
Nonlinear Optics (WiSe 2018/19)
Lecture 3: November 2, 2018

1

4 Frequency doubling 
4.1 Without depletion of fundamental wave  
4.2 With depletion of fundamental wave

4.3 Wave propagation in linear non-isotropic media
4.3.1 Ordinary wave  
4.3.2 Extraordinary wave 
4.4 Phase matching
4.4.1 Birefringent phase matching

4.4.2 Frequency doubling of Gaussian beams 
4.4.3 Frequency doubling of pulses
4.4.4 Effective nonlinear coefficient deff

4.4.5 Quasi-phase matching (QPM) 



2

Repetition: Nonlinear Wave Equation  



Some remarks on

•The medium conductivity σ leads to losses and therefore
damping of the propagating wave. 
•The medium’s nonlinear polarization can lead to both gain or 
damping, depending on the relative phase between the electric 
field and the polarization (parametric amplification, frequency 
conversion, stimulated scattering processes as Raman and Brillouin 
scattering, multi-photon absorption).
•If the nonlinear polarization is in phase or in opposite phase of 
the electric field, it corresponds to a a nonlinear change of the 
refractive index, leading to a phase shift of the electric field
(Pockels effect, Kerr effect). 
•If the polarization is advancing the field by 90o, the polarization is 
supplying energy to the field. In the opposite case, the polarization 
is extracting energy from the field. 
•phase relation is changing during propagation, if no phase 
matching of the process, i.e., k = kp, is achieved. 3



4. Frequency doubling 
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The very weak spot due to the second harmonic is missing. It was 
removed by an overzealous Physical Review Letters editor, who 
thought it was a speck of dirt and didn’t ask the authors anymore.



SHG in daily life: green laser pointer
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Second harmonic generation (SHG)
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Chapter 4

Frequency doubling

Peter Franken observed the Örst nonlinear optical process, Second Harmonic
Generation (SHG), in 1961, just one year after the invention of the laser. He
simply focused the beam of a Ruby laser into a quartz crystal and observed a
weak second harmonic light. In fact the spot was so weak, that the type setter
at Physical Review Letters thought it was a dirt spot on the Ögure and deleted
the spot from the Ögure for the Önal publication. With todays lasers and non-
linear optical materials second harmonic e¢ciencies, i.e. conversion from the
fundamental wavelength to the second harmonic wave, approach close to 100
%. We make use of the e§ective doubling coe¢ciend deff , which includes the
nonlinear coe¢cient and eventually a factor of 2, depending on the polarization
of the input wave, see Eq.(2.61)

P̂ (2!) = "0deff (2!;!; !)Ê(!; z)Ê(!; z): (4.1)

We neglect any losses for the moment () = 0), and Z! = 1
n!

q
%0
"0
= 1

n!
1
"0c0

from Eq..(3.8)

@Ê(2!)

@z
= !

j!

n2!c0
deff (2!;!; !)Ê(!; z)Ê(!; z)ej(k(2!)!2k(!))z (4.2)

4.1 Without depletion of the fundamental wave

As long as the conversion stays low, we can neglect depletion of the fundamen-
tal wave, which greatly simpliÖes the SHG process, i.e. we neglect the back
conversion of the already generated second harmonic. Then the fundamental
wave is constant and with vanishing second harmonic at the start we obtain

Ê(2!; z = `) = !
j!deff
n2!c0

Ê2(!)

Z `

0

ej&kzdz

37Fig. 1: Phase relationships between fundamental, second harmonic and nonlinear 
polarization. 
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where !k = k(2!) ! 2k(!) is the di§erence in wave number between the
second harmonic light and twice the wavenumber of the fundamental light or

the driving second order nonlinear Polarization. Within these assumptions we

obtain

Ê(2!; `) = !
j!deff
n2!c0

Ê2(!)` "
!
sin!k`=2

!k`=2

"
e

j#k`=2: (4.3)

Introducing the intensities of the fundamental and second harmonic waves

I!;2! =
n!;2!
2

p
"0=.0jÊ!;2!j

2

wie obtain

I(2!; `) =
2!2d2eff
n2!n2!c

3
0"0
`2I2(!)

