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5.2 Electro-optic amplitude modulator

How is phase retardation converted into a amplitude modulation?

0 direction V(t)
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input polarizer wave plate LiNbO4 output polarizer

Figure 5.7: Transversal electro-optic amplitude modulator from LiNbQOs3.
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Figure 5.8: Transmission characteristic of the modulator shown in Fig. 5.7 as a
function of phase retardation.

where we used Eq. (5.33). With A¢wp = 0, the relationship between output
intensity and applied voltage is

]]n’f _ % 11— cos (aV (1))], (5.48)

and, for small voltages aV (t), we obtain a quadratic dependence

Iout 1 27 72
= — t). 4
7= 10V (5.49)




5.3 Electro-optic phase modulator

If the wave plate and polarizers in Fig. 5.7 are removed and only the ordinary
or extraordinary wave is excited, then the electric field after the crystal is

Ey (t) = Eycos [wt + ¢ (t)], (5.50)
with ;
6 (1) = ”ZEZ”V (1) . (5.51)

With a sinusoidal voltage and from Eq. (5.45), we obtain
EZ(t) = Eycos(wt+ msinw,,t) (5.52)

= FEy[coswt cos (m sin w,,t) — sin wt sin (m sin wy,t)],

with modulation depth m

3
o oo
m = ( i ) Vo. (5.53)



With the generating functions for the Bessel functions

cos (msin wy,t) = )+ 2 Z Jor (m) cos (2kwnt) ,

sin (m sinwy,t) = 2 Z Joga1 (m)sin [(2k + 1) wpt],
k=0

and the addition theorem

2sin Asin B = cos (A — B) —cos (A + B),

2cos Acos B =cos (A — B) 4+ cos(A+ B),

the spectrum of the output field is

EY(t) = FEyl|Jy(m)coswt

Y

(m) cos (W + wp,) t — J1 (M) cos (w — wy,) t
+J3 (m) cos (w + 2wy, ) t + Jo (m) cos (w — 2w,,) ¢
(m) cos (w + 3wp,) t — J3 (m) cos (w — 3wy, t

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)



The spectrum consists of sidebands at multiples of the modulation fre-

quency w,,. An example is shown in Fig. 5.9.
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Figure 5.9: Phase-modulated spectrum with a modulation depth of m = 1.



5.4 Microwave modulator

High-speed or microwave signals are typically supplied by strip-lines or copla-
nar lines, see Eq. 5.10. For efficient modulation, the index modulation must
copropagate in phase with the optical signal (group velocity, however, here we
neglect dispersion, thus group velocity is equal to phase velocity).
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Figure 5.10: Electro-optic traveling wave modulator.

electro-optic
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Let’s assume the microwave signal

V(z,t) = Vjcos (wmt _ T z) : (5.59)

Co

with phase velocity
c=—. (5.60)



If we consider the time slot of the optical wave that enters the crystal at
t = 0, and copropagate with that time slot in the signal in the waveguide with
effective index n, this time slot will experience the applied voltage

V (2) = Vpcos [% (n — nm)] (5.61)

Co

at time t = zn/cy. The refractive index change experienced along the waveguide
IE

An(z) =aV (z), (5.62)
and the total integral phase change from input to output is
0
A
Ap = / win(z) . (5.63)
0 Co

‘
= aVOw/ COS [% (n — nm)] dz,
0



6. Acousto-optic modulator
6.1 Acousto-optic interaction

In a linear acousto-optic medium, the refractive index change is proportional
to the applied voltage, see Eq. (5.8). The wave equation is
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VXVXE——,UO%D——ILLO@

The time-varying displacement can be separated into a part described by a
constant average susceptibility or refractive index n, and a time-varying con-
tribution described by An(r;t)

D = gE+P=¢(n+An(r,t)’E
~ gon’E + 2gonAn(r, t)E, (6.2)

where we neglect potential higher-order terms in An(r,t), i.e., An(r,t) < n.
From Egs. (6.1) and (6.2), we have

