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Repetition: Nonlinear Wave Equation

Employing the dispersion relation k% = ip=ps,w? the two leading terms cancel,

and within the SVEA (3.6),(3.7) 1t follows
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where we introduced the velocity of light in the linear medium as ¢ = / ,{L[}E{]Er_l.
We divide this equation by 27k and transform 1t into a comoving time frame
using ' =t — z/c, (z = 2'), and obtain
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with the damping constant @ = 0Z,/2 and the impedance of the medium
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Some remarks on

o o, 1 Norm o ik )z
SE(z.t) = —aB(2.t') = SjwZ,Pyr(=.1) (&-p) W7 (38)

*The medium conductivity o leads to losses and therefore
damping of the propagating wave.

*The medium’s nonlinear polarization can lead to both gain or
damping, depending on the relative phase between the electric
field and the polarization (parametric amplification, frequency
conversion, stimulated scattering processes as Raman and Brillouin
scattering, multi-photon absorption).

oIf the nonlinear polarization is in phase or in opposite phase of
the electric field, it corresponds to a a nonlinear change of the
refractive index, leading to a phase shift of the electric field
(Pockels effect, Kerr effect).

oIf the polarization is advancing the field by 90°, the polarization is
supplying energy to the field. In the opposite case, the polarization
IS extracting energy from the field.

sphase relation is changing during propagation, if no phase
matching of the process, I.e., k = kp, IS achieved. 3
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FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonie. The

wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the
second harmonic. The image of the primary beam at 6943 A is very large due to halation.

The very weak spot due to the second harmonic is missing. It was
removed by an overzealous Physical Review Letters editor, who
thought it was a speck of dirt and didn’t ask the authors anymore.



SHG in daily life: green laser pointer

| L[

Battery Fump LD DPSS
Dri
"' | Laser Module

MCA
Nd:YVO, KTP
=T =.'.'.-' |
L E
fa 1 o ||
LD+
LD- o SR e |
i= k I i i
/ F'HM'-.W g,
7
808nm Pump Expanding
Pump  Focusing Lens E“T""""‘-'" IR
Diode Lens i Fitter

| Beam Paths: | 808 nm — | 1064+532 nm | 532 nm — |




Second harmonic generation (SHG)

P(2w) = eodes s (2w; w,w)E(w, 2)E(w, 2). (4.1)
We neglect any losses for the moment (o = 0), and Z,, = i 0= igolco
from Eq..(3.8)
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(2) - e (2w;w, W) E(w, 2) E(w, z)ed k) —2kw)z (4.2)
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Fig. 1. Phase relationships between fundamental, second harmonic and nonlinear
polarization.



4.1 Without depletion of fundamental wave
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where Ak = k(2w) — 2k(w) is the difference in wave number between the
second harmonic light and twice the wavenumber of the fundamental light or
the driving second order nonlinear Polarization.

Second-harmonic generation (SHG)

A Jwdefs ~o sin Ak{/2 Akt/2.
FE(2w,l) = — E*(w) - / 4.
(20,0 = L2 iy [T (1.3

Introducing the intensities of the fundamental and second harmonic waves

n
w2w — s \V € 0/M0|Ew 2w|2

wie obtain
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Figure 4.2: Second-harmonic generation as function of phase mismatch.



If phase matching can be achieved, one can use Eq. (4.4) to define an
inverse conversion length I' as

defp
r=" N E(w)|, with n = /nona,, (4.6)
nc
and
I(2w, 0) = T2 (w). (4.7)

If the medium length reaches the conversion length, i.e., 'l = 1, then Eq. (4.7)
would indicate, that all fundamental light is converted to the second harmonic,
which contradicts the assumption of small conversion, and therefore we have
to work a little more to correct for it.




4.2 With depletion of the fundamental wave

A

P(w) = eod,;;(w; 2w, —w)E(2w)E* (w).
The coupled equations are
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and R
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Both equations describe the energy exchange between fundamental and second-
harmonic wave. The intensities are
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lossless media, i.e., d;; and dcss are real

d 1y, A OF (2w
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Energy conservation demands permutation symmetry of the conversion coeffi-
clents

Now| E(20)]? + ny|E(w)|? = const. = n,E? = const. (4.11)

11



Separating the wave amplitudes with respect to amplitude and phase
E(w) = |E(w)]e’

EQQw) = |E(2w)|e’®®)
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General solution: Jacobi elliptic function!

