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2 CHAPTER 1. INTRODUCTION

Electronics and its applications. The particle properties of electromagnetic
waves become of importance when the energy of the photons considered,
ki> where k is Planck’s constant and i is the frequency, is larger than the
thermal energy stored in an electromagnetic mode, nW , where n is Boltz-
mann’s constant and W is temperature= At room temperature this is the case
for frequencies greater than 6 THz. For lower temperatures this transition
frequency from classical to quantum behaviour may already occur at GHz
frequencies. Certainly, at room temperature, the particle properties are im-
portant in the near infrared (IR) and visible spectrum where currently the
bulk of the photonic activities are carried out, see Figure 1.1.

Figure 1.1: Wavelength and frequency ranges of electromagnetic radiation
and its use.

An important task of Photonics is the development of coherent sources of
radiation, which are in the optical range called LASER’s (Light Amplification
by Stimulated Emission of Radiation). The first amplifier making explicit use
of the quantum properties of matter was the MASER (Microwave Amplifi-
cation by Stimulated Emission of Radiation) invented by J. P. Gordon, C.
H. Townes and Zeiger in 1954. The extension of the MASER principle to

0.3 – 30 THz
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Figure 11.11: THz Time Domain Spectroscopy using optical rectification in
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Fig. 11.1: THz pulses generated (a) and received (b) with photoconductive switches.
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photoconductive switches.

Figure 11.1: THz pulses generated (a) and received (b) with photoconductive
switches.

Figure 11.2: Terahertz waveforms modified by passage through (a) a 10 mm block
of stycast and (b) a chinese fortune cookie. The dashed lines show the shape of the
input waveform multiplied by 0.5 in (a) and by 0.1 in (b). In (a) the transmitted
pulse exhibits a strong ”chirp” due to a frequency-dependent index, while in (b),
pulse broadening indicates preferential absorption of high frequencies. [7]

Time Domain THz Spectroscopy

Figure 11.2: Terahertz waveforms modified by passage through (a) a 10 mm block 
of stycast and (b) a chinese fortune cookie. The dashed lines show the shape of
the input waveform multiplied by 0.5 in (a) and by 0.1 in (b). In (a) the
transmitted pulse exhibits a strong ”chirp” due to a frequency-dependent index, 
while in (b), pulse broadening indicates preferential absorption of high 
frequencies. [7]



Attosecond diffraction and spectroscopy of biomolecules
Undisturbed electronic structure Damage-free structure

All laser driven, intrinsic attosecond synchronization
Only pico-second lasers at 1J-level necessary -> kHz operation
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à All optical driven fully coherent attosecond X-ray source:
à has its own science case
à seeding of large scale FELs
à resolve access problem to large facilities



Dielectrically Loaded Circular Waveguide
• Traveling wave structure is best for coupling broad-band single cycle pulses
• Phase-velocity matched to electron velocity with thickness of dielectric

Dispersion Relation

w/ dielectric

w/o dielectric

Copper Inner Diameter = 940 µm

Fused Silica Inner Diameter = 400 µm

~1-5 cm

L.J. Wong et al., Opt. Exp. 21, 9792 (2013). 7

THz Acceleration



Terahertz-driven Linear Electron Acceleration
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11.2 Optical rectification
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Figure 11.3: THz generation by DFG from two cw lines or from intrapulse spectral
components. Once intense enough THz has been generated it acts back on the
generating lines and creates additional down-shifted lines, which themselves
again generate THz by DFG. This cascaded DFG process leads to a continuous
down- shifting of the center of the optical spectrum.
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This technique was pioneered by C. Fattinger and D. Grischkowsky [8].
Photoconductive switches activated by sub-100-fs pulses or optical rectification
with sub-100-fs pulses leads to the generation of THz electromagnetic impulses,
that can be received with similar photoconductive receivers or by electro-optic
sampling (EOS) [7, 9].

11.2 Optical rectification

Other often used techniques to generate mid-IR or THz radiation is difference-
frequency generation (DFG) of narrowband optical signals, or optical rectifi-
cation (OR) of femtosecond to picosecond laser pulses, which is nothing else
than intrapulse DFG, see Fig. 11.3. One can understand this process by con-
sidering two narrowband optical signals at frequencies ω0 + Ω and ω0, whose
difference frequency Ω lies in the THz range. If we have a whole pulse, all pos-
sible frequency components can generate difference-frequency components and
a THz pulse arises. Once the THz field has built up, it will modulate the gen-
erating optical lines and produce additional sidebands in the optical domain.
In addition, depending on phase matching, the higher frequency optical lines
may parametrically amplify the lower lying spectral components, with the THz
signal as its idler. This leads to cascaded difference-frequency conversion and
downconversion of the optical lines to the THz wavelength range. Depending
on the input pulse format and phase-matching conditions, single-cycle THz
pulses or multi-cycle THz waveforms are generated.

Tables 11.1 and 11.2 show the linear and nonlinear properties, and figures
of merit (FOM) (normalized to LiNbO3) of crystals transparent in the 0-4 THz
range and most widely used for optical THz generation according to Ref. [10].