2 2
V x V x E+ia—E _ 910 [An(r’ t)E]

2 Ot2 _2? ot2 (6.3)

n



with ¢ = 1/(equon?®). We consider a plane electromagnetic wave with wave
vector k/ in the x-z-plane, see Fig. 6.1.
I
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S acoustic wave
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Figure 6.1: Diffraction grating in a medium generated by an acoustic wave.
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The refractive index change generated by a wave with frequency wy is pro-
portional to the acoustic wave

An(r.t) = Adicos (wit —k, 1)
Ai |
L ) et ben] (6.4)

An is the amplitude of the resulting refractive index wave. From Gauss law
for the electric field
V-eE =p=cV -E+ E - V¢, (6.5)
with
e = g0 (n+An(r, 1)) ~ ey (n® 4+ 2nAn(r,t)). (6.6)
If the electric field is polarized along the y-direction, we obtain E - Ve = 0. If

there are in addition no charges p, then the divergence of E vanishes, and the
wave equation (6.3) simplifies to

10°E 1 0° [An(r, t)E]

AE — ——— =+2—

c? Ot? i c? Ot?
The time-dependent refractive index multiplies with the field, which initially
consists of only an incident field with index ¢ and a diffracted wave with index
d is generated

(6.7)

n

E = Eiej("”t_ki'r) - Edej(“’dt_kd'r) + c.c. (6.8)

The product of incoming wave and index modulation generates a polarization,
which is the source for the diffracted wave. Therefore, there is

wg = *ws +w; and ky;= £k, + k;.

11



Usually, the frequency of sound is much less than the optical frequency, w, <
wi, and therefore |ky| =~ |k;| . Fig. 6.1 shows the resulting k-diagram. We solve
the wave equation (6.7) approximately, assuming that the amplitudes of the
incoming and diffractive waves change slowly along the z-direction

E, = e, Aj(z)ed@i k) 4 ce (6.9)
E; = e Ay(z)e/@d=kam) 1 c e (6.10)

If we substitute (6.7) into (6.8), and use the slowly varying envelope approxi-
mation (as in Chapter 3), we obtain

_ (kg - ";’—23) Aalz) — 2jky - VAy(2) =~ —%AﬁAi(z) (6.11)
— (kf — ‘;’—22) Ai(2) — 2jk; - VAi(2) ~ —‘;’—fAﬁAd(z) (6.12)

With kfm = wc%i and kg - VAy(2) = kg cos 9%, we obtain
e Ve (6.14)

12



This set of equations describes coupled modes. However, the coupling coeffi-
cients A A

wg AN w; An

— and —
2¢ cos 6 2c cos b

are not equal, because wy # w;. This results from the acoustic waves that
excite and drive optical waves. However, the difference is small, on the order
of a millionth. Therefore, we can neglect the difference in Egs. (6.13) and
(6.14) and obtain with the coupling coefficient

wg AN w; An

— ~ 6.15
" T 9ccosh  2ccosh (6.15)
and initial conditions Ag(z) = 0 the solution
Ai(z) = A;i(0)cos|k|z (6.16)
Ay(z) = —jA;(0)sin|k| 2. (6.17)

The incoming wave is depleted along the propagation and transformed into
a diffracted wave. The diffracted wave is slightly shifted in frequency. If the
interaction length is long enough, so that |k|z > 7/2, the diffracted wave is

13
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Figure 6.2: Typical k-diagram describing acousto-optic light diffraction at a standing
acoustic wave.
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Egs. (6.16) and (6.17) also have a different meaning. If the frequency
ws = 0, then the optical wave interacts with a constant index grating. The
diffracted wave has exactly the same frequency and the wave vectors must
obey momentum conservation. Also this situation is described by the same
coupled mode equations. The coupling coefficients are now identical and the
total optical energy of both partial waves is conserved.