!
sin!k`=2

!k`=2

"2
: (4.4)

For the case of phase matching, see Figure. 4.1, !k = 0;and neglegible
conversion the intensity of the second harmoinic light grows with the square

of the propagation distance in the nonlinear medium, see Figure. 4.2. If

phase matching is not achievable, the nolinear polarization driving the wave

generation at the second harmonic runs out of phase with the already generated

second harmoinc. This leads to a change of sign in the energy conversion to

the second harmonic and the newly generated second harmonic adds out of

phase to the one already present. This leads to a periodic oscillation in the

generated second harmoinc wave and limits the amount of fundamental light

every tansfered to the second harmoinc. There are periodic conversion and

back-conversion cycles, which shows in Eq.(4.4) by the sinc-function. There is

a conherence length deÖned by

`c =
/

!k
(4.5)

over which the energy conversion has a deÖnite sign. If perfect phase match-

ing can not be achieved this is the maximum length of a crystal one should

use to achieve the maximum conversion.

If phase matching can be achieved, one can use Eq.(4.4) to deÖne an inverse

conversion length +, deÖned by

+ =
!deff
nc

jÊ(!)j; mit n =
p
n!n2!; (4.6)

and

I(2!; `) = +2`2I(!): (4.7)

If the medium length reaches the conversion length, i.e. +` = 1, then Eq.(4.7)
would indicate, that all fundamental light is conversted to the second harmonic,

which contradicst the assumption of small conversion and we have to work a

little more to correct for it.

38 CHAPTER 4. FREQUENCY DOUBLING

where !k = k(2!) ! 2k(!) is the di§erence in wave number between the
second harmonic light and twice the wavenumber of the fundamental light or

the driving second order nonlinear Polarization. Within these assumptions we

obtain
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Second-harmonic generation (SHG)
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4.1. WITHOUT DEPLETION OF THE FUNDAMENTAL WAVE 45

Figure 4.1: Phase relationship between the waves for nonlinear polarization, funda-
mental and second-harmonic light when phase matched.

crystal thickness (mm)

Figure 4.2: Second-harmonic generation as function of phase mismatch.
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where ∆k = k(2ω) − 2k(ω) is the difference in wave number between the
second-harmonic light and twice the wavenumber of the fundamental light or
the driving second-order nonlinear polarization. Within these assumptions we
obtain

Ê(2ω, ℓ) = −jωdeff
n2ωc0

Ê2(ω)ℓ ·
[
sin∆kℓ/2

∆kℓ/2

]
ej∆kℓ/2. (4.3)

Introducing the intensities of the fundamental and second-harmonic waves

Iω,2ω =
nω,2ω

2

√
ε0/µ0|Êω,2ω|2

we obtain

I(2ω, ℓ) =
2ω2d2eff
n2ωn2

ωc
3
0ε0

ℓ2I2(ω)

[
sin∆kℓ/2

∆kℓ/2

]2
. (4.4)

For the case of phase matching, see Fig. 4.1, ∆k = 0, and negligible con-
version, the intensity of the second-harmonic light grows with the square of the
propagation distance in the nonlinear medium, see Fig. 4.2. If phase match-
ing is not achievable, the nonlinear polarization driving the wave generation
at the second harmonic runs out of phase with the already generated second
harmonic. This leads to a change of sign in the energy conversion to the sec-
ond harmonic, and the newly generated second harmonic adds out of phase to
the one already present. This leads to a periodic oscillation in the generated
second-harmonic wave and limits the amount of fundamental light eventually
transferred to the second harmonic. There are periodic conversion and back-
conversion cycles, which shows in Eq. (4.4) by the sinc-function. There is a
coherence length defined by

ℓc =
π

∆k
(4.5)

over which the energy conversion has a definite sign. If perfect phase matching
can not be achieved, this is the maximum length of a crystal one should use
to achieve the maximum conversion.

