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4.4 Phase matching

4.4.1 Birefringent phase matching

In SHG, we introduced the coherence length
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coherence length may be as short as a few microns, if fundamental and second
harmonic have the same polarization.
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Figure 4.6: Non-critical phase matching



only approximately. Often this can be further matched by temperature tuning.
Important examples for this technique is the frequency doubling of 1.06-ym
radiation in LiNbO3, CD*A and LBO or frequency doubling of 530-nm light
in KDP.
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Figure 4.7: Type-I critical phase matching.



A more general situation is shown in Fig. 4.7. The birefringence is too
strong for non-critical phase matching. However, by angle-tuning with respect
to the optical axis every index value between n.(2w) and n, (2w) can be dialed
in, especially n, (w). This phase matching angle, 6, is determined by
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Figure 4.8: Walk-off between ordinary and extraordinary wave.
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Figure 4.9: Type-II non-critical phase matching.
Typel Type Il
ne < n, (neg. uniaxial) : oo — e oe — e
ne > N, (pos. uniaxial) : ee =0 oe — o0

Table 4.2: Phase-matching configurations



Acceptance angle
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The angle-induced phase mismatch can then be rewritten as
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For a given crystal length ¢ the phase mismatch should not be larger than the
half-width at half-maximum (HWHM) of the sinc*— function, i.e., Ak = 7/¢,



For a given crystal length ¢ the phase mismatch should not be larger than the
half-width at half-maximum (HWHM) of the sinc’— function, i.e., Ak = 7/¢,
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For most cases |A#| is on the order of a few milliradians, e.g., for KHyPO,
(KDP) at A = 1.064 um , n¥ = 1.466, n* = 1.506, n? = 1.487, n** = 1.534.
For this case, the phase-matching angle is 0, = 49.9° and for a 1-cm long

crystal, there is |A#| = 0.001.
For type-1I phase matching under the condition n2(6,) = [n¥ + n¥] /2, we
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Weak birefringence

For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90°-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds
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which simplifies for small birefringence to
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For A =1 pum, An = 0.047 and ¢ = 1 cm, we find |Af#| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.



Acceptance bandwidth
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The acceptance bandwidth follows again from the condition, that the phase

mismatch over the propagation length must stay smaller than the HWHM of
the sinc*— function, i.e., |Ak| < 7/f or
}—1
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where )\ is the wavelength of the fundamental wave and £ the interaction length.

The other way around, if a bandwidth 2A\ needs to be frequency doubled, a
phase matched crystal can only have the length ¢
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the doubled pulse will be longer and the efliciency will be reduced. This can
also be understood as temporal walk-off between the fundamental pulse and
its second harmonic. The group velocity of a pulse 1s given by
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Two pulses with duration ¢, but with different group velocities will overlap
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Acceptance bandwidth

With Eq. (4.42) we obtain
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Using the time-bandwidth relationship
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we find the maximum crystal length similar to the one derived from the phase

matching condition (4.39)
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4.4.2 Frequency doubling of Gaussian beams

A laser emits radiation in a TEMyg - mode, i.e., a Gaussian beam. The electric
field of a Gaussian beam is described by

exp{—j(kz — @)} x (4.44)

E(x,y,z) = Eow(z)

exp {—(562 +9%) [w21(z) * zfélzz)] }

o) w0{1+(73;3)2}1” )

A
Guoy phase shift ¢ = tan™' {—Z2} (4.46)

TW;

oo ()

A. E. Siegman, Lasers (University Science Books)
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Figure 4.10: Intensity distribution of a Gaussian beam.

The confocal parameter of the beam is twice the Rayleigh range and given by

2
21wy
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see Fig. 4.10. The Rayleigh range is the distance, over which the beam cross
. + .
sectional area doubles, Tw*(z) < 2rw?. The opening angle of the beam due to

diffraction is
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Gaussian beam continued

In the near field (z < b), the beam is close to a plane wave
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with the peak intensity I, = %‘“’\EAOP on beam axis. The effective area, A s/,

of a Gaussian beam is therefore
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Estimate of conversion efficiency for Gaussian beam

similar to the case of plane waves. From Eq. (4.59) we obtain for the conversion

efficiency

n— Py _ 2w? (dgff> <i> 2 (4.61)

P gocd \ nd Tw?