Figure 11.3: THz generation by DFG from two cw lines or from intrapulse spectral
components. Once intense enough THz has been generated it acts back on the
generating lines and creates additional down-shifted lines, which themselves again
generate THz by DFG. This cascaded DFG process leads to a continuous down-
shifting of the center of the optical spectrum.
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crystal ZnTe LiNbO3 LiTaO3 GaP
opt. wl (µm) 0.8 1.06 1.06 1.06
opt. ref. index 2.85 2.16 2.14 3.11
THz ref. index 3.2 5.2 6.5 3.21
∆n = nTHz − ng,opt 0.35 3.0 4.32 0.1
THz abs. (cm−1) 9.9 21.7 95 3.3
transp. range (µm) 0.55-30 0.4-5.2 0.4-5.5 0.55-10
band gap (eV) 2.26 3.7 5.65 2.25
nonlin. coeff. (pm/V) d14=23.1 d33=152.4 d33=145.2 d14=21.7
nonlin. ref. index n2

10-15cm2/W
at λ (µm)

120 at 1.06
71 at 0.8

0.91
at 1.06

0.37
at 1.06

20
at 0.78

FOM1, long pulses 0.03 1 0.21 0.06
FOM2, ultrashort pl. 0.74 1 0.64 1,67
FOM3, Kerr-limited 0.00045 1 0.416 0.005

Table 11.1: Linear and nonlinear properties, and figures of merit (normalized to
LiNbO3) of crystals transparent in the 0-4 THz range and most widely used for
optical THz generation according to Ref. [10].

crystal GaSe GaAs ZGP CdSiP2

opt. wl (µm) 1.06 2.1 2.1 2.0
opt. ref. index 2.8 3.33 3.15 3.0
THz ref. index 3.26 3.6 3.37 3.05
∆n = nTHz − ng,opt 0.34 0.18 0.17 0.05
THz abs. (cm−1) 2.5 1 1 <0.1
transp. range (µm) 0.65-18 0.9-15 0.75-12 0.5-9
band gap (eV) 2.1 1.424 2.34 2.45
nonlin. coeff. (pm/V) d22=24.3 d14=46.1 d36=39.4 d36=85
nonlin. ref. index n2

10-15cm2/W
at λ (µm)

45
at 1.06

150
at 2.1

40
at 2.1

?
at 2.1

FOM1, long pulses 0.13 0.83 0.68
FOM2, ultrashort pl. 0.13 0.64 0.55
FOM3, Kerr-limited 0.004 0.014 0.047

Table 11.2: Linear and nonlinear properties, and figures of merit (normalized to
LiNbO3) of crystals transparent in the 0-4 THz range and most widely used for
optical THz generation according to ref. [10]

Starting from the DFG picture in Fig. 11.3, this is a three-wave interaction

THz Materialproperties I
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THz Materialproperties II
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Starting from the DFG picture in Fig. 11.3, this is a three-wave interaction
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Three Wave Interaction
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described by Eqs. (4.92)-(4.95)

dÊ (ω1)

dz
= −jκ1Ê (ω3) Ê

∗ (ω2) e
−j∆kz, (11.1)

dÊ (ω2)

dz
= −jκ2Ê (ω3) Ê

∗ (ω1) e
−j∆kz, (11.2)

dÊ (ω3)

dz
= −jκ3Ê (ω1) Ê (ω2) e

+j∆kz, (11.3)

with coupling coefficients and difference wave number

κi = ωideff/nic0, and ∆k = k3 − k1 − k2. (11.4)

It is interesting to look at the wave-vector mismatch and its meaning.
We assume ω3 = ω0 + Ω and ω2 = ω0, where ω3 and ω2 are nearby optical
frequencies, and Ω is a THz frequency. Then we obtain for the wave-vector
mismatch for a collinear interaction

∆k =
∂kopt(ω)

∂ω

∣∣∣∣
ω0

Ω− kTHz (Ω) =

(
1

vg,opt
− 1

vp,THz

)
Ω (11.5)

=
Ω

c
(ng,opt − np,THz) . (11.6)

The phase mismatch for THz generation is due to a mismatch in group
velocity of the optical waves and the THz phase velocity. Therefore, the im-
portance in the difference of optical group index and the THz phase index. As
can be seen from Tables 11.1 and 11.2, the material with the highest nonlinear
optical coefficient, lithium niobate, has unfortunately a large index difference,
and for a frequency of, e.g., 1 THz the coherence length is as short as 50 µm.
This problem can be partially overcome by either noncollinear phase matching,
see Fig. 11.4, which leads to the tilted-pulse-front technique or by quasi-phase
matching (QPM) using periodically poled lithium niobate (PPLN). Periodic
poling of course achieves only narrowband phase matching and therefore is the
right choice for multi-cycle THz generation. The tilted-pulse-front technique
achieves phase matching for a broad wavelength range and lends itself to the
generation of single-cycle THz waveforms tracing the derivative of the pulse
intensity.

