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5.2 Electro-optic amplitude modulator

How is phase retardation converted into a amplitude modulation?
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input polarizer output polarizerwave plate
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Figure 5.7: Transversal electro-optic amplitude modulator from LiNbO3.

Here, ∆φWP is the phase retardation due to the field-independent birefrin-
gence or due to an additional wave plate as shown in Fig. 5.7, and a is a co-
efficient describing the relationship between field-dependent phase retardation
and applied voltage. Usually we use β = 45◦ to achieve 100 % transmission

Iout
Iin

=
1

2
{1− cos [∆φWP + aV (t)]} (5.43)

=
1

2
{1− cos∆φWP cos [aV (t)] + sin∆φWP sin [aV (t)]} .

There are various applications for modulators. If the transmission through
the modulator should be linearly dependent on the applied voltage, we use a
bias ∆φWP = π/2 and obtain for aV ≪ 1 (see also Fig. 5.8)

Iout
Iin

=
1

2
[1 + aV (t)] . (5.44)

For a sinusoidal voltage
V (t) = V0 sinωmt (5.45)

and constant input intensity, we obtain a sinusoidally varying output intensity

Iout
Iin

=
1

2
(1 + aV0 sinωmt) . (5.46)

The constant a can easily be replaced by the half-wave voltage Vπ

a =
π

Vπ
=

2πLn3
0r22

λ0d
, (5.47)
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retardation

Figure 5.8: Transmission characteristic of the modulator shown in Fig. 5.7 as a
function of phase retardation.

where we used Eq. (5.33). With ∆φWP = 0, the relationship between output
intensity and applied voltage is

Iout
Iin

=
1

2
[1− cos (aV (t))] , (5.48)

and, for small voltages aV (t), we obtain a quadratic dependence

Iout
Iin

=
1

4
a2V 2 (t) . (5.49)

5.3 Electro-optic phase modulator

If the wave plate and polarizers in Fig. 5.7 are removed and only the ordinary
or extraordinary wave is excited, then the electric field after the crystal is

Eω
y (t) = E0 cos [ωt+ φ (t)] , (5.50)

with

φ (t) =
πn3

0r22
λ0d

V (t) . (5.51)

With a sinusoidal voltage and from Eq. (5.45), we obtain

Eω
y (t) = E0 cos (ωt+m sinωmt) (5.52)

= E0 [cosωt cos (m sinωmt)− sinωt sin (m sinωmt)] ,

with modulation depth m

m =

(
πn3

0r22
λ0d

)
V0. (5.53)
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With the generating functions for the Bessel functions

cos (m sinωmt) = J0 (m) + 2
∞∑

k=1

J2k (m) cos (2kωmt) , (5.54)

sin (m sinωmt) = 2
∞∑

k=0

J2k+1 (m) sin [(2k + 1)ωmt] , (5.55)

and the addition theorem

2 sinA sinB = cos (A−B)− cos (A+B) , (5.56)

2 cosA cosB = cos (A− B) + cos (A+ B) , (5.57)

the spectrum of the output field is

Eω
y (t) = E0 [J0 (m) cosωt (5.58)

+J1 (m) cos (ω + ωm) t− J1 (m) cos (ω − ωm) t

+J2 (m) cos (ω + 2ωm) t+ J2 (m) cos (ω − 2ωm) t

+J3 (m) cos (ω + 3ωm) t− J3 (m) cos (ω − 3ωm) t

+ . . . ] .

The spectrum consists of sidebands at multiples of the modulation fre-
quency ωm. An example is shown in Fig. 5.9.
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Figure 5.9: Phase-modulated spectrum with a modulation depth of m = 1.
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5.4 Microwave modulator

High-speed or microwave signals are typically supplied by strip-lines or copla-
nar lines, see Eq. 5.10. For efficient modulation, the index modulation must
copropagate in phase with the optical signal (group velocity, however, here we
neglect dispersion, thus group velocity is equal to phase velocity).

waveguide

coplanar strip electrode terminating resistor

electro-optic
substrate

Figure 5.10: Electro-optic traveling wave modulator.

