Nonlinear Optics (WiSe 2017/18) Lecture 14: December 5, 2017

9 Optical Parametric Amplifiers and Oscillators
9.1 Optical parametric generation (OPG)
9.2 Nonlinear optical susceptibilities
9.3 Continuous-wave OPA
9.4 Theory of optical parametric amplification
9.5 Phase matching
9.6 Quasi phase matching (QPM)
9.7 Ultrashort-pulse parametric amplifiers (OPA)
9.8 Optical parametric amplifier designs
9.9 Ultrabroadband optical parametric amplifiers using noncollinear phase matching
9.10 Optical parametric chirped-pulse amplification (OPCPA)
[5] Largely follows the review paper by G. Cerullo et al., "Ultrafast Optical Parametric Amplifiers," Rev. Sci. Instrum. 74, 1-17 (2003)

9 Optical Parametric Amplifiers and Oscillators

9.1 Optical Parametric Generation (OPG)

Optical Parametric Oscillator (OPO)

double resonant:
single resonant:
signal and idler resonant
only signal resonant

Advantage: Widely tunable, both signal and idler can be used!
For OPO to operate, less gain is necessary in contrast to an OPA

Nonlinear Optical Susceptibilities

Total field: pump, signal and idler:

$$
\vec{E}(\vec{r}, t)=\sum_{\omega_{a}>0} \sum_{i=1}^{3} \frac{1}{2}\left\{\hat{E}_{i}\left(\omega_{a}\right) e^{j\left(\omega_{a} t-\vec{k}_{a} \vec{r}\right)}+c . c .\right\} \vec{e}_{i} .
$$

Drives polarization in medium:

$$
\vec{P}(\vec{r}, t)=\sum_{n} \vec{P}^{(n)}(\vec{r}, t)
$$

Polarization can be expanded in power series of the electric field:

$$
\vec{P}^{(n)}(\vec{r}, t)=\sum_{\omega_{b}>0} \sum_{i=1}^{3} \frac{1}{2}\left\{P_{i}^{(n)}\left(\omega_{b}\right) e^{j\left(\omega_{b} t-\vec{k}_{b}^{\prime} \vec{r}\right)}+c . c .\right\} \vec{e}_{i} .
$$

Defines susceptibility tensor:

$$
\begin{gathered}
P_{i}^{(n)}\left(\omega_{b}\right)=\frac{\varepsilon_{0}}{2^{m-1}} \sum_{P} \sum_{j \ldots k} \chi_{i j \ldots k}^{(n)}\left(\omega_{b}: \omega_{1}, \ldots, \omega_{n}\right) E_{j}\left(\omega_{1}\right) \cdots E_{k}\left(\omega_{n}\right) \\
\omega_{b}=\sum_{i=1}^{n} \omega_{i} \text { and } \mathbf{k}_{b}^{\prime}=\sum_{i=1}^{n} \mathbf{k}_{i}
\end{gathered}
$$

Special Cases

$$
\begin{aligned}
\hat{P}_{i}^{(2)}\left(\omega_{3}\right) & =\varepsilon_{0} \sum_{j k} \chi_{i j k}^{(2)}\left(\omega_{3}: \omega_{1},-\omega_{2}\right) \hat{E}_{j}\left(\omega_{1}\right) \hat{E}_{k}^{*}\left(\omega_{2}\right) \\
\omega_{3} & =\omega_{1}-\omega_{2} \text { und } \mathbf{k}_{3}^{\prime}=\mathbf{k}_{1}-\mathbf{k}_{2}
\end{aligned}
$$

$(\longrightarrow$ Difference Frequency Generation (DFG))

$$
\begin{aligned}
\hat{P}_{i}^{(2)}\left(\omega_{2}\right) & =\varepsilon_{0} \sum_{j k} \chi_{i j k}^{(2)}\left(\omega_{2}: \omega_{3},-\omega_{1}\right) \hat{E}_{j}\left(\omega_{3}\right) \hat{E}_{k}^{*}\left(\omega_{1}\right) \\
\omega_{2} & =\omega_{3}-\omega_{1} \text { und } \mathbf{k}_{2}^{\prime}=\mathbf{k}_{3}-\mathbf{k}_{1}
\end{aligned}
$$