Thus the conversion efficiency is proportional to (dgf 7 / n3). Thus for choosing
a crystal for efficient frequency doubling, not only the elfective nonlinearity
ders should be as high as possible, but simultaneously, the refractive index n
should be small. Fig. 4.11 gives an overview over the figure of merit defined
by FOM= d,;/n’. From Fig. 4.10 we see that for £ > b the beam cross
section increases and the conversion drops. A numerical optimization without
any approximations results in the crystal length ¢ = 2.84 - b for maximum

conversion. With this result and b = 27w3 /), we obtain for the maximum
conversion efficiency

PQ 2&)2 dgff
nopt — E — 80)\03 < n3 568P1 . € (462)
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The weaker the focus and the longer the crystal, the larger is the conversion
in a x‘?-process, if phase matching is maintained over the full length.
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Figure 4.11: Figure of merit (FOM) for different nonlinear optical materials.



4.4.3 Frequency doubling of pulses
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With Eqs. (4.63) and (4.64)
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is the inverse group velocity. Then the polarization at the sum-frequency is
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The electric field at frequency w grows according to Eq. (3.8)
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If F;(w) is the spectrum of the pulse centered around wy, then the integral will
only be non-zero around w = 2wy The wave number k (w) around 2wy is

1
k(w)=ke+ — (w—2wp), (4.69)
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For the case of phase matching (ks = 2kg) and low conversion

Ey(l,w)=Gl,w) - F(w) (4.71)
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where
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The electric field at the second harmonic can then be written as a Fourier
transform. In the time domain we obtain with the convolution theorem

% ZG(@F@) 9y — / Z () F(t— 1) dt (4.75)
where
o) = % /_ G w) f(t)=E, (17 (4.76)
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0, phase elsewhere
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For a fundamental wave E; (t) = Aj (t)cos (wot — kgz) we obtain a second
harmonic wave Fy ({,t) = Ay (£, 1) cos (2wot — 2ky2)

wodeff 1 s/t 2 N A4
4.
AQ (g, t) 4nco ( ) . ) A Al (t t ) dt , ( 77)

where A, (£, 1) is the envelope of the generated second-harmonic pulse obtained
by a convolution of a squared input field and a rectangularly shaped pulse of

duration (i — —1> ¢. In the limit (—2 — U—gl) ¢ — 0, we obtain
large doubling bandwidth

Ay (0.1) = %etT g g2 gy (4.78)

dncy

In the case of <v— — —) ¢ > t, = pulse length, we obtain from Eq. (4.77) a

g2 Vg1

rectangularly shaped pulse with duration very small doubling bandwidth
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4.4.3 Effective nonlinear coefficients

Fig. 4.12. The d tensor of the crystal in a coordinate system (x,y, z) aligned

with the main axis (a, b, c) of the index ellipsoid is in diagonal form. For the
purpose of phase matching the crystal is rotated such that the beams propa-
gate in direction z’ of a new coordinate system (x’,y’,z’). The new coordinate
system follows from the old one by two transformations, a rotation around the
z-axis by an angle ¢ and another rotation around the x’-axis by an angle -.
The transformation of a vector u from the old to the new coordinate system

point group 42m

KDP A

kllz
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4.4.3 Effective nonlinear coefficients

Ut (.
uy | =T | uy (4.79)
Uz Uz .z
A
with the transformation matrix T
( 1 0 0 cosyp  sing 0
T = 0 cost¥ —sind —sinp cose O
\ 0 sin?d cosv 0 0 1
( COS sin 0
= —sinpcos?¥ cospcosty —sinv

\ —sinpsinY cosesind  cosv
The inverse is
cosp —sinpcosty —sinpsinv

T !'=T7 = | sing cospcos?  cosypsind : (4.81)
0 — sin v cos v

The fundamental and second-harmonic waves are ordinary or extraordinary
waves. The ordinary wave, (E||D), is polarized along the z'-axis

kilZ
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E° = FE°.x' = E°(cosp - X +sing - y) (4.82)

