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Repetition: Nonlinear Wave Equation

Employing the dispersion relation k? = 1y=ps,w? the two leading terms cancel,

and within the SVEA (3.6).(3.7) 1t follows

W 0 Yo
27k )—E - )]——E = —jwigo E + pigw? Py (& - p) e?*kp)z,
0~

where we mtroduced the velocity of light in the linear medium as ¢ =
We divide this equation by 27k and transform i1t into a comoving time frame

using ' =t — z/c, (z = '), and obtain

| 1 TR
- E( t') = —aE(z,t') — 5]®’ZwPNL(:.t') (é-p) ei(k—kp)z (3.8)
C 2
with the damping constant o = 0Z,/2 and the impedance of the medium
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Some remarks on

%E(:. t') = —aFE(z,t) — éj@'ZwRyL(:. t')(é-p) el k=kp)z. (3.8)
*The medium conductivity o leads to losses and therefore
damping of the propagating wave.
*The medium’s nonlinear polarization can lead to both gain or
damping, depending on the relative phase between the electric
field and the polarization (parametric amplification, frequency
conversion, stimulated scattering processes as Raman and Brillouin
scattering, multi-photon absorption).
*If the nonlinear polarization is in phase or in opposite phase of
the electric field, it corresponds to a a nonlinear change of the
refractive index, leading to a phase shift of the electric field
(Pockels effect, Kerr effect).
*If the polarization is advancing the field by 90°, the polarization is
supplying energy to the field. In the opposite case, the polarization
is extracting energy from the field.
‘phase relation is changing during propagation, if no phase
matching of the process, i.e., k = kp, is achieved. 3
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FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The
wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the
second harmonic. The image of the primary beam at 6943 A is very large due to halation.

The very weak spot due to the second harmonic is missing. It was
removed by an overzealous Physical Review Letters editor, who
thought it was a speck of dirt and didn’t ask the authors anymore.
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Second harmonic generation (SHG)

A A A

P(2w) = eoderf(2w;w,w)E(w, 2) E(w, 2). (4.1)
We neglect any losses for the moment (o = 0), and 7, = i 0= iaolq)
from Eq..(3.8)
OF (2 | . . .
(2) — deff(Qw;w,w)E(w,z)E(w,z)ej(k@“)_%(“))z (4.2)
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Fig. 1: Phase relationships between fundamental, second harmonic and nonlinear
polarization.



4.1 Without depletion of fundamental wave

. wdrr A £
EQRuw,z=1) = s ffEZ(w)/ /Ry
0

n2.,Co

where Ak = k(2w) — 2k(w) is the difference in wave number between the
second harmonic light and twice the wavenumber of the fundamental light or
the driving second order nonlinear Polarization.

Second-harmonic generation (SHG)

. Jwdess ~o sin Ak{L/2 N
E(2 = — E - 4 . 4,
(2w, ¢) - (W)l [ k02 e (4.3)

Introducing the intensities of the fundamental and second harmonic waves

n ~
[w,Qw — w2,2w V 6O/U0|Ew,2w|2

wie obtain

(2w, ?) =

222, (o) [SRARE2 ’
N2 Caco AkC/2 |
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Figure 4.2: Second-harmonic generation as function of phase mismatch.



If phase matching can be achieved, one can use Eq. (4.4) to define an
inverse conversion length I" as

T
[ = 2% B(w)|, with n = \/ronas, (4.6)
nc
and
(2w, 0) =T (w). (4.7)

[f the medium length reaches the conversion length, i.e., I'l = 1, then Eq. (4.7)
would indicate, that all fundamental light is converted to the second harmonic,
which contradicts the assumption of small conversion, and therefore we have
to work a little more to correct for it.




4.2 With depletion of the fundamental wave

P(w) = eod ;s (w; 2w, —w) E(2w) £ (w).
The coupled equations are

OF (2w) Jw -

= CodeffE<w)E(w)ejAkz (4.8)
and X
OE(w : f( Na—dOkz
a(z ) _ , d L1 B (2w) B (w)e 74k, (4.9)

Both equations describe the energy exchange between fundamental and second-
harmonic wave. The intensities are

2
and ]2(.0 —

Ny, 2

27

Nay,

I, = —
279

E(w) E(2w) (4.10)
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lossless media, i.e., d,;; and dcss are real

dl,, . OL (2
220 dj; — MNoyw E*(Qw) a(ZW) +c.c.| =
jw * n Akz
= B (2w)E(w)E(w)e’™ + c.c.
dI, OB (w) d12w )

Energy conservation demands permutation symmetry of the conversion coeffi-
clents

Now| E(2w)|? + ne | E(w)|? = const. = ny,E2 = const. (4.11)
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Separating the wave amplitudes with respect to amplitude and phase
E(w) = |E(w)[e’*®)

BE(2w) = |E(2w)|e?*)

Q)  dBE)| ap | AD29) A

= “ E(2w)|e? @) 4.12

7 R i |E(2w)le (4.12)

dlE(QWM — Re _deeff |E(w)’2€2j<1>(w)—j<1>(2w)ejAk:z (413)
dz N2, Co

wd, ) | | |

= Re {—]w Ly - \E(Zw)]2}e27¢(“)_9®(2w)ejAkz} (4.14)
1w Co

General solution: Jacobi elliptic function!