11.2.1 Optical rectification with tilted-pulse-fronts

Lithium niobate has emerged as the most efficient THz-generation crystal us-
ing the tilted-pulse-front technique. This approach [11, 12, 13] produces single-
cycle THz fields with optical-to-THz conversion efficiencies (henceforth referred
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Difference Frequency Generation
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Phase Mismatch (for collinear interaction)

For Lithium Niobate 2 5

à Broadband non collinear phase matching by tilted pulse fronts

à Quasi-phase matching
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11.2.1 Optical rectification with tilted-pulse-fronts

Figure 11.4: (a) Noncollinear phase matching for THz generation. Note, the THz phase index
in lithium niobate is more than twice as large as the optical group index. (b) Broadband 
implementation of the noncollinear phase matching using a grating and imaging system
that leads to the generation of pulses with a tilted pulse front.
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Figure 11.4: (a) Noncollinear phase matching for THz generation. Note, the THz
phase index in lithium niobate is more than twice as large as the optical group index.
(b) Broadband implementation of the noncollinear phase matching using a grating
and imaging system that leads to the generation of pulses with a tilted pulse front.

to as conversion efficiency) in excess of 1% at room temperature [14]. Conse-
quently, the approach has attracted a lot of interest in the pursuit of mJ-level
THz pulse energies [15, 16, 17]. However, the theoretically predicted conver-
sion efficiencies for this approach are larger than those of the corresponding
experimental demonstrations [18], so it is interesting to understand the dis-
crepancies that lead to a limitation in the achievable conversion efficiencies
[19, 20]. Figure 11.5 shows the schematic of a tilted-pulse-front setup in panel
(a) and its computational domain (b) for simulation.

For the noncollinear geometry, the phase-matching condition (11.5) must
now be separated into a condition parallel to the propagation direction of the
THz radiation z, and one orthogonal to it, let us call this direction y. Note,
this is similar to the noncollinear OPA, see Fig. 11.6.

For the z-component we obtain

∆kz(ω) = cos γ k(ω + Ω)− cos(γ + θ(ω)) k(ω)− kTHz (Ω)

= cos γ
∂kopt(ω)

∂ω
Ω+ sin γ

(
− ∂θ

∂ω

)
Ω k(ω)− kTHz (Ω) = 0, (11.7)

and for the y-component

∆ky(ω) = sin γ k(ω + Ω)− sin(γ + θ(ω)) k(ω)

= sin γ
∂kopt(ω)

∂ω
Ω− cos γ

∂θ

∂ω
Ω k(ω)

= sin γ
∂kopt(ω)

∂ω
Ω− cos γ

(
− ∂θ

∂ω

)
Ω k(ω) = 0. (11.8)
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Tilted pulse front technique
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Figure 11.5: (a) Scheme of a tilted-pulse-front configuration for THz generation. An
optical pump pulse with electric field Ein

opt(ω, x0, z0) is incident on a setup to gen-
erate a tilted-pulse-front. The model accounts for the angular dispersion of various
spectral components that can generate THz radiation inside the nonlinear crystal by
satisfying the appropriate phase-matching condition for optical rectification. From
a time-domain viewpoint, the angularly dispersed pulse forms a tilted-pulse-front
shown by the red ellipse. THz radiation is generated perpendicular to this tilted-
pulse-front. (b) Corresponding 2D computational space for solving coupled nonlinear
wave equations for optical rectification. Nonlinear crystal geometry is accounted for

by delineating an appropriate distribution of χ(2)
eff (x, z). Edges of the distribution

along z0 = 0 are smoothed out to avoid discontinuities. The refractive index is
homogeneously distributed throughout the computational space. The optical beam
is centered at a distance h from the apex of the crystal which sets the limits to the
computational region. The THz field profile can be calculated at a distance zd from
the crystal after Fresnel reflection is taken into account. [20]
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Figure 11.6: Noncollinear phase-matching condition for pulse-front-tilted optical
rectification.

Using the same trick as previously for the noncollinear OPA, we multiply the
condition for the z-direction with cos γ and the condition for the y-direction
with sin γ, and adding both conditions leads to
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which determines the pulse-front-tilt angle γ. Inserting this back into the
condition for the y-direction determines the necessary angular frequency spread

∂θ
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= − tan γ
ng,opt

ω np,opt
. (11.10)

The pulse-front-tilt angle determines the prism angle, and the angular spread
the choice of grating and imaging system. Note, the sign in the angular spread
is taken care off by the lens in Fig. 11.5.

