2k Group velocity dispersion (GVD) Unit: s2/m 

Note: more often,  )( is used to replace   )(k 2and is GVD. 

Unit: s/m 
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02 k 02 k

Positive GVD or normal dispersion   Negative GVD or anomalous dispersion   
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Red faster, positive chirp Blue faster, negative chirp 

GVD changes the pulse duration and introduces 

chirp 



Pulse travels through a dispersive bulk medium 
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time t 

Instantaneous 

Frequency 

time t 

Instantaneous 

Frequency 

Transform-limited pulse Positive chirp 
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Group delay, in fs 

Group delay dispersion (GDD), in fs2 

3 Third order dispersion (TOD), in fs3 

Group delay shift the time origin of the pulse envelope  

while GDD changes its shape. 

4 Fourth order dispersion, in fs4 

Group Delay & Group Delay Dispersion 

GDD > 0, positive dispersion 

GDD < 0, negative dispersion 
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Effect of absolute phase 
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Effect of group delay 



Effect of positive 2nd order dispersion 



Effect of positive 3rd order dispersion 



35 

Effect of negative 3rd order dispersion 



Effect of positive 4th order dispersion 



37 

Dispersion parameters for various materials 
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In the time domain 
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Linear propagation equation for pulse envelope 
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Linear propagation equation for pulse envelope 

In a frame of reference moving with the pulse  

at the group velocity: 



Effect of negative GVD 

kmps /25 2

2  Input pulse duration:10fs GVD 



kmps /25 2

2  The output of last slide is taken as the input here. 

Effect of positive GVD 

GVD 
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Real and imaginary part of the susceptibility 

Example:  EM-Wave polarized along x-axis and propagation along z-direction: 

In general:  
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Besides dispersion, a medium may introduce 

loss or gain 

Refractive index + gain and/or loss 

Complex Lorentzian close to resonance :   

Maximum absorption: 

Half Width Half Maximum linewidth (HWHM): 

2

p

for:  
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Real and imaginary parts: 

Complex wave number in lossy medium: 

Redefine group velocity: e.g. at line center: 

Change in group velocity 

can be positive or negative 
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Absorption: 

For a wavepacket (optical pulse) with carrier frequency  
0 0 

Parabolic loss or gain approximation: 

Gain: 

HWHM – gain bandwidth  