For Ak=0, second harmonic builds up such that

je2P(@)—ie2w) _ 1

12



Solution for Ak=0

|E(2w)]e dIE(2 ¢ ud
/ _d|E(2w) :_/ el g (4.15)
0 B2 — |E(2w)]? 0 MwCo

Using the integral

dx 1 _
/a2 3= Etanh Yz /al (4.16)
we obtain
. . A d,
|E(2w)],—¢ = Eytanh {EO (“’ ff) e} (4.17)
Ny, Co
or for the intensity
Eowd,
I(2w, ) = I(w,0) tanh” {M : 8} (4.18)
n,Co
With the conversion rate I' = %EAO introduced above, we obtain
I(2w, ) = I(w,0) tanh*{T'¢} (4.19)
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With 1—tanh? = cosh™2 = sech?

I(w,?) = I(w,0)sech?{I'¢}. (4.20)
For perfect phase matching, 100% conversion possible for] '/ >> 1

What to do if there is phase mismatch?

4.3 Wave propagation in linear non-isotropic media

VxVxE=—wE (4.21)
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Wave propagation in linear non-isotropic media

As in isotropic media, there are plane-wave solutions with

A

E = Ege kT (4.22)

that obey X
kxk x E = —w?uocE (4.23)

The wave vector is orthogonal to the displacement vector but in general

not anymore to the electric field

A A

k | (¢eE =D).
From Faraday’s law we have

jkx E=—-wB (4.24)
and therefore, as in the isotropic case, we have

k1B H.
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E || D. :only when parallel to a main axis

Poynting vector S = E x H, is always normal to E and H

not necessarily parallel to the wave vector
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D parallel to
phase fronts

E in general not
parallel to phase
fronts

S not necessarily
parallel to k

Figure 4.3: Relationship between field vectors, wave vector and Poynting vector of

a plane wave in birefringent media.
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Form of dielectric susceptibility tensor

zr 0 O
isotropic 0 zx O cubic
0 0 a2z
Caz 0 0] tetragonal
uniaxial 0 xx 0 trigonal
|0 0 zz hexagonal
2z 0 0
biaxial 0 wyy O orthorhombic
0 0 z=z
C oz 0 zz
0 wyy O monoclinic
xz 0 2z
[ Ty X2 )
Yy Yy Yz triclinic
| 1z yz zz |

Table 4.1: Form of the dielectric susceptibility tensor for the different crystal sys-
tems.



In the following, we consider the uniaxial case

Exz = Eyy = E1 # €22 = €3

The corresponding refractive indices are called ordinary and extraordinary
indices.

N1 = Ny # N3 = Ne.

Further one distinguishes between positive uniaxial, n. > n,, and negativ
uniaxial, n, < n,, crystals. 7

Propagation different
from main axes

Figure 4.4: Index ellipsoid 18



Nonlinear optical susceptibilities

generality, we assume the wave vector lies in the x-z-plane. If we inspect Eq.
(4.23) closer, we find with A x (BxC)=(A-C)B—(A-B)C

(k - E) k—k?B + w?uocE = 0. (4.25)
k2n2 + k2—k? kok, A
K2n2_j? B0 (126
Kok, k2n2 + k2—k?

y-polarized wave decouples - ordinary wave k? = k§n§

As the wave in an isotropic medium, it is purely transversal, k L E | H

Wave in the x-z plane with polarization in x-z plane: extraordinary wave

K2n2 4+ k2—k? Kok,

ki, k2n2 + k2—p2 | =0

det
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or after some brief transformations

k2 k2
 + = = k. (4.27)

n2
nO ne

With k, = ksin (0), k, = kcos (0) and k = n (0) kg we obtain for the refractive
index of the extraordinary wave

n(@)2 = 2 2z : (4.28)
¢
No ¢ S
Ug — kaJ(k) H 87 0
dk
normal to index ellipsoid and ’ Td/kx -k,
parallel to Poynting vector ?
(k) = const

Figure 4.5: Cut through the surface of the index ellipsoid with constant free-space
value ko (kz, ky, k;) or frequencies. 20



and is normal to the index ellipsoid. To determine the “walk-off” angle between

the Poynting vector and the wave vector, we consider

k
tanf = —
an /{Z
dk.
t = — :
an ¢ i

From Eq. (4.27) we find

2k, dk,  2k,dk,
_|_

n2 nz 0
o [
and , ,
n‘k, n
tan g = —— = — tanf.
nik,  ng

(4.29)