Let’s assume the microwave signal

V (z, t) = V0 cos

(
ωmt−

ωmnm

c0
z

)
, (5.59)

with phase velocity

c =
c0
nm

. (5.60)

If we consider the time slot of the optical wave that enters the crystal at
t = 0, and copropagate with that time slot in the signal in the waveguide with
effective index n, this time slot will experience the applied voltage

V (z) = V0 cos

[
ωmz

c0
(n− nm)

]
(5.61)

at time t = zn/c0. The refractive index change experienced along the waveguide
is

∆n (z) = aV (z) , (5.62)

and the total integral phase change from input to output is

∆φ =

∫ ℓ

0

ω∆n (z)

c0
dz (5.63)

=
aV0ω

c0

∫ ℓ

0

cos

[
ωmZ

c0
(n− nm)

]
dz,
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6.1 Acousto-optic interaction

Chapter 6

Acousto-optic modulators

An optical wave, that propagates through a medium with temporally and
spatially varying refractive index, generates modulation sidebands. As we have
seen in the previous section, an acoustic wave can generate a refractive index
variation via the acousto-optic effect. The interaction of the index modulation
wave with the optical wave may lead to a deflection or modulation of the
optical wave. The phase velocity of acoustic waves is typically six orders of
magnitude slower than optical waves. Propagating or standing acoustic waves
generate propagating or standing index modulation patterns. Optical waves
scatter on layers with different refractive index.

6.1 Acousto-optic interaction

In a linear acousto-optic medium, the refractive index change is proportional
to the applied voltage, see Eq. (5.8). The wave equation is

∇×∇× E = −µ0
∂2

∂t2
D = −µ0

∂2

∂t2
(ε0E+P) (6.1)

The time-varying displacement can be separated into a part described by a
constant average susceptibility or refractive index n, and a time-varying con-
tribution described by ∆n(r, t)

D = ε0E+P =ε0 (n+∆n(r, t))2 E

≈ ε0n
2E+ 2ε0n∆n(r, t)E, (6.2)

where we neglect potential higher-order terms in ∆n(r, t), i.e., ∆n(r, t) ≪ n.
From Eqs. (6.1) and (6.2), we have

∇×∇× E+
1

c2
∂2E

∂t2
= −2

1

c2
∂2

∂t2

[
∆n(r, t)

n
E

]
(6.3)

99
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with c2 = 1/(ε0µ0n2). We consider a plane electromagnetic wave with wave
vector ks in the x-z-plane, see Fig. 6.1.

direction of
acoustic wave

n large

-vector of
diffracted wave

k

-vector of
incident wave
k

-vector of
acoustic wave

k

Figure 6.1: Diffraction grating in a medium generated by an acoustic wave.

The refractive index change generated by a wave with frequency ωs is pro-
portional to the acoustic wave

∆n(r, t) = ∆n̂ cos (ωst− ks · r)

=
∆n̂

2

[
ej(ωst−ks·r) + e−j(ωst−ks·r)

]
. (6.4)

∆n̂ is the amplitude of the resulting refractive index wave. From Gauss law
for the electric field

∇·εE =ρ=ε∇ · E+ E ·∇ε, (6.5)

with
ε = ε0 (n+∆n(r, t))2 ≈ ε0

(
n2 + 2n∆n(r, t)

)
. (6.6)

If the electric field is polarized along the y-direction, we obtain E ·∇ε = 0. If
there are in addition no charges ρ, then the divergence of E vanishes, and the
wave equation (6.3) simplifies to

∆E− 1

c2
∂2E

∂t2
= +2

1

c2
∂2

∂t2

[
∆n(r, t)

n
E

]
(6.7)

The time-dependent refractive index multiplies with the field, which initially
consists of only an incident field with index i and a diffracted wave with index
d is generated

E = Êie
j(ωit−ki·r) + Êde

j(ωdt−kd·r) + c.c. (6.8)

The product of incoming wave and index modulation generates a polarization,
which is the source for the diffracted wave. Therefore, there is

ωd = ±ωs + ωi and kd= ±ks + ki.

i
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Usually, the frequency of sound is much less than the optical frequency, ωs ≪
ωi, and therefore |kd|≃ |ki| . Fig. 6.1 shows the resulting k-diagram. We solve
the wave equation (6.7) approximately, assuming that the amplitudes of the
incoming and diffractive waves change slowly along the z-direction

Ei = eyAi(z)e
j(ωit−ki·r) + c.c. (6.9)

Ed = eyAd(z)e
j(ωdt−kd·r) + c.c. (6.10)

If we substitute (6.7) into (6.8), and use the slowly varying envelope approxi-
mation (as in Chapter 3), we obtain

−
(
k2
d −

ω2
d

c2

)
Ad(z)− 2jkd ·∇Ad(z) ≃ −ω2

d

c2
∆n̂Ai(z) (6.11)

−
(
k2
i −

ω2
i

c2

)
Ai(z)− 2jki ·∇Ai(z) ≃ −ω2

i

c2
∆n̂Ad(z). (6.12)