To achieve insight into the competing linear and nonlinear processes, we
first explore the dynamics by an effective 1D spatial model. The wavenumber
of the optical field in this 1D model propagating effectively into the z-direction
is given by

k(ω) =
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The factor cos γ appears in the denominator of the first term in Eq. (11.11) to
account for the tilted-pulse-front, where γ is the pulse-front-tilt angle. The sec-
ond term k

′′
AD, corresponds to GVD due to the angle spread (AD) in frequency,
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rectification.
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Figure 11.4: (a) Noncollinear phase matching for THz generation. Note, the THz
phase index in lithium niobate is more than twice as large as the optical group index.
(b) Broadband implementation of the noncollinear phase matching using a grating
and imaging system that leads to the generation of pulses with a tilted pulse front.

to as conversion efficiency) in excess of 1% at room temperature [14]. Conse-
quently, the approach has attracted a lot of interest in the pursuit of mJ-level
THz pulse energies [15, 16, 17]. However, the theoretically predicted conver-
sion efficiencies for this approach are larger than those of the corresponding
experimental demonstrations [18], so it is interesting to understand the dis-
crepancies that lead to a limitation in the achievable conversion efficiencies
[19, 20]. Figure 11.5 shows the schematic of a tilted-pulse-front setup in panel
(a) and its computational domain (b) for simulation.

For the noncollinear geometry, the phase-matching condition (11.5) must
now be separated into a condition parallel to the propagation direction of the
THz radiation z, and one orthogonal to it, let us call this direction y. Note,
this is similar to the noncollinear OPA, see Fig. 11.6.

For the z-component we obtain

∆kz(ω) = cos γ k(ω + Ω)− cos(γ + θ(ω)) k(ω)− kTHz (Ω)

= cos γ
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and for the y-component
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Figure 11.4: (a) Noncollinear phase matching for THz generation. Note, the THz
phase index in lithium niobate is more than twice as large as the optical group index.
(b) Broadband implementation of the noncollinear phase matching using a grating
and imaging system that leads to the generation of pulses with a tilted pulse front.
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Figure 11.6: Noncollinear phase-matching condition for pulse-front-tilted optical
rectification.

Using the same trick as previously for the noncollinear OPA, we multiply the
condition for the z-direction with cos γ and the condition for the y-direction
with sin γ, and adding both conditions leads to
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which determines the pulse-front-tilt angle γ. Inserting this back into the
condition for the y-direction determines the necessary angular frequency spread
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The pulse-front-tilt angle determines the prism angle, and the angular spread
the choice of grating and imaging system. Note, the sign in the angular spread
is taken care off by the lens in Fig. 11.5.

To achieve insight into the competing linear and nonlinear processes, we
first explore the dynamics by an effective 1D spatial model. The wavenumber
of the optical field in this 1D model propagating effectively into the z-direction
is given by

k(ω) =
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The factor cos γ appears in the denominator of the first term in Eq. (11.11) to
account for the tilted-pulse-front, where γ is the pulse-front-tilt angle. The sec-
ond term k

′′
AD, corresponds to GVD due to the angle spread (AD) in frequency,
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i.e., the phase advance in z-direction has an additional frequency dependence.
The expression for GVD-AD is given by Eq. (1b) in Ref. [21]. The evolution
equation for the envelope of the THz field is then given by

dÊTHz (Ω, z)

dz
= −αTHz(Ω)

2
ÊTHz (Ω, z) (11.13)

−j
Ω deff
c np,THz

∫ ∞

0

Êopt (ω + Ω, z) Êopt (ω, z)
∗ ej∆k(ω)zdω .

which also includes the THz absorption. For the optical field, we obtain

dÊopt (ω, z)

dz
= −αopt(Ω)

2
Êopt (ω, z)

−j
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c np,opt

∫ ∞

0

Êopt (ω + Ω, z) ÊTHz (Ω, z)
∗ dΩe−j∆k(ω)z

−j
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∫ ∞

0

Êopt (ω − Ω, z) ÊTHz (Ω, z) e−j∆k(ω)zdΩ

+F
[
j
ε0ω0 n2

p,opt n2deff
2

|Eopt (t, z)|2 Eopt (t, z)

]
(11.14)

+F
[
j
ε0ω0 n2

p,opt n2deff
2

[
|Eopt (t− t′, z)|2 ⊗ hr(t

′)
]
Eopt (t, z)

]
,

which includes potential optical absorption, the difference and sum-frequency
generation with the THz field, self-phase modulation and Raman effect now
added in the Fourier domain. The symbol F denotes a Fourier transform and
hr(t′) is the Raman response function. Fig. 11.7 shows the experimental and
simulation results for the transmitted optical spectra for a 500-fs Gaussian
pulse at 1030 nm through the lithium niobate prism after THz generation for
different pulse energy levels corresponding to given values of the maximum
conversion efficiency achievable. The other parameters used are deff = 180
pm/V and n2=10−15 cm2/W. Both the simulated and experimental spectra
show an amount of broadening and red-shift commensurate with the amount
of THz generated. This is strong evidence that the observed broadening is a
direct consequence of THz generation. To further reinforce this point, in Fig.
11.7(a), when there is virtually no THz generation, there is also negligible
broadening of the transmitted optical pump pulse. This also indicates a rela-
tively small impact of SPM and Stimulated Raman Scattering (SRS) effects in
these experiments even at the relatively large peak intensities of 40 GW/cm2.