T'he dielectric displacement of the extraordinary beam (E }f D), is polarized
ong the y'-axis

D¢=D°-y' = D°(—sinpcost -x + cospcost -y —sint - z). (4.83)

I'here are two possible ways to determine the effective nonlinear coeflicient.
One way is by transforming the d tensor to a new coordinate system or by
substitution of the fundamental and second-harmonic waves in the old coor-
linate system and decomposing the second-harmonic fields. For example, for
Tequency doubling with KDP, which is a negative uniaxial crystal belonging
;0 the point group 42m, with type-I phase matching:

fundamental : E(w) = E°||D°

second harmonic : D(2w) = D°
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(4.84)
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since the polarization Pf} (2w) 1s related to the dielectric displacement of the
extraordinary beam. To see that, we would need to rederive Eq. (3.8) in non-
1sotropic media for the dielectric displacement, mstead of the electric fields

dess = —dsgsin (2¢) sin 1.

(4.85)

Because of Kleinman symmetry dsg = dyy. The effective nonlinear coefficients
for type-I phase matching for the different point groups are given in Table 4.3.

crystal class | 2e — o 20 —+ €

6,4 0 d15 sin v

622,422 0 0

6mm,4dmm | 0 dy5sin v

6m?2 das cos? U cos 3¢ ~dgy cos ¥ sin 3¢

3m das cos? U cos 3 d15Sin ¥ — dgo cos ¥ sin 3¢

6 (d118in 3¢ + dyg cos 3p) cos? ¥ | (dy1 cos 3p — day sin 3p) cos v

3 (d11 8in 3 + dag cos 3p) cos? ¥ | dyssint + (dyq cos 3¢ — dag sin 3¢) cos
32 dy1 sin 3¢ cos? ¥ d11 cos 3@ cos v

4 (d14 cos 2 — dy5sin2p) sin 20 | — (di4 cos 2 + dy5 cos 2p) sin ¥
42m dy4 cos 2¢ sin 209 —d4 8in 2 sin ¥

Table 4.3: Effective conversion coefficient d.r, if Kleinman symmetry is valid.
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4.4.5 Quasi-phase matching (QPM)

Sometimes to achieve phase matching of a nonlinear process in the desired
wavelength range 1s not possible by birefringence only. In that case. or for
achieving a collinear mteraction of waves, one can use quasi-phase matching
(QPM), a technique introduced by N. Bloembergen, Nobel Prize in Physics
1981 (J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “In-
teractions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127, 6
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phase matching
Ak=0

a) single crystal

Figure 4.13: Growth of second harmonic as a function of distance z in a crystal for
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b) periodically poled crystal

high technological relevance!

custom-engineer phase matching
e.g., mid-IR, THz generation

fan-out QPM gratings
chirped QPM gratings
waveguide QPM devices etc.

http://www.covesion.com

different cases: a) homogeneous crystal and b) periodically poled crystal.
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occurs. Due to phase mismatch the second harmonic runs out of phase with
the driving wave and therefore the generating polarization. If the sign of the
nonlinearity 1s switched in the second layer, a phase advance by 7 18 introduced
in the driving polarization, which rephases 1t with the already present second
harmonic and the process continues with maximum efficiency, see Fig. 4.13.

OE(2w) Jw s - _
T = P s (2) B (w) B (w)e? R T2R@)Z 4.86
9 —_ r(2)E(w)E(w)e (4.86)

Since the spatial modulation is periodic, we can represent it as a Fourier series

eff Z d 6‘7sz (487)

m=—0o0

If the period of the nonlinear coefficient corresponds to twice the coherence
length at a given frequency, i.e., kK = k(2w) — 2k(w), then SHG is rephased and
grows over multiple periods on average like

OF(2 ‘ N
# _ éwcd_lE(w)E(w) (4.88)
k(O)) - k((D) - K - Aktotal= Akprocess'l'z'n:l/l(z)
A(z) grating period
-

k(20) no walk-off