With k2
d,i =

ω2
d,i

c2 and kd ·∇Ad(z) = kd cos θ
dAd
dz , we obtain

dAd(z)

dz
≃ −j

ωd

2c

∆n̂

cos θ
Ai(z) (6.13)

dAi(z)

dz
≃ −j

ωi

2c

∆n̂

cos θ
Ad(z). (6.14)

This set of equations describes coupled modes. However, the coupling coeffi-
cients

ωd

2c

∆n̂

cos θ
and

ωi

2c

∆n̂

cos θ
are not equal, because ωd ̸= ωi. This results from the acoustic waves that
excite and drive optical waves. However, the difference is small, on the order
of a millionth. Therefore, we can neglect the difference in Eqs. (6.13) and
(6.14) and obtain with the coupling coefficient

κ =
ωd

2c

∆n̂

cos θ
≃ ωi

2c

∆n̂

cos θ
(6.15)

and initial conditions Ad(z) = 0 the solution

Ai(z) = Ai(0) cos |κ| z (6.16)

Ad(z) = −jAi(0) sin |κ| z. (6.17)

The incoming wave is depleted along the propagation and transformed into
a diffracted wave. The diffracted wave is slightly shifted in frequency. If the
interaction length is long enough, so that |κ| z > π/2, the diffracted wave is
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optical
wave

Ge crystal

transducer

Figure 6.2: Typical k-diagram describing acousto-optic light diffraction at a standing
acoustic wave.

diffracted into the initial wave. The obvious applications of this process are
twofold. First, it can be used to deflect or steer light, and second, the frequency
of the light is shifted by the sound frequency, see Fig. 6.2.

Eqs. (6.16) and (6.17) also have a different meaning. If the frequency
ωs = 0, then the optical wave interacts with a constant index grating. The
diffracted wave has exactly the same frequency and the wave vectors must
obey momentum conservation. Also this situation is described by the same
coupled mode equations. The coupling coefficients are now identical and the
total optical energy of both partial waves is conserved.

6.2 The acousto-optic amplitude modulator

In the previous section, we considered the interaction of a traveling acoustic
wave with an optical wave. Then, the incoming wave is diffracted and the
remainig wave is attenuated when it leaves the medium, but with constant
amplitude. The diffracted wave is shifted in frequency and redirected. The
intensity of the incoming wave is modulated, if it interacts with a standing
acoustic wave, see Fig. 6.2.

The acoustic waves in the crystal are typically generated with traveling-
wave electrodes via the piezo-electric effect. The wave vectors of the incoming

Applications:
Deflection of light
Frequency shifting
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The intensity is modulated, if the interaction is with a standing wave.

6.2. THE ACOUSTO-OPTIC AMPLITUDE MODULATOR 103

and diffracted waves are matched by the acoustic wave vector, see Fig. 6.3,

kd = ks + ki. (6.18)

Momentum conservation is impossible for the reversed wave. The index mod-
ulation is given by

∆n(r,t) = ∆n sinωst cos (ksr) =
∆n

4j
{exp [j (ωst− ksr)]

+ exp [j (ωst+ ksr)]− exp [−j (ωst− ksr)] (6.19)

− exp [−jωst+ ksr]} .

Before, the interaction was only with a single plane acoustic wave. Now, we
have two waves, and four terms, that change the frequency of the incoming
wave to lower and higher values, while momentum is conserved (absorption
of a phonon by the forward traveling wave and emission of a phonon by the
backward wave gives the same momentum contribution). Again, since the
frequency of the sound wave ωs is much lower than the frequency of the optical

electro-acoustic medium

diffracted
wave

incident
wave

Figure 6.3: Momentum conservation in the acousto-optical amplitude modulator.
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wave, the waves with frequencies ωd = ωi ±mωs stay in phase for a long time
for even rather large m values. The simplest case for treating these problems
comes about for the case where the traveling time of the optical wave through
the crystal is much less than the period of the sound wave. With the adiabatic
approximation, i.e., the sound wave is assumed to be static, Eqs. (6.16) and
(6.17) can be solved to give

Ai(ℓ) = Ai(0) cos

(
ωi

c

∆n

2 cos θ
ℓ

)
(6.20)

Ad(ℓ) = −jAi(0) sin

(
ωi

c

∆n

2 cos θ
ℓ

)
. (6.21)

Afterwards the amplitude of the wave is simply made time-dependent, i.e.,
∆n(t) = ∆n sinωst. A graphical construction of both amplitudes is attempted
in Fig. 6.4.