$(\longrightarrow$ Parametric Generation (OPG))

$$
\begin{aligned}
\hat{P}_{i}^{(3)}\left(\omega_{4}\right) & \left.=\frac{6 \varepsilon_{0}}{4} \sum_{j k l} \chi_{i j k l}^{(3)}\left(\omega_{4}: \omega_{1}, \omega_{2},-\omega_{3}\right) \hat{E}_{j}\left(\omega_{1}\right) \hat{E}_{k}\left(\omega_{2}\right) \hat{E}_{l}^{*}\left(\omega_{3}\right)\right) \\
\omega_{4} & =\omega_{1}+\omega_{2}-\omega_{3} \text { und } \mathbf{k}_{4}^{\prime}=\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}_{3}
\end{aligned}
$$

$(\longrightarrow$ Four Wave Mixing (FWM))

9.2 Continuous-wave OPA

Wave equation :

$$
\left(\Delta-\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{E}=\mu_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{P}
$$

Include linear and second-order terms:

$$
\left(\Delta-\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{E}=\mu_{0} \frac{\partial^{2}}{\partial t^{2}}(\vec{P}^{\left(\vec{P}^{(l)}(\vec{r}, t)\right.}+\underbrace{\overrightarrow{\left.P^{(2)}(\vec{r}, t)\right)}}_{\begin{array}{l}
\text { Changes group } \\
\text { and phase } \\
\text { velocities } \\
\text { of waves }
\end{array}} \begin{array}{c}
\text { Nonlinear } \\
\text { interaction } \\
\text { of waves }
\end{array}
$$

z-propagation only:

$$
\begin{aligned}
\vec{E}_{p, s, i}(z, t)= & \operatorname{Re}\left\{E_{p, s, i}(z) e^{j\left(\omega_{p, s, i} t-k_{p, s, i} z\right)} \vec{e}_{p, s, i}\right\} \\
& \text { Wave amplitudes }
\end{aligned}
$$

$$
\vec{P}_{p, s, i}^{(2)}(z, t)=\operatorname{Re}\left\{P_{p, s, i}^{(2)}(z) e^{j\left(\omega_{p, s, i} t-k_{p, s, i}^{\prime}\right)} \vec{e}_{p, s, i}\right\}
$$

Separate into three equations for each frequency component:
Slowly varying amplitude approximation:

$$
\begin{gathered}
d_{p, s, i}^{2} E(z) / d z^{2} \ll 2 k d E_{p, s, i}(z) / d z, \\
\frac{\partial E_{p, s, i}(z)}{\partial z}=-\frac{j c_{0}^{2} \omega_{p, s, i}}{2 n\left(\omega_{p, s, i}\right)} P_{p, s, i}^{(2)}(z) e^{-j\left(k_{p, s, i}^{\prime}-k_{p, s, i}\right) z}
\end{gathered}
$$

Introduce phase mismatch: $\quad \Delta k=k\left(\omega_{p}\right)-k\left(\omega_{s}\right)-k\left(\omega_{i}\right)$
and effective nonlinearity and coupling coefficients:

$$
d_{e f f}=\frac{1}{2} \chi_{i j k}^{(2)}\left(\omega_{p}: \omega_{s}, \omega_{i}\right), \quad \kappa_{p, s, i}=\omega_{p, s, i} d_{e f f} /\left(n_{p, s, i} c_{0}\right)
$$

Coupled wave equations:

$$
\begin{aligned}
& \frac{\partial E_{p}(z)}{\partial z}=-j \kappa_{p} E_{s}(z) E_{i}(z) e^{j \Delta k z} \\
& \frac{\partial E_{s}(z)}{\partial z}=-j \kappa_{s} E_{p}(z) E_{i}^{*}(z) e^{-j \Delta k z}, \quad \text { X } n_{p, s, i} c_{0} \varepsilon_{0} E_{p, s, i}^{*} / 2 \\
& \frac{\partial E_{i}(z)}{\partial z}=-j \kappa_{i} E_{p}(z) E_{s}^{*}(z) e^{-j \Delta k z}
\end{aligned}
$$

Intensity of waves: $\quad I_{p, s, i}=\frac{n_{p, s, i}}{2 Z_{F_{0}}}\left|E_{p, s, i}\right|^{2}$

