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4.4.2 Frequency doubling of Gaussian beams

A laser emits radiation in a TEMyg - mode, i.e., a Gaussian beam. The electric
field of a Gaussian beam is described by

exp{—j(kz — @)} x (4.44)

E(x,y,z) = Eow(z)

exp {—(562 +9%) [w21(z) * zfélzz)] }
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Figure 4.10: Intensity distribution of a Gaussian beam.

The confocal parameter of the beam is twice the Rayleigh range and given by

2
21wy

b —
A

see Fig. 4.10. The Rayleigh range is the distance, over which the beam cross
. + .
sectional area doubles, Tw*(z) < 2rw?. The opening angle of the beam due to

diffraction is




Gaussian beam continued

In the near field (z < b), the beam is close to a plane wave

n A % + o2 .
E(z,y) = Eyexp (— 2y > exp(—jkz)
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with the peak intensity I, = %‘“’\EAOP on beam axis. The effective area, A s/,

of a Gaussian beam is therefore

P rmw?
Aeff — I_O — T

(4.54)



Estimate of conversion efficiency for Gaussian beam

similar to the case of plane waves. From Eq. (4.59) we obtain for the conversion

efficiency

n— Py _ 2w? (dgff> <i> 2 (4.61)

P gocd \ nd Tw?

Thus the conversion efficiency is proportional to (dgf 7 / n3). Thus for choosing
a crystal for efficient frequency doubling, not only the elfective nonlinearity
ders should be as high as possible, but simultaneously, the refractive index n
should be small. Fig. 4.11 gives an overview over the figure of merit defined
by FOM= d,;/n’. From Fig. 4.10 we see that for £ > b the beam cross
section increases and the conversion drops. A numerical optimization without
any approximations results in the crystal length ¢ = 2.84 - b for maximum

conversion. With this result and b = 27w3 /), we obtain for the maximum
conversion efficiency

PQ 2&)2 dgff
nopt — E — 80)\03 < n3 568P1 . € (462)



The weaker the focus and the longer the crystal, the larger is the conversion
in a x‘?-process, if phase matching is maintained over the full length.
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Figure 4.11: Figure of merit (FOM) for different nonlinear optical materials.



4.4.3 Frequency doubling of pulses

P (;_ f..u') — E'Ddeff/ El (LL] — ':"-".IJ El (u_;l) E’_j{k(w—wij—i_;ﬂ(wl})zd&u_

— 00

Ok
k(w—wi) =ko+ (8_W)wo (W —w; —wp), (4.63)
Ok
k ((,01) = ]{30 + (6—w)w0 (wl — wo) . (464)
With Eqs. (4.63) and (4.64)
= k(w—wi)+k(w) =2k + Ui (W — 2wp) (4.65)
gl
where o
o (_) (4.66)
Vg1 Vg |y Ow o

is the inverse group velocity. Then the polarization at the sum-frequency is



—j( 2ko+ -1 (w—2w z o
P(2,w) = eopdesse CE ) / By (w—w) By (wy) dwy.  (4.67)

— 00

The electric field at frequency w grows according to Eq. (3.8)

0B, (2,w) _ jwodesy (2"3“@(“2‘*’0)_“@)’2 X (4.68)
0z nco
/ By (w—wr) By (wr) dw:,

If F;(w) is the spectrum of the pulse centered around wy, then the integral will
only be non-zero around w = 2wy The wave number k (w) around 2wy is

1
k(w)=ke+ — (w—2wp), (4.69)
Vg2
with -
1 1
L (_) | (4.70)
Ug2  Uglgy, Ow 2w

For the case of phase matching (ks = 2kg) and low conversion

Ey(l,w)=Gl,w) - F(w) (4.71)



where

. . AkL

Jwolerr iakes2) S =5~
_ e 4.72
G (l,w) v 4 AR ([ (4.72)

1 1
Ak = ( — ) (w — 2wyp) , (4.73)
Ugl ’Ugg
and -

F (Cd) = / E1 (w — wl) E1 (wl) dwl. (474)

The electric field at the second harmonic can then be written as a Fourier
transform. In the time domain we obtain with the convolution theorem

% ZG(@F@) 9y — / Z () F(t— 1) dt (4.75)
where
o) = % /_ G w) f(t)=E, (17 (4.76)
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0, phase elsewhere