Again with the generating function of the Bessel functions, Eqs. (5.54) and
(5.55),

cos (x sinωst) =
∑

m even

Jm (x) ejmωst, (6.22)

sin (x sinωst) = −j
∑

m odd

Jm (x) ejmωst, (6.23)

we obtain for the Fourier coefficients of the incoming and diffracted waves at
the output of the crystal

Ai(ℓ) = Ai(0)
∑

m even

Jm

(
ωi

c

∆n

2 cos θ
ℓ

)
ejmωst, (6.24)

Ad(ℓ) = −Ai(0)
∑

m odd

Jm

(
ωi

c

∆n

2 cos θ
ℓ

)
ejmωst. (6.25)

Two remarks need to be made. First, the incoming wave has only even side-
bands and the diffractive wave only odd ones. I.e., the incoming wave is
modulated with the frequency 2ωs. The incoming wave is extinct, if the mod-
ulation depth is adjusted such that the Bessel function of zeroth order shows
a zero or disappears, i.e., for

ωi

c

∆n

2 cos θ
ℓ = 2.405. (6.26)
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wave, the waves with frequencies ωd = ωi ±mωs stay in phase for a long time
for even rather large m values. The simplest case for treating these problems
comes about for the case where the traveling time of the optical wave through
the crystal is much less than the period of the sound wave. With the adiabatic
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c
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ℓ

)
. (6.21)

Afterwards the amplitude of the wave is simply made time-dependent, i.e.,
∆n(t) = ∆n sinωst. A graphical construction of both amplitudes is attempted
in Fig. 6.4.
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Figure 6.4: Time dependence of amplitudes for incoming and diffracted waves.



Chapter 7: Third-order nonlinear effects
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third-harmonic generation (THG) or frequency tripling
self-phase modulation (SPM)

due to the possible different permutations of the input fields:

if no resonances in between the fundamental and third harmonic

7.1 Third-harmonic generation (THG)
THG possible in both centrosymmetric and non-centrosymmetric media,
also possible in solids and liquids
arguably the most interesting case: generation of UV and VUV in gases

in low-conversion limit (almost always in THG), similar to SHG:
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With stronger focusing, the Rayleigh range, over which the beam is 
focused, becomes smaller than the length of the conversion region

effective interaction length ~ Rayleigh range, i.e., 

phase-matched case:

detailed calculation for case of strong focusing for third-order processes:
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in solids:  in general difficult to achieve phase matching for THG
solution: SHG + subsequent SFG

in gases:  by suitable mixing of different gases, the dispersion can be 
compensated, thus achieving phase matching, 
THG conversion efficiencies up to 10% achieved

7.2 The nonlinear refractive index
SPM effects come along with an additional factor 3 compared to THG,
(due to number of possible permutations of input frequencies)
if only an electric field in x-direction:



linear polarization, definition via

electric field:

intensity
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SPM       XPM   coherence term

description via circular polarizations

independent, if the definition based on electric field or intensity



7.3 Molecular orientation and refractive index
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7.3.1 The Lorenz-Lorentz law
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spherical cavity inside a 
polarized isotropic medium
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Clausius-Mossotti:

local field enhanced: 



7.3.2 Intensity-dependent refractive index
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canonical ensemble of molecules (temperature T) 
exposed to external electric field
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energy of dipole in electric field



7.4 Self-phase modulation (SPM)
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assume a purely linearly polarized or circularly polarized beam, 
® polarization is conserved

ansatz 

SPM coefficient

®

phase modified µ instantaneous intensity

|envelope|2 in time domain does NOT change
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instantaneous frequency
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nonlinear phase shift

strong spectral broadening
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always two instants during the pulse, which 
contribute to the same generated frequency

constructive/destructive interference 
depending on relative phase at these times
® maxima/minima in SPM spectrum

zero points in spectrum for

number of minima N on one side of the spectrum:
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SPM for Gaussian pulse:



7.5 Self-focusing
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transverse beam profile becomes instable

intensity-dependent refractive index

for Dn2>0:
•phase velocity in center reduced 
•phase fronts bend due to the   induced 
lens (”Kerr lens”)
•self-focusing of the beam

relevance:
•Kerr-lens mode-locked laser oscillators
•unwanted detrimental effect of ”hot spots”
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simple physical consideration in 2D:

Snell’s law ® total internal reflection for 
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above this critical power, self-focusing exceeds diffraction.

Note the quadratic scaling with wavelength! 

in 2D  (1 longitudinal, 1 transversal dimension): spatial solitons occur. 

in 3D  (2 transversal dimensions):
catastrophic self-focusing occurs, that eventually is balanced by other 
nonlinear effects, e.g., 
- saturation of the intensity-dependent refractive index
- self-defocusing due to plasma formation by multi-photon ionization
(”filamentation”)
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