Therefore, we obtain for the walk-off angle between Poynting vector and wave

number vector

tan 6 — tan ¢

tan o = tan (60 — ¢)

(1 — ”—g> tan 60

2
ne

e = 1+ tan26
n?2

1 + tan f tan ¢

(4.30)
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4.4 Phase matching

4.4.1 Birefringent phase matching

In SHG, we introduced the coherence length

o = mk(2w) — 2k(w)| "t =

AMw)
4(n(2w) — n(w))

coherence length may be as short as a few microns, if fundamental and second
harmonic have the same polarization.

refractive |
index n
non-critical
phase matching
(for neg. birefringence)

A

similar for pos.
birefringence

Al2 A wavelength (nm)

Figure 4.6: Non-critical phase matching
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only approximately. Often this can be further matched by temperature tuning.
Important examples for this technique is the frequency doubling of 1.06-pum

radiation in LiNbO3, CD*A and LBO or frequency doubling of 530-nm light
in KDP.

|

refractive

index n Type-I critical phase matching

wavelength (nm)

A2 A

Figure 4.7: Type-I critical phase matching.
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A more general situation is shown in Fig. 4.7. The birefringence is too
strong for non-critical phase matching. However, by angle-tuning with respect
to the optical axis every index value between n.(2w) and n, (2w) can be dialed
in, especially n, (w). This phase matching angle, 6, is determined by

.. 9 2 —1/2
v, 5,
nzwwp) _ {sm b COS p} -

e RGOk

which leads to

g [(ng)* — (ng*)’
e —
tan p n(Q)w \/(ngw)Q o (ng)Q
(ng)? 1 1 , An
tan p = > (n2o)? — (n29)? sin 20, ~ ——sin 20,

only valid for small birefringence

(= VT

— —Wy.
Y

Gaussian beam with w, —» walk-off length
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Walk - Off
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Figure 4.8: Walk-off between ordinary and extraordinary wave.

(ng)? 1 1 , _An
tan p = 5 (n2o)? — (n3)? sin 20, ~ ——sin 20,
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Type-ll phase matching

refractive
index n

n2(8,) = 5 {ne(6,) + s}

-

A2 A wavelength (nm)

Figure 4.9: Type-II non-critical phase matching.

Type I Typell
ne < N, (neg. uniaxial) : oo —e oe — e
ne > N, (pos. uniaxial) : ee — o0 oe — o0

Table 4.2: Phase-matching configurations
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Acceptance angle

d
Ak = (kaw — 2ku)|y + = (kaw — 2k,)| AO+ ...
o df 6,
~ AmAO [ dng,(0) B dn,,
N A do do |,

p

For type-I phase matching, there is dn,/df = dn¥/df = 0 and
sin2@  cos2 )
L(0) = .
r20) {<nzw>2 ' <n3w>2}

The angle-induced phase mismatch can then be rewritten as

2w A0 2sinfcosf  2sinfcosb
Ak = — (0)? —
)\ To ( ) { (ngw)z (n%w)Q }
27TA9 w\3 ]. ]- .
— X (nY) { TOE — (n2ay? } sin 26,,.

For a given crystal length ¢ the phase mismatch should not be larger than the
half-width at half-maximum (HWHM) of the sinc?*— function, i.e., Ak = 7 /¢,
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For a given crystal length ¢ the phase mismatch should not be larger than the
half-width at half-maximum (HWHM) of the sinc®*— function, i.e., Ak = /¢,

A Lo 1 1 )
Af = w -
U= 3rsmag, ") { (n2*)2 ~ (n2%)? }

With An? = n2® —n2? (n*)~? = (n*¥)"% — 2(n*) 2 An* and n* = n¥, we

obtain
A

AO = — :
0 40 sin 20, An?

For most cases |Af| is on the order of a few milliradians, e.g., for KHyPO,
(KDP) at A = 1.064 um , n% = 1.466, n® = 1.506, n2* = 1.487, n2* = 1.534.
For this case, the phase-matching angle is 6, = 49.9° and for a 1-cm long
crystal, there is |Af| = 0.001.

For type-1T phase matching under the condition n2“(6,) = [n¥ + n¥] /2, we

obtain 27 A0 ( _dn?* (0 dn¥ (6
- 2 {Qm_()_ne_()} (4.32)
Qp

Ak do do
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Weak birefringence

For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90°-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds

2r s f 11 ,
Ak = = (n%) { T ] 2w)2}(A9) (4.33)

1y

which simplifies for small birefringence to

\ 1/2
Al ~ {%AnQW} . (4.34)

For A =1 um, An = 0.047 and ¢ = 1 cm, we find |Af#| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.
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Acceptance bandwidth

d
Ak:{kgw—2kw}hp+{5(k2w—2kw)} AN+ ... (4.35)
Ap
d [No N AN [ 1 dng, dn,,

~ dTAN ( _ ) — 422 - 4.36
" {dA P }Ap ”A{M(A/z) dA}Ap (4:36)

AN [ 1dn dn

S Sl il B .