15



6.2 The acousto-optic amplitude modulator

The intensity is modulated, if the interaction is with a standing wave.

An(r,t)

A
= Ansinw,t cos (k,r) = 4_n {exp [] (wst — kyr)]
J

+exp |J (wst + ker)] — exp [—J (wst — k1)
—exp |—jwst + kerl}

electro-acoustic medium

—

>

diffracted
wave

incident
wave

z=0 z=1

Figure 6.3: Momentum conservation in the acousto-optical amplitude modulator.
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W, << w, W, =, +mw,

w; An
A; = A — 2
:(0) :(0) cos ( » 2C089€) (6.20)
. . W; A?’L
Ag(l) = —jA;(0)sin (?2(}086£> . (6.21)

Afterwards the amplitude of the wave is simply made time-dependent, i.e.,
An(t) = Ansinwst. A graphical construction of both amplitudes is attempted
in Fig. 6.4.

Again with the generating function of the Bessel functions, Eqs. (5.54) and
(5.55),

cos (xsinw,t) = Z Jm () €75, (6.22)
sin (rsinwst) = —j Z Jm () &5t (6.23)
modd

17



w; -
A — ! () edmwst 24
() Z I ( 26089 )6 ’ (6:24)

meven

Adl) = A0 3 I, (“’i An e) eimest, (6.25)

c 2cost
m odd

Two remarks need to be made. First, the incoming wave has only even side-
bands and the diffractive wave only odd ones. I.e., the incoming wave is
modulated with the frequency 2w,. The incoming wave is extinct, if the mod-
ulation depth is adjusted such that the Bessel function of zeroth order shows
a zero or disappears, i.e., for

Wy

¢ = 2.405. 6.26
C 20086 ( )

18



Figure 6.4: Time dependence of amplitudes for incoming and diffracted waves.
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Chapter 7: Third-order nonlinear effects

third-harmonic generation (THG) or frequency tripling
self-phase modulation (SPM)

due to the possible different permutations of the input fields:

(1) (g
(3) (3w : w,w,w) X ,1)(‘ _).

if no resonances in between the fundamental and third harmonic

(3)(

X W W, W, —w) = _))\ (71)

7.1 Third-harmonic generation (THG)

THG possible in both centrosymmetric and non-centrosymmetric media,
also possible in solids and liquids
arguably the most interesting case: generation of UV and VUV in gases

P® (3w) = “40\(3 (3w : w,w,w) E (W) E () E (w). (7.2)

in low-conversion limit (almost always in THG), similar to SHG:

o (3) 002 Y2 .. L (Ak |
[ (3w, 0) = 2X TG 1% (w)sin2 J2REL 7
8723C0 1n1CoEQ 2 20




The conversion efficiency 1s given by

I(3w,0) [ 3wx® (3w)\” 5,0, ) [ Ak |
( ‘>:{ X ( )}[212(w)sincz{ } -

dnsnycheo 2

] : : w2
For loosely focused Gaussian beams with a focal cross section (—)Q) and con-

focal parameter b > ¢, we can write

P (3w, 0) 1 {:3@-\@) (3@')}‘2}"2 (w')l 2o, {Al;[}
—_— 5 111C E— .

nan} <T.'u.'8 ) 2 2
2

P(w) 3
With stronger focusing, the Rayleigh range, over which the beam is
focused, becomes smaller than the length of the conversion region

1.2 .