In Figs. 11.7(b) and (c), the extent of broadening seen in experiments is well
reproduced by the simulations at half the maximum and maximum conversion
efficiency, respectively. Here, in addition to the red shift, a relatively small
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Figure 11.7: Comparison of experimental and simulated optical spectra for different
amounts of generated THz. The frequency down-shift and spectral broadening can
be modeled only by the simultaneous solution of the THz and optical fields. (a)
No broadening or red-shift is observed when conversion efficiency η = 0%, which
implies small effect of SPM. (b)There is large cascaded frequency down-shift and
spectral broadening corresponding to a larger amount of THz generation (c) Max-
imum frequency down-shift and spectral broadening is observed when conversion
efficiency is maximum at ηmax = 0.8%. Conversion efficiency, amount of frequency
down-shift and spectral broadening are in good agreement with experiments. The
difference between theory and experiment can be attributed to uncertainties in ma-
terial parameters (χ(2), n,α) and experiments. The measured spectra include spatial
averaging effects which are not included in the calculations, which could explain their
difference.

amount of blue-shift is also seen which also increases with increasing THz
generation. This effect is also observed in our calculations. An explanation
for this is obtained by inspecting the third term on the right-hand side of Eq.
(11.14). This term represents a blue-shift of the optical pulse via THz plus
optical SFG, which increases with the THz conversion. Consequently, there is
an increasing amount of blue-shift with increased THz generation, albeit to a
much lesser extent than that of the red-shift. The difference in the shape of the
spectra between experiments and simulations is partly due to the usage of a 1D
model. In the actual physical situation, due to the noncollinear propagation
of the optical and THz radiation, different parts of the optical beam will be
broadened to different extents. The final recorded power spectrum would then
correspond to a spatial averaging of the spectral intensity over the beam cross-
section. Such spatial averaging has not been considered here.

Figure 11.7: Comparison of experimental and simulated optical spectra for different 
amounts of generated THz. 
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Figure 11.8: Conversion efficiencies as a function of
effective length are calculated by switching on/off 
various effects. Material dispersion and absorption
are considered for all cases. The pump fluence is 20 
mJ/cm2, for a crystal temperature of 100 K. (a) 
Gaussian pulses with 500-fs FWHM pulse width with
peak intensity of 40 GW/cm2 are used. Cascading 
effects together with GVD-AD leads to the lowest
conversion efficiencies. The drop in conversion
efficiency is attributed to the enhancement of phase
mismatch caused by dispersion due to the large 
spectral broadening caused by THz generation (See 
Figs. 11.7(b)-(c)). However, since group velocity
dispersion due to angular dispersion (GVD-AD) is
more significant than GVD due to material dispersion
at optical frequencies in lithium niobate, cascading
effects in conjunc- tion with GVD-AD is the strongest
limitation to THz generation. SPM effects are much
less detrimental since they cause relatively small
broadening of the optical pump spectrum (see 11.7 
(a)). (b) Cascading effects along with GVD-AD are
most detrimental even for a 150-fs Gaussian pulse 
with 3× larger peak intensity. [19]
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Figure 11.8: Conversion efficiencies as a function of effective length are calculated by
switching on/off various effects. Material dispersion and absorption are considered
for all cases. The pump fluence is 20 mJ/cm2, for a crystal temperature of 100 K. (a)
Gaussian pulses with 500-fs FWHM pulse width with peak intensity of 40 GW/cm2

are used. Cascading effects together with GVD-AD leads to the lowest conversion
efficiencies. The drop in conversion efficiency is attributed to the enhancement of
phase mismatch caused by dispersion due to the large spectral broadening caused
by THz generation (See Figs. 11.7(b)-(c)). However, since group velocity dispersion
due to angular dispersion (GVD-AD) is more significant than GVD due to material
dispersion at optical frequencies in lithium niobate, cascading effects in conjunc-
tion with GVD-AD is the strongest limitation to THz generation. SPM effects are
much less detrimental since they cause relatively small broadening of the optical
pump spectrum (see 11.7 (a)). (b) Cascading effects along with GVD-AD are most
detrimental even for a 150-fs Gaussian pulse with 3× larger peak intensity. [19]
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Figure 11.9: 2D model: Simulation parameters are the same as before. (a) THz
fluence (red) and optical fluence (oblique, cyan/light-blue) when only SPM effects
are included. Regions within the green box have nonzero χ(2). THz generation
occurs along the full length of optical pump pulse propagation. Minimal broadening
by SPM is seen between pulse spectra at locations (i) to (iii). A slight narrowing of
the spectrum is seen in (ii), compared to (i) due to the spatial chirp associated with
angular dispersion. The conversion efficiency is 2.28% (b) THz and optical fluence
when cascading effects are included. Note how the pulse spectrum in location (i)
is rapidly broadened in locations (ii),(iii). THz generation ceases once the pulse
spectrum has drastically broadened. The conversion efficiency is only 0.85%.
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11.2.2 Optical rectification by Quasi-Phase Matching
(QPM)