For a fundamental wave E; (t) = Aj (t)cos (wot — kgz) we obtain a second
harmonic wave Fy ({,t) = Ay (£, 1) cos (2wot — 2ky2)

wodeff 1 s/t 2 N A4
4.
AQ (g, t) 4nco ( ) . ) A Al (t t ) dt , ( 77)

where A, (£, 1) is the envelope of the generated second-harmonic pulse obtained
by a convolution of a squared input field and a rectangularly shaped pulse of

duration (i — —1> ¢. In the limit (—2 — U—gl) ¢ — 0, we obtain
large doubling bandwidth

Ay (0.1) = %etT g g2 gy (4.78)

dncy

In the case of <v— — —) ¢ > t, = pulse length, we obtain from Eq. (4.77) a

g2 Vg1

rectangularly shaped pulse with duration very small doubling bandwidth
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4.4.3 Effective nonlinear coefficients

Fig. 4.12. The d tensor of the crystal in a coordinate system (x,y, z) aligned

with the main axis (a, b, c) of the index ellipsoid is in diagonal form. For the
purpose of phase matching the crystal is rotated such that the beams propa-
gate in direction z’ of a new coordinate system (x’,y’,z’). The new coordinate
system follows from the old one by two transformations, a rotation around the
z-axis by an angle ¢ and another rotation around the x’-axis by an angle -.
The transformation of a vector u from the old to the new coordinate system

point group 42m

KDP A

kllz
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4.4.3 Effective nonlinear coefficients

Ut (.
uy | =T | uy (4.79)
Uz Uz .z
A
with the transformation matrix T
( 1 0 0 cosyp  sing 0
T = 0 cost¥ —sind —sinp cose O
\ 0 sin?d cosv 0 0 1
( COS sin 0
= —sinpcos?¥ cospcosty —sinv

\ —sinpsinY cosesind  cosv
The inverse is
cosp —sinpcosty —sinpsinv

T !'=T7 = | sing cospcos?  cosypsind : (4.81)
0 — sin v cos v

The fundamental and second-harmonic waves are ordinary or extraordinary
waves. The ordinary wave, (E||D), is polarized along the z'-axis

kilZ
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E° = FE°.x' = E°(cosp - X +sing - y) (4.82)

T'he dielectric displacement of the extraordinary beam (E }f D), is polarized
ong the y'-axis

D¢=D°-y' = D°(—sinpcost -x + cospcost -y —sint - z). (4.83)

I'here are two possible ways to determine the effective nonlinear coeflicient.
One way is by transforming the d tensor to a new coordinate system or by
substitution of the fundamental and second-harmonic waves in the old coor-
linate system and decomposing the second-harmonic fields. For example, for
Tequency doubling with KDP, which is a negative uniaxial crystal belonging
;0 the point group 42m, with type-I phase matching:

fundamental : E(w) = E°||D°

second harmonic : D(2w) = D°
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In the new system this corresponds to the polarization
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dyo doz dyy doy
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multiplication with T

(4.84)
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since the polarization Pf} (2w) 1s related to the dielectric displacement of the
extraordinary beam. To see that, we would need to rederive Eq. (3.8) in non-
1sotropic media for the dielectric displacement, mstead of the electric fields

dess = —dsgsin (2¢) sin 1.

(4.85)

Because of Kleinman symmetry dsg = dyy. The effective nonlinear coefficients
for type-I phase matching for the different point groups are given in Table 4.3.

crystal class | 2e — o 20 —+ €

6,4 0 d15 sin v

622,422 0 0

6mm,4dmm | 0 dy5sin v

6m?2 das cos? U cos 3¢ ~dgy cos ¥ sin 3¢

3m das cos? U cos 3 d15Sin ¥ — dgo cos ¥ sin 3¢

6 (d118in 3¢ + dyg cos 3p) cos? ¥ | (dy1 cos 3p — day sin 3p) cos v

3 (d11 8in 3 + dag cos 3p) cos? ¥ | dyssint + (dyq cos 3¢ — dag sin 3¢) cos
32 dy1 sin 3¢ cos? ¥ d11 cos 3@ cos v