¢ 2
2mwg

2b = K/

effective interaction length ~ Rayleigh range, i.e., fc;5 ~ 2b

P@Ee) 16 {30 (3)\* PP (o)
P("") B 3 4(.'350 713”?/\‘2'

phase-matched case: (7.6)

detailed calculation for case of strong focusing for third-order processes:
lojs = 1.7h

G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975) .



in solids: in general difficult to achieve phase matching for THG
solution: SHG + subsequent SFG

In gases: by suitable mixing of different gases, the dispersion can be
compensated, thus achieving phase matching,

THG conversion efficiencies up to 10% achieved

D. M. Bloom, G. W. Bekkers, J. F. Young, and S. E. Harris, Appl. Phys.
Lett. 26, 687 (1975).

7.2 The nonlinear refractive index

SPM effects come along with an additional factor 3 compared to THG,
(due to number of possible permutations of input frequencies)
if only an electric field in x-direction:

. e _ . 2
PP () = =X (@2 w0, ~w) | Ex m( E, (w) (7.8)
: -k 5 - RN ARY: =
Dl‘ = <0 EI+PI:'CO 1'+‘\ +I\ Em Er (‘ 9)
= £p n‘QEI R €0 {ng + Qn‘gAn} E,. (7.10)

n = ng+ An. (7.11) 29



.2
%X(B) E.| =2noAn
2
An=ix(3) E,
8720
linear polarization, definition via
e A 1 g |al? E 3 (3
electric field: An=§ngL E. - nngmx : (7.13)
3
: - _ ] ol (3)
Intensity An=ny I, — nyp 4'72A(2)Co€ox : (7.14)

~

I, = $ngcoco ‘E.T,

A plane wave with arbitrary polarization in the z-y-plane 1s propagating
m z-direction

17~ o R (ot
E(z,t) = 3 [Ex(w)ej(“’t_"") - c.c.] 5(-{-5 [Ey(w)ej(*t_k‘) - C.C.] v (7.15)

I an mstantaneously reacting, 1sotropic and lossless medium with third-order

nonlinearity, thus it holds X,z20 = Xaazyy + Xayey + Xayyz- Lhis gives rise to a

nonlinear polarization (see problem set 2)

~

2 . -
E, Em+2’Ey

. 2 . a o a
P®)(w) = %goxmm [3 E, + ESE;] (7.16)

23



2 .
B, +2

~

1 B

/

2 . PP
&+ﬁql (7.17)

SPM XPM coherence term

description via circular polarizations

. 1 /. .
b= (EI + JEy) , (7.18)
~(3) 1 2. 2
Pd: (“}) = §EOXIII:1: Ei‘ Eﬂ: + 2 ‘E:{:‘ E;}: . (719)
2
noc = 37aL; (7.20)

independent, if the definition based on electric field or intensity

At first ghmpse, 1t might be surprising that in the formulation in terms of
circularlvy polarized light. see Eq. (7.19). no coherence term appears. How-
ever, this can be understood by the following argument: the difference phase
between both polarizations enters the coherence term. This difference phase
determines for equally strongly excited polarizations the orientation of the re-
sulting superposed linear polarization. However, for linear polarization only
self-phase modulation occurs and thus the polarization direction is conserved.
If Eq. (7.19) contained a coherence term, this would result in a polarization-
dependent polarization rotation, which, however, does not occur.

24



7.3 Molecular orientation and refractive index

A strong contribution to the nonlinear refractive index often stems from the
orientation of an anisotropic molecule in an applied field. We therefore consider
an ensemble of molecules, each of them possessing a linear polarizability o in
the direction of a distinguished axis of the molecule and a polarizability o
perpendicular to that axis.

7.3.1 The Lorenz-Lorentz law

The dielectric displacement 1s given by
D =5E+P, (7.21)

where the polarization depends on the local field E;, ., via the molecules’
density N and the average polarizability (a) according to

P= €0A‘T (a) Elocal- (7.22)

25



The local field depends on the applied external field E and the resulting po-
larization P itself. To find the relation between the local field and external
field and the polarization, we consider the microscopic spherical cavity inside
a polarized 1sotropic medium shown in Fig. 7.1. The charge density on the
surface of the sphere 1s given by —P cosf, and the field at the center of the
sphere due to this charge density 1s

'y 2w
E. = / / : 5 (P cos 0) cos fa® sin §dBd¢
— / decos?e)sinaip=ip. (7.23)
0 2c0 BRI

spherical cavity inside a
polarized isotropic medium

¢

26



The local field 1s the superposition of the external field and the field created
by the polarization, 1.e.,

