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1. Coupled oscillator model for the nonlinear susceptibility - part 2.

Do you remember our coupled oscillator model from the last problem set? So
there we were using a simple model accounting for anharmonicity in the po-
tentials for both ions and electrons via an anharmonic coupling term between
the two. Now let’s finally look into the nonlinear susceptibility and what we
can learn from this model. Via mixing two optical frequencies ω1 and ω2 one
can generate a field at frequency Ω = ω1 − ω2 via difference frequency gener-
ation (DFG). In our case, we are interested in the process of THz generation
meaning that we choose the frequencies such that Ω is in the THz range.

Your task now will be to derive an expression for the frequency dependent
χ(2)(Ω;ω1,−ω2) susceptibility (which is one of the several contributions to the
total χ(2) tensor) within our model. To do so, please refer back to problem 2
on the last problem set (you may also take a look at the solution, in case you
didn’t get as far) to now solve the equation of motion for the next perturbation
term x(2) (see equations (2) and (4)). To guide you through this problem, these
are the steps you may take (but feel free to find a different solution yourself):
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a) Since we want to obtain χ(2)(Ω;ω1,−ω2), we need to first get x(2)(Ω =

ω1 − ω2) = x
(2)
i (Ω) + x

(2)
e (Ω) via solving equations (2) and (4). Let’s start by

looking at their driving terms composed of x
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are the solutions obtained for the first order equations. As we are looking into
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DFG of two frequencies ω1 and ω2, we now have to consider a driving electric
field E(t) = E1(t) + E2(t) of the form:
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As equations (1) and (3) are linear differential equations, we can easily ob-
tain their solutions xi(ω1, ω2) and xe(ω1, ω2)for the new field composed of two
frequencies via the sum of solutions for just a single frequency:
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Using equations (5) and (6) now write down the explicit expressions for x
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b) Since we are only interested in the DFG process x(2)(Ω), we only need to
look at those terms in the driving term that will actually lead to a nonlinear
polarization at with frequency Ω = ω1 − ω2. Thus, neglect the other con-
tributions (which give rise to sum frequency generation, frequency doubling

and optical rectification,...) and rewrite x
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terms of the contribution for difference frequency generation. Now proof that
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set may come in handy).

c) So we have shown the driving term to be considered is given by:
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Now we can finally solve equations (2) and (4). Looking at them, we find them
to be of the same form as the first order equation but with a different driving
term. Thus you can use the comparison to the first equation to come up with
the solution for these two equations. Find the expressions for x
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e) Now find the expression for χ(2)(Ω;ω1,−ω2) = χ
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and then show that this can be rewritten in terms of the linear susceptibilities
such as:
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f) Which contribution (χ
(2)
i or χ

(2)
e ) is the most crucial for THz generation

within our model? Using a plotting program of your choice and the parameters
given on the last problem set, please 3D plot or contour-plot the second order
susceptibility over the frequency range of 0 − 4 THz for Ω and 1100 − 1300
THz for ω1. Explain what Kleinman symmetry means and whether it holds
for our model as well!

2. Second order process in a PPLN crystal

Periodically poled LiNbO3 (PPLN) is used to achieve quasi-phase matching
(QPM) for a nonlinear process of second order. We want to describe a so called
parametric process, frequently utilized in modern optics technology to generate
or amplify selected frequencies. The three beams involved in such second order
process are the so called signal, pump and idler beam. The crystal is pumped
at λp = 532nm and generates a signal beam at λs = 950nm.

Figure 1: Sketch of the parametric process in a PPLN crystal.

(a) Find the relations of frequency and wavelength between the three involved
waves (pump, signal and idler) and determine the wavelength of the idler
beam.

(b) What component of the polarization should be used if we want to make

use of the high nonlinear coefficient d33/χ
(2)
zzz Write down the full expres-

sion for that component of the polarization.
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(c) Evaluate the phase mismatch between the three waves in the LiNbO3

crystal. You can look up the refractive indices at http://refractiveindex.info/.
Remember what polarization we preferred from (b) when choosing ordi-
nary or extraordinary refractive index. Calculate the coherence length
lc = π

∆k
for the given setup.
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