4 (d14 cos 2 — dy5sin2p) sin 20 | — (di4 cos 2 + dy5 cos 2p) sin ¥
42m dy4 cos 2¢ sin 209 —d4 8in 2 sin ¥

Table 4.3: Effective conversion coefficient d.r, if Kleinman symmetry is valid.
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4.4.5 Quasi-phase matching (QPM)

Sometimes to achieve phase matching of a nonlinear process in the desired
wavelength range 1s not possible by birefringence only. In that case. or for
achieving a collinear mteraction of waves, one can use quasi-phase matching
(QPM), a technique introduced by N. Bloembergen, Nobel Prize in Physics
1981 (J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “In-
teractions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127, 6
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phase matching
Ak=0

a) single crystal

Figure 4.13: Growth of second harmonic as a function of distance z in a crystal for
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b) periodically poled crystal

high technological relevance!

custom-engineer phase matching
e.g., mid-IR, THz generation

fan-out QPM gratings
chirped QPM gratings
waveguide QPM devices etc.

http://www.covesion.com

different cases: a) homogeneous crystal and b) periodically poled crystal.
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occurs. Due to phase mismatch the second harmonic runs out of phase with
the driving wave and therefore the generating polarization. If the sign of the
nonlinearity 1s switched in the second layer, a phase advance by 7 18 introduced
in the driving polarization, which rephases 1t with the already present second
harmonic and the process continues with maximum efficiency, see Fig. 4.13.

OE(2w) Jw s - _
T = P s (2) B (w) B (w)e? R T2R@)Z 4.86
9 —_ r(2)E(w)E(w)e (4.86)

Since the spatial modulation is periodic, we can represent it as a Fourier series

eff Z d 6‘7sz (487)

m=—0o0

If the period of the nonlinear coefficient corresponds to twice the coherence
length at a given frequency, i.e., kK = k(2w) — 2k(w), then SHG is rephased and
grows over multiple periods on average like

OF(2 ‘ N
# _ éwcd_lE(w)E(w) (4.88)
k(O)) - k((D) - K - Aktotal= Akprocess'l'z'n:l/l(z)
A(z) grating period
-

k(20) no walk-off
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4.5 Optical rectification

Beside frequency doubling, the y'? nonlinearity also gives rise to optical rec-
tification, that results in a DC voltage in the nonlinear optical medinm

-~

P; (0) = eoxiji (0; w1, —w1) Ej (w1) By (w1) .- (4.89)

Due to dispersion, in general

Xijk (0 w1, —w1) # Xijk (2w : wr,wi), (4.90)
but due to the symmetry relations for y in lossless media, 1t holds
Xigk (01 wi, —wi) = Xpji (w1 2 w1, 0). (4.91)

This ensures that the coefhicients for Dptical rectification are the same as for

the Pockels effect. Optical rectification can be used to generate short THz
pulses via rectification of femtosecond laser pulses.
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4.6 Manley-Rowe relations

Three plane waves propagating i z-direction with frequencies wy, wo, and
wy, and interacting via a y'?) nonlinearity, can be described by the coupled
equations

dE (w1)

0 = —jr1E (w3) E* (wy) e 7744, (4.92)
dFE (w A . AL

d.(z ) —jrak (ws) B (wy) e 2%, (4.93)
dE (w o ~ AL

) s ) B () e85 (4.94)

with coupling coefficients and difference wave number
g = wideff/nz-crg: and Ak = kg — kl — kg, (495)

We multiply Eq. (4.92) by n,coco B (wy) /2, and add the complex conjugated
part, thus obtamning

( 1 ) dfdl:-’.ul) — jED;fEffE(wg) Er:h (u..i'g) Er* (w_l)e—j:ﬁ.kz +ee
Wi z



We again assume a lossless medium, 1.e., d.sr = d:ff= and treat Eqgs. (4.93),

(4.94) similar to Eq. (4.92), and obtain

1 dl (wy) B 1 dI (ws) B 1 dI (ws)
wi dz  wy dz = w3 dz

(4.96)

Le., for each photon, that 1s created (annihilated) at frequency ws, one photon

at frequency wy and one photon at frequencv ws must be annihilated (created).