As we have seen from the last section, due to the cascaded noncollinear inter-
action, the conversion efficiency is limited in the tilted-pulse-front technique.
There is hope to change that using quasi-phase matching, which enables phase
matching in a collinear interaction. We still need cascading to achieve a high
optical-to-THz conversion efficiency in a single-pass interaction. However, in
a collinear interaction the beam does stay together and does not break-up,
which should be advantageous. The phase-matching condition (11.5) needs to
be extended by the grating wave number, which determines the poling period
Λ

∆k =
∂kopt(ω)

∂ω

∣∣∣∣
ω0

Ω− kTHz (Ω) +m
2π

Λ
=

(
1

vg,opt
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2π

Λ
= 0(11.16)
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ng,opt − np,THz

c

)
Ω+m

2π

Λ
= 0 (11.17)

→ Λ = m
λTHz

np,THz − ng,opt
. (11.18)

For the nonlinear optical materials in Tables 11.1 and 11.2, the THz phase
index is larger than the optical group index and therefore, the natural choice
is m = 1. In contrast to velocity-matched single-cycle OR, optical rectification
with QPM crystals gives rise to multi-cycle narrowband THz radiation with
the center frequency according to (11.18), see Fig. 11.10.

Each inverted domain of a QPM nonlinear crystal contributes a half-cycle
of the THz pulse and thus the THz wave packet has as many oscillation cycles
as the number of QPM periods over the length of the crystal, see Fig. 11.10.
Also, PPLN was used in surface-emitting geometries for THz generation using
both OR (fs pulses) and DFG (ps pulses). Lately, THz-wave generation was
demonstrated in periodically-inverted GaP and GaAs. In fact, III-V semicon-
ductors are very attractive for QPM THz-wave generation because of several
appealing properties, namely: (i) small THz absorption coefficient (smaller by
an order of magnitude than in commonly used EO crystals: lithium niobate,
ZnTe, CdTe), (ii) large coherence length due to small mismatch between the
optical group and THz phase velocities, and (iii) high thermal conductivity.

Figure 11.10 depicts a schematic illustration of collinear THz-wave gen-
eration in a nonlinear crystal with periodically-inverted sign of χ(2). In (a),
optical rectification with femtosecond pulses, in (b) DFG with two picosecond
pulses (Ω = ω3 - ω2) is shown. In [22], THz-waves were obtained by DFG in a
periodically-inverted GaP stack, produced by direct wafer-bonding technique,
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Figure 11.10: Schematic illustration of collinear THz-wave generation in a nonlin-
ear crystal with periodically inverted sign of χ(2). (a) Optical rectification with
femtosecond pulses, (b) difference-frequency generation with two picosecond pulses
(Ω = ω3 − ω2) [10].

and the GaP crystal was pumped with 10-nanosecond pulses near 1.55 µm.
Thus, optical THz generation in nonlinear crystals provides a variety of meth-
ods to produce THz output with an average power from nW to mW, and peak
power up to megawatts. For example, single-cycle THz pulses with peak power
of 5 MW were demonstrated by OR in LiNbO3 [12] and sub-ns pulses with 2
MW peak power (at 1 THz) by noncollinear DFG in GaAs, using 250-ps CO2

laser pulses [23].

Plane-wave analysis of optical-to-THz conversion in QPM crystals
with ultrashort pulses

Here, we follow the analysis of Vodopayanov of the scenario shown in Fig.
11.10. We consider as an optical pump, bandwidth-limited ultrashort (e.g.,
femtosecond - nanosecond) laser pulses propagating along the z-direction in
the form of infinite plane waves, with the Gaussian temporal envelope of the
electric field

Eopt(t) = Re{E0 e−t2/τ2 ejω0t} =
1

2
{E0 e−t2/τ2 ejω0t + c.c.}, (11.19)

Figure 11.10: Schematic illustration of collinear THz-wave generation in a nonlin- ear crystal
with periodically inverted sign of χ(2). (a) Optical rectification with femtosecond pulses, (b) 
difference-frequency generation with two picosecond pulses (Ω = ω3 − ω2) [10].
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Figure 11.10: Schematic illustration of collinear THz-wave generation in a nonlin-
ear crystal with periodically inverted sign of χ(2). (a) Optical rectification with
femtosecond pulses, (b) difference-frequency generation with two picosecond pulses
(Ω = ω3 − ω2) [10].
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Here, we follow the analysis of Vodopayanov of the scenario shown in Fig.
11.10. We consider as an optical pump, bandwidth-limited ultrashort (e.g.,
femtosecond - nanosecond) laser pulses propagating along the z-direction in
the form of infinite plane waves, with the Gaussian temporal envelope of the
electric field

Eopt(t) = Re{E0 e−t2/τ2 ejω0t} =
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where ω0 is the central frequency and τ is the pulse width. The intensity
envelope is thus I(t) ∼ exp(−2t2/τ 2) and the pulse duration at full width
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pair defined in the form
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Solving this equation as in the case of SHG, the power spectral density of the
THz radiation is given by
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with ∆k(Ω) = ∆k =
ng,opt − np,THz
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and PPLN dQPM
eff = 2

πdeff . The optical-to-THz energy fluence efficiency in
plane-wave approximation is
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with the pump fluence
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where ∆Ω is the acceptance bandwidth for a given crystal length and is equal
to the center wavelength divided by the number of QPM periods N = L