1
E .o = E+—P. 7.24
local +3€0 (7.24)
Using Eq. (7.22) we can eliminate the local field and it follows for the relation
between the polarization and the externally applied field taking into account

screening effects of the medium

P 1
—E+—P
E()JV (a) +3€0
or v < )
N («v

The refractive index 1s defined via
P = ¢y(n® — 1)E, (7.26)

from which, by comparison with Eq. (7.25), we obtain the relation between
average polarizability and refractive index

N{a) mnj—1

Clausius-Mossotti: 3 T2

(7.27)

- ng + 2
local field enhanced: E,.u = ( 03 >E (7.28)

27



7.3.2 Intensity-dependent refractive index

If the axis of the molecule encloses an angle # with the direction of the local
field, then the polarization in the direction of the electric field is given by

P = N [o {cos®8) + a (sin0)] Ejpeas
or according to Eq. (7.22)
(a)g = (o) — ar) {cos® ) + ay.
With

2 T
<C052 0) = L / / cos® sin 0dfde =
4 J, 0

and Eq. (7.27), it then follows

2 T A\
Bl N N
ng+2 3 (@) = 9 log + 201}

canonical ensemble of molecules (temperature T)
exposed to external electric field

) W
p(W) ~ exp [——kBT]

Lo =

(7.29)

(7.30)

(7.31)

28



energy of dipole in electric field W = —1P-Ep.y = —1a(8) |Biocal’

ap — o) |Elom1|2c0520
p(6) ~ exp !_( | = au) |

2kgT

Thus the field also changes the polarizability of the medium by partial orien-
tation of the created dipoles. It holds

1 [T 1 [7
{cos* ) = 3 / cos” Op(h) sin Hdh / 5 / p(6) sin Hdb
0 0

for small fields (cos2 9> = % + _44:— (a” ;I;L ) ’.Zl“ local .
) ‘B

From the Lorenz-Lorentz relation (7.27), it then follows

i (all — a‘_L)2 |-Elocal|2 3 6710A7l

45 2T N2 +2)7%

Ala) =

From this equation and the Lorenz-Lorentz relation (7.28) finally follows

p 2 2
g (ngt+2 N (o —ay)

29



ansatz

SPM coefficient

7.4 Self-phase modulation (SPM)

assume a purely linearly polarized or circularly polarized beam,
— polarization is conserved

from Eq. (3.8) with ¢ =t — z/v, and Py = 2sonAn(E)E

5
0z

0z

ZE(G ) = — TJI;OCO Pyi = —jkoAn(E)E(z, 1), (7.33)
E(z,t) = |E(z,t)| e 791 (7.34)

koAn(E) =6 |E(:3t,)|2
6 = konk; /2

/ . / J / ¥y AYE
|E(2,t)| = §1E(2,t')| 5=6(2,) = =56 |E(z,)[

0 |envelopel? in time domain does NOT change

= §|B(= 1),

E(z,t) = e PEOOP p(Q ¢). (7.36)

) = 6(0,t) + 8 |E(2,t))° . phase modified o instantaneous intensity

30



propagation direction --— — time

phase 1s only slowly varying in time.

(b)
instantaneous frequency
Aw(t) = —d‘f’d—(:) (7.37)
(c)

A(,t)1




| nonlinear phase shift
Qo) < .
do=0 |E(0)|* =
s
(0g=®) = Aw
Alz(ﬂﬂ
oo > T

strong spectral broadening 45 (w)

oo > T

yAVVANEE

9o\ AN\ T
AWAS_ALUSZ—< (;)E‘)> _|_< ( )>

max

: (7.38)
|
AAA‘AAAAA AVaVaVaVA ! -

A(DAS

Awmg 32

S

|
|
|
|
-t D!