The corresponding spatial variations of the intensities %:il scale with the
frequencies w;. This 1s an mteresting result, because no quantum-mechanical
treatment has been used to obtain 1t. Nevertheless, this classical nonlinear

e]ectmdynamica] treatment alreadz St.mng]x suggests a PthDﬂ h@Dthesis E =

n - hi.
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4.7 Sum-frequency generation (SFG)

If the nonlinear medium 1s rradiated by two mput fields with frequencies w
and ws, it is possible to to generate the sum frequency ws = wi + ws via a Y-
process. The corresponding coupled-wave equations describing the amplitudes
at the three frequencies are

OF (w S . AL
5‘(~ ) —jraE (wy) E (wp) €24 (4.97)

OF (w . g - Al
i’;z ) _ —jraE (ws) E* (wy) e 72K (4.98)

OF (w A A -
(‘:}(-f ) —jR1E (w3) E* (wp) e 724, (4.99)

with Ak = k(ws) — k(w1) — k(w2) and k; = widers/nico. In the special case
Wy = Wy, we again obtain frequency doubling. In the low-conversion case, we
can solve Eqgs. (4.97)-(4.99) in an analogous manner to the case of frequency
doubling. Assuming E (w,) and E (w;) to be constant, we obtain
2k2n sin Ak£/2)°
I (ws,€) = —22 ; }

- - . 2 £ 14 w L
T Tatoes 0 (wr) I ( g){ ARL)2 (4.100)
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One mmportant spectroscopic application of sum-frequency generation 1s
the up-conversion of a weak signal at frequency w; with a strong signal at
frequency we. This can be used to time-resolve weak light-emission dynamics
or to convert a signal in the far infrared into the visible spectral range, where

much better photodetectors are available. By using a strong signal at ws,
the weak signal can even significantly be enhanced. If the pump signal at
frequency wy 1s a short pulse, a short slice can temporally be “gated” out of
the mput signal. Under the assumption of a strong pump signal at wy and
phase matching, we obtain

OF (w ~ .
%3} = — {jHBE (wﬂ)} E(w1), (4.101)
PP Lim (wn)} B (wn). (4.102)

In addition, the boundary conditions E(w3.z = 0) = 0 and E(wy,z = 0) =
Ey(wq) apply. Since the system (4.101)-(4.102) is linear, we try an exponential
ansatz of the form E’(wm, z) = E'g (w13) etivz
from (4.101)-(4.102)

. With this ansatz we obtain

o

+jvEy (w3) + {jH'EED (Wﬂ)} Eo(w) =0

{ij* (u.?g)} E.D (u_:g) IIZj"}“Eg ('-"-"1) —0.
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For solutions to exist (the determinant of the coefficient matrix must vanish),
1t must hold

v? = Kks|Eg (ws) |2 (4.103)
or "
Y- {erﬁsf (wfz)} | (4.104)
MnoCpEy

The fundamental solutions are cosine and sine functions, and together with
the boundary conditions 1t follows

~,

E (ws3) = Asin~yz (4.105)
and

E (w;) = Ey (wy) cos v=. (4.106)
Substitution into Eq.(4.101) yields

A=—j |22 By (wn) €72, (4.107)
Wina

piPlw2) —‘?"D (w2)
| Eo (wo) |
contains the phase of the pump wave. The factor —j in Eq. (4.107) again

mmplies, that the driving polarization advances the generated electric field by
7 /2. For the intensities we then obtain

where

25



T (ws) = =2y (wy) sin2 2 (4.108)

W
I (wy) = Iy (wy) cos? vz (4.109)
We realize that for vz > n/2 again backconversion into wy occurs. As in the
best case each photon at frequency w; 1s converted into a photon at frequency
ws, 1t follows for the maximum enhancement 1n intensity

Ima.x ("’"’13) _ W3 (4 110)

Io(wi)  wy

that again corresponds to the Manley-Rowe relation.
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4.8 Difference-frequency generation (DFG)

Next we look at the generation of the difference frequency w; = wy — ws,
Ak = k(wy) + k(w2) — k(ws). Again in the low-conversion himit with E (ws)
and F (wg) assumed to be constant, we obtain

2Kiny

I (wi f) = (4.111)

Nan3Ccen

sin Ak£/2 }?

