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10.8 Extreme nonlinear optical response
of two-level systems

extreme nonlinear optics: E(t) not I(t) |_E(_f) 2 matters

RWA and SVEA cannot be used ‘ L(j)'J
observables depend on CEP ¢ ” f‘
numerically solve Bloch equations exactly - ﬂp"’w VM_:
(i.e., without employing RWA) driven by E(t) “

M. Wegener, Extreme Nonlinear Optics, Springer, Berlin (2005)



Carrier-wave Rabi flopping

Bloch vector (u,v,w)=(2Re(p,.),2Im(p,.).f.-f,)  Rabi frequency Qg(t)cE(t)

l.1. Rabi (1937) (b) w S. Hughes (1998)
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Carrier-wave Mollow triplets

B.R. Mollow (1969)
30 cycle long box-shaped pulses

Photon energy ho (eV)
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Mollow sidebands at (2n+1)m,* Qg



Within the dipole approximation, but without employing the RWA and
without transverse or longitudinal damping, the Bloch equations of a two-

level system with transition frequency €2 for the Bloch vector (u, v, w)T can be
written 1in matrix form as
u 0 +02 0 u
v = —Q 0 —20x(t) v . (10.101)
w 0 +2Qr(1) 0 w

The dots denote the derivative with respect to time t. Here, we have introduced
the (instantaneous) Rabi frequency g () via the (instantaneous) Rabi energy

hR(t) = dE(t) (10.102)
with dipole matrix element d and the laser electric field defined as
E(t) = E(t) cos(wot + ¢). (10.103)

Note that the Rabi frequency itself oscillates with the carrier frequency of light
and periodically changes sign. We shall call the peak of the Rabi frequency (g

[rather than Qg(t)] with AQg = dEq, where Ej is the peak of the electric-field
envelope.

T. Tritschler et al., PRA 68, 033404 (2003)



The Bloch vector (u, v, w)" thus allows an intuitive geometric representa-
tion of the state of the two-level system which was introduced by R. P. Feynman
et al. [9]. The complex amplitude of the superposition state is encoded in the
real and the imaginary part of the transition amplitude, 1.e., in the compo-
nents « and v of the Bloch vector. The component w 1s agaimn the mversion
of the two-level system, 1.e., 1t 1s equal to -1 if all electrons are in the ground
state, and 1t 1s +1 for complete mversion. The light itensity radiated by the
two-level system 1s proportional to the square modulus of the second tempo-
ral derivative of the macroscopic polarization, hence proportional to |w?u(w)|?
i the Fourler domain, where w 1s the spectrometer frequency. For vanishing
relaxation, the length of the Bloch vector 1s conserved and equal to one, 1.e.,

Vut)?2+ o) +w()?2=1. (10.104)

Hence, all the physics can be represented as rotations of the Bloch vector on
a sphere with radius unity, the so-called Bloch sphere. For vanishing electric
field, the Bloch vector rotates in the uv-plane with a frequency given by the
optical transition frequency (2, for very large fields one gets a rotation in the
vw-plane with frequency Qg (). This oscillation is the Rabi oscillation. If, for
example, during the action of the electric field pulse, the Bloch vector performs
one complete rotation i the vw-plane, the pulse area © = %fj: dt E(t) 18
equal to 2m. There 1s, however, no simple analytical expression for ©. For
finite 2 and (. the dynamics of the Bloch vector 1s a combination of both
rotations, one in the uv-plane and one in the vw-plane.



Most importantly the optical Bloch equations (10.101) are invariant under
space inversion [8]: Space inversion means that we have to replace ¥ — —r.
Thus, the dipole matrix element transforms as d — —d, the electric field as
E(t) — —E(t), and the Rabi frequency as Qg(t) — +€g(f) according to Eq.
(10.102). As a result, the optical Bloch equations (10.101) are invariant un-
der space inversion and the solution for the Bloch vector (u(t),v(t),w(t))" is

also unchanged. Fially, the macroscopic optical polarization, which 1s given
by P(t) = nyppsdu(t) with the density of two-level systems nyrs, transforms
according to P(t) — —P(t). Consequently, in an expansion of the polariza-

tion in_terms of powers of the electric field up to infinite order, strictly no
even harmonic orders occur — even for arbitrarily large electric fields [8]. In
the literature, one can find several papers reporting on symmetry breaking
of two-level systems driven by strong laser fields, that is supposedly lea,dmg
to second-harmonic generation. This claim is ph}»smallv wrong, as proven bv
the invariance under space inversion! A more careful analysis reveals that al-
though hght can indeed be emitted at the spectral position of even harmonics,

the corresponding carrier frequency and phases allow to clearly identify them
belonging to odd-order harmonics, as we will below.