(€)

Ao (t) |

A 4

zero points in spectrum for

always two instants during the pulse, which
contribute to the same generated frequency

constructive/destructive interference
depending on relative phase at these times

— maxima/minima in SPM spectrum

o= 02m+1)m

number of minima N on one side of the spectrum: (2N +1) > % > (2N —1)
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2
SPM for Gaussian pulse: I(t) = yexp [—%]

o(t) = dpexp [—:_22]
8¢>(t))

t 12
2P| E

5 ¢ ,
= 2 —@z 1.71@.

€T T

From the relations for the full width at half maximum (FWHM)

AwAS—AwS = 2'(

. t
= 4¢o ,—— =
.

_ TFWHM
1.665

and the time-bandwidth product of a Gaussian pulse

0.44

TFWHM

AwrwHaM = 2T,

we obtain for the spectral broadening of a Gaussian pulse

AWAS — Aws o 1.71-1.665
Awpw HM - 0.44 - 27

oo = 1.03 ¢.

(7.41)

(7.42)

(7.43)

(7.44)

34



7.5 Self-focusing

transverse beam profile becomes instable

intensity-dependent refractive index

|
|
|
|
| for Any,>0:
. I *phase velocity in center reduced
I *phase fronts bend due to the induced
| lens ("Kerr lens”)
| -self-focusing of the beam
|
R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479
(1964).
H. A. Haus, Appl. Phys. Lett. 8, 128 (1966).
relevance:

*Kerr-lens mode-locked laser oscillators
.unwanted detrimental effect of "hot spots”

35



simple physical consideration in 2D:
n

n+An
/\ y

Snell’'s law — total internal reflection for 6 < 6., with cosf, = —2

n+An
62 An
cost. =1 — 7C ~1- o 0. = \/2An/n. (7.46)
n

If a beam of diameter 2a propagates through the medium, 1t contains, because
of diffraction, rays with an angle

/a A/n -
93—(H>—$ ((.4()

The refractive index difference, for which all these rays are totally reflected
(1.e., trapped) then follows from 6. = #p, thus

9‘2
An, = né[C = ?Cn. (7.48)

From this we obtain, independent of the beam diameter, a critical power of
the beam

A2

Snna

P. (7.49)
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)
T\

S8nngy

P. (7.49)

above this critical power, self-focusing exceeds diffraction.

Note the quadratic scaling with wavelength!

in 2D (1 longitudinal, 1 transversal dimension): spatial solitons occur.

in 3D (2 transversal dimensions):

catastrophic self-focusing occurs, that eventually is balanced by other

nonlinear effects, e.qg.,

- saturation of the intensity-dependent refractive index

- self-defocusing due to plasma formation by multi-photon ionization
("filamentation”)

A. Couairon and A. Mysyrowicz, Phys. Reports 441, 47 (2007).

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog.
Phys. 70, 1633 (2007).
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In the paraxial approximation

ko= /K2 — (K24 K2) ~ k %(kgmg). (7.50)

The dispersion relation within the paraxial approximation reads

w 1 2 2 -

Taylor expansion around the carrier wave with carrier frequency and wave
number in z-direction (wy, kg), 1.e., w = wp+Aw and k = (Ak,, Ak,, ko + Ak,),

yields

Aw 1
29 Ak, — — (AR + AR2) = 0. 7.59
o o (DK + Aky) = (7.52)

For the envelope E(z,y, z,t) of a linearly polarized pulse propagating in posi-
tive z-direction