Manley-Rowe relations: $\quad-\frac{1}{\omega_{p}} \frac{d I_{p}}{d z}=\frac{1}{\omega_{s}} \frac{d I_{s}}{d z}=\frac{1}{\omega_{i}} \frac{d I_{i}}{d z}$

9.4 Theory of Optical Parametric Amplification

Undepleted pump approximation: $\quad E_{p}=$ const.

$$
\begin{aligned}
& \frac{\partial E_{s}(z)}{\partial z}=-j \kappa_{s} E_{p} E_{i}^{*}(z) e^{-j \Delta k z} \\
& \frac{\partial E_{i}(z)}{\partial z}=-j \kappa_{i} E_{p} E_{s}^{*}(z) e^{-j \Delta k z}
\end{aligned}
$$

with:

$$
\begin{aligned}
& E_{s}(z=0)=E_{s}(0) \quad E_{i}(z=0)=0 \\
& E_{s}(z)^{\sim} E_{s}(0) e^{g z-j \Delta k z / 2} \text { and } E_{i}(z)^{\sim} E_{i}(0) e^{g z-j \Delta k z / 2} \\
& \left.g=\sqrt{g-j \frac{\Delta k}{2}} \begin{array}{c}
j \kappa_{s} E_{p} \\
j \kappa_{i} E_{p}^{*} \\
g+j \frac{\Delta k}{2}
\end{array} \right\rvert\,=0 \\
& \text { gain } \begin{array}{l}
\Gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}
\end{array}, \text { with } \Gamma=\sqrt{\kappa_{i} \kappa_{s}\left|E_{p}\right|^{2}} \\
& \text { max. gain, when phase }
\end{aligned}
$$

Maximum gain

$$
\Gamma^{2}=\frac{\omega_{s} \omega_{i}}{n_{s} n_{i} c_{0}^{2}} d_{e f f}^{2}\left|E_{p}\right|^{2}=\frac{2 Z_{F_{0}} \omega_{s} \omega_{i}}{n_{p} n_{s} n_{i} c_{0}^{2}} d_{e f f}^{2}\left|I_{p}\right|^{2} \quad F O M=\frac{d_{e f f}}{\sqrt{\lambda_{s} \lambda_{i} n_{p} n_{s} n_{i}}}
$$

General solutions:

$E_{s}(z)=\left\{E_{s}(0) \cosh g z+B \sinh g z\right\} e^{-j \Delta k z / 2}$
$B=-j \frac{\Delta k}{2 g} E_{s}(0)-j \frac{\kappa_{1}}{g} E_{p} E_{i}^{*}(0)$
$E_{i}(z)=\left\{E_{i}(0) \cosh g z+D \sinh g z\right\} e^{-j \Delta k z / 2}$
$D=-j \frac{\Delta k}{2 g} E_{i}(0)-j \frac{\kappa_{2}}{g} E_{p}^{*} E_{s}^{*}(0)$
Here:

$$
\begin{aligned}
& I_{s}(L)=I_{s}(0)\left[1+\frac{\Gamma^{2}}{g^{2}} \sinh ^{2} g L\right] \\
& I_{i}(L)=I_{s}(0) \frac{\omega_{i}}{\omega_{s}} \frac{\Gamma^{2}}{g^{2}} \sinh ^{2} g L .
\end{aligned}
$$

For large gain: $\quad \Gamma L \gg 1$

$$
\begin{aligned}
& I_{s}(L)=\frac{1}{4} I_{s}(0) e^{2 \Gamma L}, \\
& I_{i}(L)=\frac{1}{4} I_{s}(0) \frac{\omega_{i}}{\omega_{s}} e^{2 \Gamma L}
\end{aligned} \quad G=\frac{I_{s}(L)}{I_{s}(0)}=\frac{1}{4} e^{2 \Gamma L}
$$

Figure of merit:

$$
F O M=\frac{d_{e f f}}{\sqrt{\lambda_{s} \lambda_{i} n_{p} n_{s} n_{i}}}
$$

Fig. 9.3 Parametric gain for an OPA at the pump wavelength $\lambda_{p}=0.8 \mu \mathrm{~m}$ and the signal wavelength $\lambda_{s}=1.2 \mu \mathrm{~m}$, using type-I phase matching in BBO $\left(d_{\text {eff }}=2 \mathrm{pm} / \mathrm{V}\right)$.