From this model, a complete overview of the rich behavior as a function of
the four involved frequencies can be obtained [7, 8]: Carrier frequency of light
wp, transition frequency (2, Rabi frequency {1y, and spectrometer frequency w.
Thereby 1t 1s natural to scale all frequencies to wp, in which case the dependence
of the radiated intensity on the three dimensionless parameters €2 /wg, Qg /wy.
and w/wg has to be studied. In all calculations, we start from the ground state
of the two-level system, i.e., from Bloch vector (0,0, —1)7.

Figure 10.5: Box-shaped optical pulses E(t): The integer number of cycles in the
pulse is called N. The gray area indicates the electric-field envelope E(t). [§]
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Figure 10.6: Gray-scale images of the radiated intensity spectra [,gq(w) o |c.-.'2u{;¢] 2 PRA 68 033404 2003
(normalized and on a logarithmic scale) from exact numerical solutions of the two- ’ ( )
level system Bloch equations (10.101). The peak Rabi frequency {2y of the exciting

N = 30 cycles long hox-shaped optical pulses is plotted along the vertical axis. The

transition frequency w is parameter. (a) }/wp = 1 and (b) ©/wp = 5. wyp is the

carrier frequency of the laser pulses. [8]
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Figure 10.7: Same as Fig. 10.6, but versus transition frequency £} for two fixed
values of the peak Rabi frequency Ir. (a) 2r/wo =1 and (a) Qr/wp = 10. [8]

On the diagonal, where

w = Q), very large resonant
enhancement effects

large contributions can
occur at spectral positions
of even harmonics

but no even harmonics
(inversion symmetry)

THG in disguise of SHG

for SHG it would be
carrier wave 2w,

CEP 2¢ "
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Figure 10.8: Same as Fig. 10.6(a), i.e., 2/wg = 1, but for Gaussian optical pulses
with CEP ¢ = 0 and with a FWHM of (a) N = 30 and (b) N = 3 optical cycles. [8]



Experiment
GaAs/Al,;Ga,,As double heterostructure (W. Stolz)
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~5fs Ti.sapphire laser pulses

balanced Michelson
Interferometer is
actively stabilized by a
Pancharatnam screw
[M. U. Wehner et al.,

Opt. Lett. 22, 1455 (1997)]

remaining fluctuations in time
delay t are <50 as

two reflective microscope
objectives with NA=0.5
— 1 micron focus radius

ST

Karlsruhe Institute of Technology

Wegener group, Applied Physics
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Interferometric measurements
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Interferometric measurements
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CEP dependence

fundamental / third-harmonic Mollow triplet: 1¢ /3¢
+

surface second-harmonic generation: 2¢

|

CE phase dependence: 1¢

Photon energy ho (eV)
1 2 3

w/wo

. Mlcke et al., PRL 89, 127401 (2002)
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Measuring the CEO frequency with GaAs
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Opt. Lett. 29, 2160 (2004)




Light-induced gaps in semiconductors

two-level system
Mollow triplet
B. R. Mollow (1969)

two-band semiconductor
light-induced gaps
V. F. Elesin (1971)
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Light-induced gaps in semiconductors

PHOTON ENERGY (eV)

50 45 40 35 3.0 2.5

_100kd N
© 1 7 N\ SURFACE SHG
= 4 ‘
5 10k4 7 \ ‘
8 <
E 1k K -
2 \
Z ; \
LLl y \\
£ 1005 ,‘
Z : \

1 \

10-
250 300 350 400 450 500

WAVELENGTH (nm)

Q.T. Vu et al., PRL 92, 217403 (2004)

theory (dashed curves):

» semiconductor Bloch
equations

o full tight-binding bands

* density- and energy-
dependent dephasing
and relaxation

* N0 RWA

experiment (solid curves):
e 100nm thin GaAs film

high excitation
(upper curves)

low excitation
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Light-induced gaps in semiconductors
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Figure 13.12: Computed inversion for various excess energies above the band gap
versus time ¢ for a peak electric field of 1.65x10° V/m. For t = 20 fs, the carrier
density equals 1.1 x 10%° cm®. The lower trace shows the laser field E(t). [52]

Q.T. Vu et al., PRL 92, 217403 (2004)



Light-induced gaps in semiconductors
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ZnQO: 3.3 um band gap . peak electric field
E,=6V/nm

Bloch energy
nQ, =3.0eV

Bloch period
T, =1.41fs

optical period (800nm)
T, =2.8fs

Bloch oscillations??

specular reflex Rl RYICE: al..
broadened fundamental Opt. Lett. 27, 2127 (2002)

SHG

: : : T. Tritschler et al.,
5-fs 800-nm pulses from Ti:sapphire oscillator PRL 90, 217404 (2003)




THG in disguise of SHG

PHOTON ENERGY ho (eV) 5fs sinc? pulses

T. Tritschler et al., PRL 90, 217404 (2003)
T. Tritschler et al., PRA 68, 033404 (2003)




THG In disguise of SHG

o/ o,
T. Tritschler et al., PRL 90, 217404 (2003)

T. Tritschler et al., PRA 68, 033404 (2003)




THG in disguise of SHG

experiment theory
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