Λ in
the crystal. Note, N is half the number of coherence lengths contained in the
crystal if there would be no QPM. If the crystal contains many QPM periods,
the generated THz is very narrowband and mostly due to optical frequency
components which are separated by the phase-matching frequency Ω0, which
is the center frequency of the generated THz signal. The Gaussian function
is the square of the convolution of the optical field spectrum at a given THz
spectrum and therefore has typically the width of the optical spectrum. For
the unchirped Gaussian, it agrees exactly, see Fig. 11.22. The narrow sinc2-
function, typically acts like a delta function, and we can approximate the
integral as
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Figure 11.11: Relative THz generation reduction due to g1(Ω0).

where g(Ω0) is a reduction factor, if the optical pulse spectrum is not broad-
band enough to produce a nonlinear polarization at the QPM-THz frequency
Ω0. Due to this effect, the THz generation efficiency drops off as soon as
fTHzτ > 0.1, see Fig. 11.11. The fact that the THz efficiency only grows
with the length of the QPM crystal L and not with L2 is a consequence that
the optical pulse is much shorter than a coherence length of the crystal and
therefore it walks off from the already generated crystal. Quadratic growth
is only possible over one coherence length, i.e., one of the layers of the QPM
crystal.

Plane wave analysis of optical-to-THz conversion in QPM crystals
with longt pulses

Let us now consider as a pump, bandwidth-limited pulses with longer (pico- or
nanosecond) duration τ , such that fTHzτ > 1. In this case, the spectrum of a
single pulse is narrow and to generate THz output, two different pump pulses
need to be mixed to achieve difference-frequency generation (DFG). Assume
that two Gaussian bandwidth-limited optical pulses (plane waves) at frequen-
cies ω2 and ω3 with equal pulse widths propagate collinearly and generate a
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Figure 11.12 is the plot of the reduction factor g2 as a function of lw/L. In many
cases, it is desirable to have longer pulses to suppress high-order nonlinear
optical effects, even at the expense of some loss in efficiency. Thus, setting
lw/L = 1 (i.e., g2 = 0.69) might be a good compromise between efficiency and
pump intensity. For L = 1 cm in GaAs and pumping at 2.1 µm, the lw/L = 1
condition corresponds to a pulse duration of 3.6 ps. For longer pulses, the
THz efficiency will decline; however it will not be improved dramatically if the
pulses are made shorter.

Especially for pulses longer than the crystal length, i.e., walk-off length
longer than crystal length, the THz radiation adds up coherently over the full
length and we obtain for the efficiency
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which is proportional to the pump intensity and the length square.

For long pulses
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Figure 11.12 is the plot of the reduction factor g2 as a function of lw/L. In many
cases, it is desirable to have longer pulses to suppress high-order nonlinear
optical effects, even at the expense of some loss in efficiency. Thus, setting
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pump intensity. For L = 1 cm in GaAs and pumping at 2.1 µm, the lw/L = 1
condition corresponds to a pulse duration of 3.6 ps. For longer pulses, the
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Walk-off
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Figure 11.12 is the plot of the reduction factor g2 as a function of lw/L. In many
cases, it is desirable to have longer pulses to suppress high-order nonlinear
optical effects, even at the expense of some loss in efficiency. Thus, setting
lw/L = 1 (i.e., g2 = 0.69) might be a good compromise between efficiency and
pump intensity. For L = 1 cm in GaAs and pumping at 2.1 µm, the lw/L = 1
condition corresponds to a pulse duration of 3.6 ps. For longer pulses, the
THz efficiency will decline; however it will not be improved dramatically if the
pulses are made shorter.
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Very long pulses
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Figure 11.12: Relative THz generation reduction due to g2(2
lw
L ).

Optimal length of the EO crystal

From the simple plane-wave analysis above, we see that the optical-to-THz
conversion efficiency, in the optimized case, is proportional to L or L2. If we
take into account THz absorption in the crystal (which is usually much larger
than the optical absorption) but still neglect pump depletion, we obtain

ηTHz(L) ∼
1

αTHz

[
1− e−αTHzL

]
= Leff

where αTHz is the THz intensity absorption coefficient and Leff is an effective
length. When L → ∞, Leff → 1/αTHz. Choosing L = 1/αTHz will give us
Leff = 0.63/αTHz. In general, one can introduce another reduction factor,
associated with the absorption and write

ηTHz(L) ∼ g3L, with g3 =
1

αTHzL

[
1− e−αTHzL

]
.

For L = 1/αTHz, g3 = 0.63.