For Ak=0, second harmonic builds up such that

_jQQjCI)(w)_j(I)(Qw) — 1
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Solution for Ak=0

Bl g1 B(2uw fwd
/ _d|E(2w) :—/ 1 dz. (4.15)
0 Eg — | E(2w)|? 0 TNwCo
Using the integral
dx 1 _
/ PR atanh Yz /al (4.16)
we obtain
. . . d,
|E(2w)|,=¢ = Eptanh {EO (M) E} (4.17)
n,Co
or for the intensity
Eowd,
[(2w,0) = I(w,0) tanh® {M - e} (4.18)
Ny, Co
With the conversion rate I' = %EAO introduced above, we obtain
I(2w, ) = I(w,0) tanh*{T'¢} (4.19)
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With 1—tanh? = cosh™2 = sech?

I(w,?) = I(w,0)sech?{T"¢}. (4.20)
For perfect phase matching, 100% conversion possible for[ '/ >>1

What to do if there is phase mismatch?

4.3 Wave propagation in linear non-isotropic media

VxVxE=—wueE (4.21)
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Wave propagation in linear non-isotropic media

As in isotropic media, there are plane-wave solutions with

A

E = Eoe_jk'r (422)

that obey ) )
kxk x E = —w?jeE (4.23)

The wave vector is orthogonal to the displacement vector but in general
not anymore to the electric field

k L (¢E=D).
From Faraday’s law we have

jkx E=—-wB (4.24)
and therefore, as in the isotropic case, we have

k1B H.
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E || D :only when parallel to a main axis

Poynting vector S = E x H, is always normal to E and H

not necessarily parallel to the wave vector

D parallel to
phase fronts

D_—
/A =

\
\

E in general not
parallel to phase
fronts

Yy
~

\<,,

S not necessarily
parallel to k

Jp\
Figure 4.3: Relationship between field vectors, wave vector and Poynting vector of
a plane wave in birefringent media.
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Form of dielectric susceptibility tensor

2z 0 0 _‘
isotropic 0 xx O cubic
0 0 ax
a0 0] tetragonal
uniaxial 0 xx 0 trigonal
0 0  zz hexagonal
2z 0 0 |
biaxial 0 wyy O orthorhombic
0 0 =2z
o 0 xz
0 gy O monoclinic
rxz 0 2z
[ o Ty T2 )
Yy Yy Yz triclinic
| Tz yz 2z

Table 4.1: Form of the dielectric susceptibility tensor for the different crystal sys-
tems.



In the following, we consider the uniaxial case

Exz — Eyy — €1 #Ezz = €3

The corresponding refractive indices are called ordinary and extraordinary
indices.

NG = Ny 7 N3 = Ne.

Further one distinguishes between positive uniaxial, n, > n,, and negativ

Propagation different
from main axes

Figure 4.4: Index ellipsoid 18



Nonlinear optical susceptibilities

2E + w?uoeE = 0. (4.25)
k2n2 + k2—k? kok,
k2n2— 2 E=0 (4.26)
ko, k2n? + k2—k>

. . 2 2 2
y-polarized wave decouples > ordinary wave k° = kin_.

As the wave in an isotropic medium, it is purely transversal, k L E | H

Wave in the x-z plane with polarization in x-z plane: extraordinary wave

k2n2 + k2—k? kk,

ki, k2n2 + k2—k2 | =9

det
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or after some brief transformations

B2 kr o

With k, = ksin (0), k, = kcos (0) and k = n (0) ky we obtain for the refractive
index of the extraordinary wave

n(@)?  n2 2 g (429
k
No ¢ S
Ug — ka(k) H 87 0
. . . dkzl 1\ dk
normal to index ellipsoid and A
parallel to Poynting vector °
(k) = const

Figure 4.5: Cut through the surface of the index ellipsoid with constant free-space
value ko (kz, ky, k) or frequencies. 20



and is normal to the index ellipsoid. To determine the “walk-off” angle between

the Poynting vector and the wave vector, we consider

k
tan = —
an ]{Z
dk.
t = — )
ang = -

From Eq. (4.27) we find
2k,dk,  2k,dk,
+

2 2
ne ne

and
2

2
n‘k, n

; = —; tan @ .
nk., n=

tan ¢ =

(4.29)

, we obtain for the walk-off angle between Poynting vector and wave

number vector

tand — tan ¢

tan o = tan (0 — ¢)

(1 — Z—é) tan 0
n2 )
1+ 5 tan2 6

tan p =

1 + tan 6 tan ¢

(4.30)
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