Fig. 9.4 Parametric gain for an OPA at the pump wavelength $\lambda_{p}=0.4 \mu \mathrm{~m}$ and the signal wavelength $\lambda_{s}=0.6 \mu \mathrm{~m}$, using type-I phase matching in BBO ($\left.d_{\text {eff }}=2 \mathrm{pm} / \mathrm{V}\right)$.

9.4 Phase Matching

$$
\Delta k=0 \longrightarrow n_{p}=\frac{n_{s} \omega_{s}+n_{i} \omega_{i}}{\omega_{p}}
$$

Uniaxial crystal: $\mathbf{n}_{\mathrm{e}}<\mathbf{n}_{\mathbf{o}}$

Type I: noncritical

Fig. 9.5 Type-I noncritical phase matching.

Type I: critical

Fig. 9.6 Type-I critical phase matching by adjusting the angle θ between wave vector of the propagating beam and the optical axis.

9.4 Phase Matching

Critical Phase Matching

$$
\begin{gathered}
n_{e p}(\theta) \omega_{p}=n_{o s} \omega_{s}+n_{o i} \omega_{i} \\
\frac{1}{n_{e p}(\theta)^{2}}=\frac{\sin ^{2} \theta}{n_{e p}^{2}}+\frac{\cos ^{2} \theta}{n_{o p}^{2}} \\
\theta=\arcsin \left[\frac{n_{e p}}{n_{e p}(\theta)} \sqrt{\frac{n_{o p}^{2}-n_{e p}^{2}(\theta)}{n_{o p}^{2}-n_{e p}^{2}}}\right]
\end{gathered}
$$

9.4 Phase Matching

Fig. 9.7 Angle tuning curves for a BBO OPA at the pump wavelength $\lambda_{p}=0.8 \mu \mathrm{~m}$ for type-I phase matching (dotted line), type-II ($\mathrm{o}_{\mathrm{s}}+\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{e}_{\mathrm{p}}$) phase matching (solid line), and type-II $\left(e_{s}+o_{i} \rightarrow e_{p}\right)$ phase matching (dashed line).

Fig. 9.8 Angle tuning curves for a BBO OPA at the pump wavelength $\lambda_{p}=0.4 \mu \mathrm{~m}$ for type-I phase matching (dotted line), type-II ($\mathrm{o}_{\mathrm{s}}+\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{e}_{\mathrm{p}}$) phase matching (solid line), and type-II $\left(e_{s}+o_{i} \rightarrow e_{p}\right)$ phase matching (dashed line).

9.5 Quasi Phase Matching

Periodically poled crystal

Fig.12.30: Variation of $d_{\text {eff }}$ in a quasi phase matched material as a function of propagation distance.

$$
\begin{gathered}
d_{e f f}(z)=\sum_{m=-\infty}^{+\infty} d_{m} e^{j m \kappa z} \\
\frac{\partial E_{p}(z)}{\partial z}=-j \kappa_{p} E_{s}(z) E_{i}(z) e^{j \Delta k z}
\end{gathered}
$$

9.6 Ultrashort-Pulse Optical Parametric Amplification

$$
\vec{E}_{p, s, i}(z, t)=\operatorname{Re}\left\{E_{p, s, i}(z, t) e^{j\left(\omega_{p, s, i} t-k_{p, s, i} z\right)} \vec{e}_{p, s, i}\right\}
$$