4D {Qd)\Qw dAw} (4.37)

The acceptance bandwidth follows again from the condition, that the phase
mismatch over the propagation length must stay smaller than the HWHM of
the sinc?— function, i.e., |Ak| < 7/ or

}1

A [1dn
40 1 2 dA
where A is the wavelength of the fundamental wave and ¢ the interaction length.

The other way around, if a bandwidth 2A\ needs to be frequency doubled, a
phase matched crystal can only have the length /¢

N (1ldn dnl )7}
/) — = _ 4.
2AN { 2d\|,, dA w} (4.39)

s e

dn

AN = -
D)

, (4.38)

2w
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its second harmonic. The group velocity of a pulse is given by

dw d /c c ckdnd\
_ W@ _k>:_____ 4.4
YT 0k T dk (n n n?dxdk (4.40)
where
dA - d(2m) _ (2mn)) | 2mdnd)
dk dk k N k2 k dM\dk
d)\ — (2mn/k?)
— = ——, (4.41)
dk —%Z—A
that is

vg:5{1—§d—”}_1. (4.42)

Two pulses with duration ¢, but with different group velocities will overlap

over a length
~1
(= b1 :
2 Ug 2w

1

Vg

w
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Acceptance bandwidth

With Eq. (4.42) we obtain

tpe [ 1 dn
;‘“5{55

_dn
D

in

Using the time-bandwidth relationship

1
TAf T AN

tp

we find the maximum crystal length similar to the one derived from the phase

matching condition (4.39)

T 2AN | 2 d)

_dn
)

N

2w

(4.43)
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4.4.2 Frequency doubling of Gaussian beams

A laser emits radiation in a TEMy, - mode, i.e., a Gaussian beam. The electric

field of a Gaussian beam is described by

A AW

exp {—(;ﬁ +y

2) [
}

A2
— 1
w(z) o { * <7ng

1

exp{—j(kz — @)} %

Jk

A2
_ -1 ) 7=
¢ = tan { mu% }

o

2
W

Az

_|_

w?(2)

)]

2R(z2)

)

(4.44)

(4.45)

(4.46)

(4.47)

33



Gaussian beam

. 2b ,
= g
Nonlinear crystal |
| | .
T Gaussian laser beam
| 2w, 242w,
e —
//I
HTH

Figure 4.10: Intensity distribution of a Gaussian beam.

The confocal parameter of the beam is twice the Rayleigh range and given by

2
271wy

b —
A

see Fig. 4.10. The Rayleigh range is the distance, over which the beam cross
sectional area doubles, mw?(2) < 2rw?. The opening angle of the beam due to

diffraction is
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Gaussian beam continued

In the near field (z < b), the beam is close to a plane wave

) ) 22 4 0? |
E(z,y) = Eyexp <— w2y ) exp(—jkz)
0

or
N 2

N T .
E(r) = Eyexp (_E) exp(—jkz)
0

27
P = nch/ / ‘E0|26Xp( 2) d?“d(b
Wy
ncey 9 [ TWy
5 | 0| ( 5 ):> 0( )

(4.50)

(4.51)

(4.52)

(4.53)

with the peak intensity [y = %“’\EOP on beam axis. The effective area, Ay,

of a GGaussian beam is therefore

Acgr= 7= —

(4.54)
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Estimate of conversion efficiency for Gaussian beam

similar to the case of plane waves. From Eq. (4.59) we obtain for the conversion

efficiency

n— P _ 2> (dgff> ( P ) 2 (4.61)

P g3\ nd Tw?

Thus the conversion efficiency is proportional to (dg I / n3). Thus for choosing
a crystal for efficient frequency doubling, not only the effective nonlinearity
d.ss should be as high as possible, but simultaneously, the refractive index n
should be small. Fig. 4.11 gives an overview over the figure of merit defined
by FOM= d2ff/n From Fig. 4.10 we see that for £ > b the beam cross
section increases and the conversion drops. A numerical optimization without
any approximations results in the crystal length ¢ = 2.84 - b for maximum

conversion. With this result and b = 27rw1/ )\, we obtain for the maximum
conversion efficiency

P2 2(,02 dgff
770pt — Fl — 50)\63 ( n3 568P1 . g (462)
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The weaker the focus and the longer the crystal, the larger is the conversion
in a y®-process, if phase matching is maintained over the full length.
X g
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o r p
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Figure 4.11: Figure of merit (FOM) for different nonlinear optical materials.