Clelen) { 2

This can, e.g., be used to generate infrared hight from two wvisible light fields
for spectroscopic applications. Another case 1s, 1f a strong pump wave at w3
converts light from wy to wy. For a strong pump wave, E (w3) 1s constant,

E* in contrast to SFG

Z
!

The boundary conditions are now E(wy, z = 0) = Ey(wp) and E(wy, z = 0) = 0.
With the ansatz E (wy9,2) = Ey (w2) e™% we obtain when phase-matched

£7Ey (wi) + {HIE(WB)} E§ (wp) =0

{—j Ko B (ng} Eo (w1) £vE3 (wa) =0,

27



which enforces

E (ws) . (4.114)

v = Kika

In comparison to sum-frequency generation, the fundamental solutions are now
hyperbolic functions

-,

FE (w;) = Asinh~z

and ) A A
E (wy) = Ey (wy) coshvyz + Bsinh~z

After back substitution, 1t again follows B =0 and

- LT YR
A= —j, [T B (wy).
Watq

I (wy) = (w1 /ws)Ip (ws) sinh? vz,
I (w9) = Iy (wa) cosh® yz.

Thus 1t follows

This 1s indeed a different behavior compared to sum-frequency generation.
Both waves grow! At first glimpse, 1t seems that energy 1s not conserved. Of
course, this can not be the case. The required energy actually comes from
the pump wave, however, this can not be observed because of the assumption
FE (w3) = const. For high conversion, we obtain for the intensity ratio of the
low-frequency waves

28



4.9 Optical parametric amplification (OPA)

Already for difference-frequency generation 1t became obvious, that in this fre-
quency mixing process, gain can be achieved. We inspect this process now
more generally taking into account losses and without the assumption of per-
fect phase matching. This will allow us to derive the underlying equations
cgoverning the amplification process, 1ts gain bandwidth and associated amph-
fier noise. We keep the assumption of a constant pump wave at wy. Then i1t

holds

-~

OE(wy)

: - 1+ a1 B(wy) = —jri E (wa) E* (wy) e2F> 4.115
symmetric BE 1E(wy) = —jki B (w3) B (wp) (4.115)
in1and 2  HE(w ) ) ) )

iﬁi N arE(ws) = —jraE (w3) E™ (w1) 2%, (4.116)

We again look for an exponential solution E (w1) ~ Ep(wq)eY*+i8k/2 and
E (wy) ~ Ey (wy) e¥*H78%2/2 with suitable initial values denoted by the index
0. It follows

, Ak) - . . _

{"r' +ﬁ'1+j—2 }ED (W1)+{JH1E(MB)}ED (wa) =0 (4.117)
o : , IAEY -

_ {;HQE (wg)} Bo (wy) + {’:r" +ap— jT} B2 (wy) = 0. (4.118)
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From the determinant condition, 1t follows

JAE

B 2
Y2+ 4 {a) + as} + g + (Ak/2)? +(ﬂ2—ﬂ1)T—“lﬁﬂ (wﬂ)l =0

1/2
. . . AL 2 . 2
Ly = _@i {[“1 2 ] H:N;Q‘E(wg)( } (4.119)

For the case of phase matching and no losses, we find

W’g = Kik9

1

E (ws) ‘2 (4.120)

For the case of equal losses a1 = ay = a, we obtain

Y = —a<{y = (Ak/2)2}? = —a +g, (4.121)
where 1;’9
g = {’;, — (Ak/2)? } (4.122)
The solutions of the coupled equations (4.115)-(4.116) are of the form
E (wy,l) = e otHi(Ak/2)E { o (wy) cosh gf + B sinh g{} (4.123)
E (wy. ) = e—ot-(k/2 {E.;. (ws) cosh gf + D sinh gf’} (4.124)
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Insertion into the coupled equations (4.115)-(4.116) yields

Ak -

B=—j— 2 Ep (wy) — j?E (w3) Eg (ws) (4.125)
&L n K

D= i3 “ZEo (ws) — ;f (ws) Eg (wi) . (4.126)

Note the symmetry between both solutions. Anyway, the two waves are gen-
erally called signal and idler wave. If the optical parametric amplifier (OPA)
1s seeded by one wave only and if w; # wq, then this wave 1s amplified inde-
pendent of the phase