Pulse envelopes

$$
\begin{aligned}
\frac{\partial E_{p}}{\partial z}+\frac{1}{v_{p}} \frac{\partial E_{p}}{\partial t} & =-j \kappa_{p} E_{s} E_{i} e^{j \Delta k z}, \\
\frac{\partial E_{s}}{\partial z}+\frac{1}{v_{s}} \frac{\partial E_{s}}{\partial t} & =-j \kappa_{s} E_{p} E_{i}^{*} e^{-j \Delta k z}, \\
\frac{\partial E_{i}}{\partial z}+\frac{1}{v_{i}} \frac{\partial E_{s}}{\partial t} & =-j \kappa_{i} E_{p} E_{s}^{*} e^{-j \Delta k z}, \\
v_{p, s, i}=d k /\left.d \omega\right|_{\omega_{p}, s, i} & \text { are the corresponding group velocities } \\
t^{\prime}=t-z / v_{p} \quad \frac{\partial E_{p}}{\partial z} & =-j \kappa_{p} E_{s} E_{i} e^{j \Delta k z}, \\
\frac{\partial E_{s}}{\partial z}+\left(\frac{1}{v_{s}}-\frac{1}{v_{p}}\right) \frac{\partial E_{s}}{\partial t} & =-j \kappa_{s} E_{p} E_{i}^{*} e^{-j \Delta k z}, \\
\frac{\partial E_{i}}{\partial z}+\left(\frac{1}{v_{i}}-\frac{1}{v_{p}}\right) \frac{\partial E_{s}}{\partial t} & =-j \kappa_{i} E_{p} E_{s}^{*} e^{-j \Delta k z} .
\end{aligned}
$$

Temporal walkoff

Group Velocity Mismatch (GVM)

$$
\begin{gathered}
\substack{\text { Pump pulse width } \\
\ell_{j p}=\frac{\tau}{\delta_{j p}}, \\
\text { with } \delta_{j p}=\left(\frac{1}{v_{j}}-\frac{1}{v_{p}}\right)}
\end{gathered}
$$

Fig. 9.9: Pump-signal (δ_{sp}) and pump-idler (δ_{ip}) group velocity mismatch curves for a BBO OPA at the pump wavelength $\lambda_{p}=0.8 \mu \mathrm{~m}$ for type-I phase matching (solid line) and type-II ($\mathrm{o}_{\mathrm{s}}+\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{e}_{\mathrm{p}}$) phase matching (dashed line).

Fig. 9.10: Pump-signal ($\delta_{\text {sp }}$) and pump-idler $\left(\delta_{i p}\right)$ group velocity mismatch curves for a BBO OPA at the pump wavelength $\lambda_{\mathrm{p}}=0.4 \mu \mathrm{~m}$ for type-I phase matching (solid line) and type-II ($\mathrm{o}_{\mathrm{s}}+\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{e}_{\mathrm{p}}$) phase matching (dashed line).

Fig. 9.11: Signal pulse evolution for a BBO type-I OPA with $\lambda_{\mathrm{p}}=0.4 \mu \mathrm{~m}, \lambda_{\mathrm{s}}=0.7 \mu \mathrm{~m}$, for different lengths L of the nonlinear crystal. Pump intensity is $20 \mathrm{GW} / \mathrm{cm}^{2}$. Time is normalized to the pump pulse duration and the crystal length to the pump-signal pulse splitting length. [5]

Figure 9.12: Signal pulse evolution for a BBO type-I OPA with $\lambda_{p}=0.8 \mu \mathrm{~m}, \lambda_{\mathrm{s}}=1.5$ $\mu \mathrm{m}$, for different lengths L of the nonlinear crystal. Pump intensity is $20 \mathrm{GW} / \mathrm{cm}^{2}$. Time is normalized to the pump pulse duration and the crystal length to the pumpsignal pulse splitting length. [5]

OPA Bandwidth

$$
\begin{aligned}
& \omega_{s} \longrightarrow \omega_{s}+\Delta \omega \quad \omega_{i} \longrightarrow \omega_{i}-\Delta \omega \\
& \Delta k=-\frac{d k_{s}}{d \omega} \Delta \omega+\frac{d k_{i}}{d \omega} \Delta \omega=\left(\frac{1}{v_{i}}-\frac{1}{v_{s}}\right) \Delta \omega
\end{aligned}
$$

Bandwidth limitation due to GVM

$$
\Delta f=-\frac{2 \sqrt{\ln 2}}{\pi} \sqrt{\frac{\Gamma}{L}} \frac{1}{\left|\frac{1}{v_{i}}-\frac{1}{v_{s}}\right|}
$$

For signal-idler group velocity matching:

$$
\Delta f=-\frac{2 \sqrt[4]{\ln 2}}{\pi} \sqrt[4]{\frac{\Gamma}{L}} \frac{1}{\left|\frac{d^{2} k_{s}}{d \omega^{2}}+\frac{d^{2} k_{s}}{d \omega^{2}}\right|}
$$

Fig. 9.13: Phase matching bandwidth for a BBO OPA at the pump wavelength $\lambda_{\mathrm{p}}=0.8 \mu \mathrm{~m}$ for type-I phase matching (solid line) and type-II ($\mathrm{o}_{\mathrm{s}}+\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{e}_{\mathrm{p}}$) phase matching (dashed line). Crystal length is 4 mm and pump intensity $50 \mathrm{GW} / \mathrm{cm}^{2}$.