Optimal focusing

To maximize the THz efficiency, one needs to focus pump beams. In the
near-field approximation, when the focusing is loose and diffraction can be
neglected, the optical-to-THz conversion efficiency (OR, femtosecond pulses)
with respect to the pump-pulse energy Upump can be obtained by integrating
Eq. (11.32) over the transverse coordinate r, Epump(r) ∼ exp(−r2/w2))

Influence of walk-off

29
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Optimal focusing
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ηTHz =
UTHz

Upump
= g1 g3
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p,optnp,THz (ng,opt − np,THz)
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πw2
,

where w is the Gaussian pump beam size. Following Chapter 5 of Ref. [25],
which considers the DFG case, we can characterize the focusing strength by
a focusing parameter ξ = (λ L/2πnTHzw2), where λ is the THz wavelength
and nTHz is the THz refractive index (Boyd-Kleinman’s theory itself [25] is
not applicable here since the THz field is not a resonant field and its dis-
tribution is not defined a priori by an optical cavity). Morris and Shen [26]
developed a theory of far-infrared generation by optical mixing of focused laser
beams, based on Fourier analysis with respect to transverse k-vector compo-
nents, and have found that focusing of the pump beams appreciably enhances
the far-infrared output despite the strong far-infrared diffraction. This is un-
derstandable, since the optical beam continuously generates new THz waves
building up coherently on what is already there, when propagating with its
own beam profile and with increasing efficiency. For example, in a 1-cm-long
GaAs crystal and an output wavelength 100 µm, the optimal focal-spot size
(for the optimized phase-matching condition) was found to be around w = 20
µm, which corresponds to ξ = 110, and is less than the THz wavelength.

Figure 11.13: Enhancement factor h as a function of the focusing parameter ξ.
Solid curve is based on Ref. [26]. Dashed curve – plane-wave approximation. Dots
represent calculations based on the Green’s function method. Inset: far-field THz
intensity profiles at different ξ for a 1-cm-long GaAs.
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Enhancement factor
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Cascading and red shift

THz-wave generation via OR is a parametric process of self-mixing, in which a
photon from the blue (high-frequency) wing of the femtosecond optical pulse
decays into a THz photon plus a red-shifted photon, corresponding to the
low-frequency wing of the same optical pulse. From the photon energy con-
servation argument, it follows (if we neglect losses) that the center of weight
of the optical pulse spectrum will be red-shifted by ∆ω/ω0 ∼ ηTHz, where ω0

is the central optical frequency. When optical-to-THz photon conversion effi-
ciency approaches 100%, the red shift will be on the order of the THz frequency
Ω. Once the optical pulse becomes red-shifted, it can still contribute to THz
generation – the same process of cascaded optical down-conversion continues
to transfer optical energy to lower frequencies, as long as the phase mismatch
∆k is small. Accordingly, cascaded down-conversion will be the most efficient
when the pump wavelength is close to the point of zero group-velocity disper-
sion (GVD). Quantitatively, the number of cascading cycles can be expressed
as N = 0.5 × (acceptance bandwidth) / (terahertz frequency). Here accep-
tance bandwidth is with respect to the pump frequency and can be found by
differentiating (11.17):

d∆k

dω
=

Ω
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dng,opt (ω)
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dλ
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from the condition for the acceptance bandwidth ∆ωacc

d∆k

dω
L∆ωacc = 2π

we obtain

∆ωacc =
2πcω

LΩ

(
λ
dng,opt (λ)

dλ

)−1

. (11.44)

From Fig. 11.14, we can see that the number of THz cascading cycles in GaAs
at 2-3.5 µm pump can be >10. At pump wavelength near 6.6 µm, where the
GVD reaches zero, N can be even higher. Thus, THz conversion efficiency can
be significantly above the Manley-Rowe limit. The possibility of overcoming
quantum-defect-related limitations on the efficiency of THz-wave difference-
frequency generation, for the case of mixing two discrete near-IR frequencies,
was suggested by Cronin-Golomb [27].
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as N = 0.5 × (acceptance bandwidth) / (terahertz frequency). Here accep-
tance bandwidth is with respect to the pump frequency and can be found by
differentiating (11.17):
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From Fig. 11.14, we can see that the number of THz cascading cycles in GaAs
at 2-3.5 µm pump can be >10. At pump wavelength near 6.6 µm, where the
GVD reaches zero, N can be even higher. Thus, THz conversion efficiency can
be significantly above the Manley-Rowe limit. The possibility of overcoming
quantum-defect-related limitations on the efficiency of THz-wave difference-
frequency generation, for the case of mixing two discrete near-IR frequencies,
was suggested by Cronin-Golomb [27].
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Figure 11.14: Number of THz cascading cycles as a function of THz frequency and
pump wavelength for GaAs, L = 1 cm.

Summary

From the above discussion, we can introduce a set of figure of merits (FOMs)
that help to judge the maximum efficiency achievable with the materials sum-
marized in Tables 11.1 and 11.2. One such number that characterizes the
material with respect to its capability for THz generation efficiency, see Eq.
(11.32) and Tables 11.1 and 11.2, was chosen as [10]

FOM1=
d2eff

np,optαTHz

(11.45)

or

FOM2=
d2eff

n2
p,opt(np,THz − ng,opt)

. (11.46)

If the maximum propagation distance is limited by the Kerr effect, the critical
FOM becomes

FOM3=
λopt d2eff

n2
p,optnp,THzαTHzn2

. (11.47)
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