E(z,y,z,t) = / / / d* (Ak) E(Ak,, Ak,, Ak, )el(Aet=Ak) (7.53)

allowing for the nonlinear polarization (from Chapter 3), we obtain

i(’?E N 8E
v, Ot 0z 2

- ) V2 E = —jkyAnE. (7.54)
0

38



In cylindrical coordinates and with the ansatz
E (Ta = t) - EO ('T', = t) exp {—]d) ('T', = t)}

we arrive at the following two equations

196 0o 1 [96]° 1 [8?Ey 10E] ...
[ga+al+zko [a—] = Lot opg, [arz trar ) (790

= self-focusing + diffraction
1 OE, OFE 1 06 0F 1 0? 100
[—,O+;0]+—.ﬁ e Eo[ s
Ug ot 0z k‘o dr Or Qko
If a stationary beam exists, for which self-focusing and diffraction exactly

balance each other during propagation, then it must hold % = % = 0, from
which in combination with Eq. (7.56) follows

oo
— =0.
or

I.e., this solution exhibits a plane phase front. Eq. (7.55) then simplifies to

2 ‘
—nfE2 = ! [d Eo ldE"]. (7.57)

O REy | or2 T r or
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This equation was solved numerically [3, 4]. The stationary solution with the
lowest critical power yields

K 2 < 2 2
p - H.763 &‘OC(Z\ _ H.763\ A ~ 1)\_[ (7.58)
472 ni 472 ) mny  Tnng

This is of the same order of magnitude as the simple estimate of Eq. (7.49).
However, Eq. (7.57) permits to gain deeper insights into the process of self-
focusing. It can easily be shown by insertion into Eq. (7.57) that, if Ey(r) 1s
a solution of Eq. (7.57), then also the scaled function y2Ey(yr) is a solution.
All these solutions contain the same guided energy

/ V2 E2 (yr) rdr = / EZ (r'Yr'dr’

Ne >
pP= fo V2o 1o / E2 (r) rdr.

This scaling mnvariance 1s one of the few exact results of self-focusing theory,
which reveals that the beam 1s not stable in 3D. This changes if only one

transverse dimension exists, the other dimension could be fixed, e.g., using a

waveguide, then it holds according to Eq. (7.54)

13E OF ,1()2
vc‘?t T T T QAdQ

—FE — jkonY |E|* E. (7.59)
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Introducing the retarded time t' =t — z/v,, it follows

OFE(t. z 1 092
%)z T jkonZ |E] E. (7.60)

Again 1t 1s straightforward to show by insertion, that this equation, which is
called nonlinear Schrodinger equation, possesses solutions

E(t, z) = Egsech L] eIk (7.61)

if the following relations are fulfilled

1 1
ky = —kog—2 E o, — .

5 2 (7.62)

For a given power density guided in y-direction, that i1s proportional to

/ E2 (z)dz = 2|Ey|* z,

o0

there is now only one solution, because the different solutions of form 42E3 (yz)
belong to different power densities. We will later discuss the properties of the
nonlinear Schrodinger equation in greater detail, here we already point out
that the solutions (7.61) correspond to a spatial soliton.
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For powers far above the critical power for self-focusing, the beam with a
Gaussian input profile 1s focusing down within a distance zy This distance can
be estimated as follows employing a parabolic approximation. The parabolic
intensity distribution in the Gaussian beam, I(r) = Iyexp [—r?/w?], induces
in the center of the beam a lens, which bends the phase fronts of the beam

2
Ao(r) = kond (I(r) — Iy) z = —kongfojz.

-
wg

This phase shift corresponds to the effect of a lens or a spherical focusing
mirror with radius R according to

r2

As the beam i1s focusing within a distance z = zy & R, it thus follows

2 2
T T
kontlo—z¢ = kg—
0729 Owg f OQZf
and therefore
w
2p = ——— (7.63)

NI
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With the critical power for self-focusing according to Eq. (7.58), we obtain

[P [P
zp = 0.52kow? FC ~ b ?‘i (7.64)

Numerical simulations yield

1
P
2 =0.71b <, / 5 - 0.86> . (7.65)

As an example, we consider self-focusing 1in sapphire. At 800-nm wavelength,
sapphire has a linear refractive index of about n = 1.8 and an intensity-
dependent refractive index coefficient of nd = 3 x 107 ¢cm?/W. With this
we obtain from Eq. (7.58) a critical power for self-focusing of P, = 2.7 MW.
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