Fig. 9.14: Phase matching bandwidth for a BBO OPA at the pump wavelength $\lambda_{p}=0.4 \mu \mathrm{~m}$ for type-I phase matching (solid line) and type-II ($\mathrm{o}_{\mathrm{s}}+\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{e}_{\mathrm{p}}$) phase matching (dashed line). Crystal length is 2 mm and pump intensity $100 \mathrm{GW} / \mathrm{cm}^{2}$.

9.7 Optical Parametric Amplifier Designs

Fig. 9.15: Scheme of an ultrafast optical parametric amplifier. SEED: seed generation stage; DL1, DL2: delay lines; OPA1, OPA2 parametric amplification stages; COMP: compressor.

Near-IR OPA

Fig. 9.16: Scheme of a near-IR OPA. DL: delay lines; WL: white light generation stage; DF: dichroic filter. [5]

9.8 Noncollinear Optical Parametric Amplifier (NOPA)

Fig. 9.17: a) Schematic of a noncollinear interaction geometry; b) representation of signal and idler pulses in the case of collinear interaction; and c) same as b) for noncollinear interaction.

Phase-matching condition: vector condition:

$$
\begin{aligned}
\Delta k_{\text {par }} & =k_{p} \cos \alpha-k_{s}-k_{i} \cos \Omega=0 \\
\Delta k_{\text {perp }} & =/_{\mathrm{kp}} \sin \alpha-k_{i} \sin \Omega=0
\end{aligned}
$$

Variation on phase matching condition by $\Delta \omega$

$$
\begin{array}{rlr}
\Delta k_{\text {par }}=-\frac{d k_{s}}{d \omega_{s}} \Delta \omega+\frac{d k_{i}}{d \omega_{i}} \cos \Omega \Delta \omega-k_{i} \sin \Omega \frac{d \Omega}{d \omega_{i}} \Delta \omega=0 & \mathbf{x} \cos (\Omega) \\
\Delta k_{\text {perp }} & =\frac{d k_{i}}{d \omega_{i}} \sin \Omega \Delta \omega+k_{i} \cos \Omega \frac{d \Omega}{d \omega_{i}} \Delta \omega=0 & \mathbf{x} \sin (\Omega)
\end{array}
$$

and addition

$$
\frac{d k_{i}}{d \omega_{i}}-\cos \Omega \frac{d k_{s}}{d \omega_{s}}=0
$$

Correct index

Only possible if:

$$
v_{g i}>v_{g s}
$$

$$
\alpha=\arcsin \left[\frac{1-\frac{v_{s}^{2}}{v_{i}^{2}}}{1+2 v_{s} n_{s} \lambda_{i} / v_{i} n_{i} \lambda_{s}+\left(n_{s} \lambda_{i} / n_{i} \lambda_{s}\right)^{2}}\right]
$$

Fig. 9.18: Phase-matching curves for a noncollinear type-I BBO OPA pumped at $\lambda_{p}=0.4$ $\mu \mathrm{m}$, as function of the pump-signal angle α. [5]

NOPA Layout

Fig. 9.19: Scheme of a noncollinear visible OPA. BS: beam splitter; VA: variable attenuator; S: 1-mm-thick sapphire plate; DF: dichroic filter; $\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3$, spherical mirrors. [5]

Fig. 9.20: a) Solid line: NOPA spectrum under optimum alignment conditions; dashed line: sequence of spectra obtained by increasing the white light chirp;
b) points: measured group delay (GD) of the NOPA pulses; dashed line: GD after ten bounces on the ultrabroadband chirped mirrors.

Fig. 9.21: Reconstructed temporal intensity of the compressed NOPA pulse measured by the SPIDER technique. The inset shows the corresponding pulse spectrum. [5]

9.9 Optical Parametric Chirped-Pulse Amplifier (OPCPA)

2- $\mu \mathrm{m}$ OPCPA