; sinh?=cosh?-1
E (wf) e

. 1
— {-::a::ush2 gl + (Ak/2g)* sinh? gl} = 2 {’;fg cosh? gl — (ﬂ.k/?)g}

F, (wr)
(4.127)
We define the parametric gain as
E (wy f) e ’ 5 sinh? gl
Gy(l) = - — 1= G () = () (4.128)
Ey (w1) (90)°

Note that for small gain, 1.e., v < Ak, the gain has the form g becomes
Imaginary:
sin? { [(Ak/2)2 — 42" E} sinh — sin

Gy () = (v0)° (4.129)

2 {(Ak/2)* — 42}



that can me further simplified to
Gy (0) = (10’ sin? (Ak(/2)

(AkL/2)?

for v < Ak/2. In the opposite limit for large gain v > Ak/2

9 sinh? gl 1

Gy (£) = (7f) 0" — 4599’-”. (4.130)

We define the bandwidth of the OPA wvia
[(Ak/2)2 -2V o =n (4.131)
that for small gain 1mphes Ak = 27 //, as we already found for frequency

doubling. In general, we obtain from Eq. (4.131)

omAf N2 1/2
= Ak = {1+ (W) } (2r /1) (4.132)

C

This means that the bandwidth increases with the gain. For the ratio between
the bandwidths at high and low gain, we obtain

& ) .
legh Gain _ {1 + (T{/ﬂ_)E}ler - (4133)
ﬁchrw Gain

Fig. 4.15 shows the gain as function of Akf for various values of «£.
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gain bandwidth increases
with stronger pumping

noncollinear type-l OPAs
feature ultrabroad
bandwidth for few-optical-
cycle pulse generation

Gi(r) A (— later lecture)

. AkS
2n

Figure 4.15: Gain of an optical parametric amplifier (OPA) as function of the wave
number difference and gain.
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4.10 Optical parametric oscillation (OPO)

In a single pass through a parametric amplhfier medium, which 1s described
by Eqs. (4.123)-(4.126), the signal and idler waves grow when phase-matched
(Ak = 0) according to

-~

E (wi, 0) e™* = Eg (wy) cosh £ — j%E (w3) Eg (wo) sinh ¢ (4.134)

E (wo, £) e®* = Ej (wg) cosh ¢ — _}EE (ws) By (w1) sinh L. (4.135)
v

Most often parametric amplifiers only permit gain for passage in a single di-
rection. In the other direction, only damping occurs

Er (w-hf) = El] (w-l) et

E' (wy, £) = Ey (wp) e

If feedback of the parametric amplhifier 1s realized by means of a Fabry-Pérot
resonator and 1if the field 1s larger after a round trip than at the beginning, so
the amplifier 1s turned nto a self-starting oscillator. The threshold condition
1s that the losses must equal the gain

E} (w1) = Eo (w1)

EE; (wo) = ED (w2)
or inserted into Eqs. (4.134)-(4.135) it follows with e 2% ~ 1 — 2a/
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Ey (w - vl f -
() _ By (wn) coshiyt — 5L (wa) B (wa) sinh 70

1—2a4f
EEIC ('LUQ) Fr Ko ~ , A ]
T30yl Ej (wa) cosh~f —I—‘}'?E (ws) Ep (wq) sinh ~£.

Again the solution of this equation system 1s only non-zero, if the determinant
of the coefficient matrix vanishes, 1.e.,

1 ; 1 Kika
[Gth vl — 1——2"11{?:| [CDbh vl — T 2&_25]

so that

1 1 1 1
1 — coshy/ ) [—— ) =0 (4136
o (1—Qﬂlf+1—9agf)+(1—2agf) (1—2&15) (4.136)

or

2. 2 : 1.2
sinh® v¢ = sinh” ~/

~

E (ws3)
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Q200 fg
coshyf =1+ G

e a——" (4.137)

For a1 = as = a and the case of small losses or small gain af, v/ < 1, it
follows 2

€T
(v0)? = 4adl. coshz =1+ - (4138)

One distinguishes between doubly resonant parametric oscillators (DROs) and
singly resonant ones (SRO). In the first case, both signal and idler waves are
resonant, i the second case only the signal wave. The threshold for SROs 1s
many times higher than for DRO. Nevertheless, most OPOs are singly reso-
nant, because 1t 18 much more difficult to operate a DRO.
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