If phase matching can be achieved, one can use Eq. (4.4) to define an
inverse conversion length Γ as

Γ =
ωdeff
nc

|Ê(ω)|, with n =
√
nωn2ω, (4.6)

and
I(2ω, ℓ) = Γ2ℓ2I(ω). (4.7)

If the medium length reaches the conversion length, i.e., Γℓ = 1, then Eq. (4.7)
would indicate, that all fundamental light is converted to the second harmonic,
which contradicts the assumption of small conversion, and therefore we have
to work a little more to correct for it.

coherence length:
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4.2 With depletion of the fundamental wave

To better understand the case of strong conversion, we inspect the coupled
equations of fundamental and second-harmonic wave in more closely. The
equations are coupled, because the second-harmonic wave together with the
fundamenal wave drive a polarization at the fundamental wave

P̂ (ω) = ε0d
′
eff (ω; 2ω,−ω)Ê(2ω)Ê∗(ω).

The coupled equations are

∂Ê(2ω)

∂z
= − jω

n2ωc0
deff Ê(ω)Ê(ω)ej∆kz (4.8)

and
∂Ê(ω)

∂z
= − jω

nωc0
d′eff Ê(2ω)Ê∗(ω)e−j∆kz. (4.9)

Both equations describe the energy exchange between fundamental and second-
harmonic wave. The intensities are

Iω =
nω

2Z0

∣∣∣Ê(ω)
∣∣∣
2

and I2ω =
n2ω

2Z0

∣∣∣Ê(2ω)
∣∣∣
2

(4.10)

and in the case of lossless media, i.e., d′eff and deff are real, and the total
energy is conserved

2Z0
dI2ω
dz

= n2ω

[
Ê∗(2ω)

∂Ê(2ω)

∂z
+ c.c.

]
=

= −jω

c0
deff Ê

∗(2ω)Ê(ω)Ê(ω)ej∆kz + c.c.

2Z0
dIω
dz

= nω

[
Ê(ω)

∂Ê∗(ω)

∂z
+ c.c.

]
= −2Z0

dI2ω
dz

, if d′eff = d∗eff .

Energy conservation demands permutation symmetry of the conversion coeffi-
cients

n2ω|Ê(2ω)|2 + nω|Ê(ω)|2 = const. ≡ nωÊ
2
0 = const. (4.11)

Separating the wave amplitudes with respect to amplitude and phase

Ê(ω) = |Ê(ω)|ejΦ(ω)

Ê(2ω) = |Ê(2ω)|ejΦ(2ω)
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deff Ê(ω)Ê(ω)ej∆kz (4.8)

and
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Ê(2ω) = |Ê(2ω)|ejΦ(2ω)



12

46 CHAPTER 4. FREQUENCY DOUBLING

4.2 With depletion of the fundamental wave

To better understand the case of strong conversion, we inspect the coupled
equations of fundamental and second-harmonic wave in more closely. The
equations are coupled, because the second-harmonic wave together with the
fundamenal wave drive a polarization at the fundamental wave

P̂ (ω) = ε0d
′
eff (ω; 2ω,−ω)Ê(2ω)Ê∗(ω).
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The general solution to this equation can be expressed as elliptic function.
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0 − |Ê(2ω)|2
= −

∫ ℓ

0

ωdeff
nωc0

dz. (4.15)
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Ê0ωdeff
nωc0

· ℓ
}

(4.18)

With the conversion rate Γ = ωdeff
nωc0
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I(ω, ℓ) = I(ω, 0)sech2{Γℓ}. (4.20)

General solution: Jacobi elliptic function!
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Solution for Dk=0
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Ê0

(
ωdeff
nωc0

)
ℓ

}
(4.17)

or for the intensity

I(2ω, ℓ) = I(ω, 0) tanh2

{
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With

For perfect phase matching, 100% conversion possible for G l >> 1 
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4.3 Wave propagation in linear non-isotropic media
What to do if there is phase mismatch?

48 CHAPTER 4. FREQUENCY DOUBLING

4.3 Wave propagation in linear non-isotropic
media

To understand phase matching exploiting birefringence, we consider wave prop-
agation in non-isotropic but reciprocal media. The dielectric tensor ε must
then be symmetric (reciprocity). Therefore, the dielectric tensor can always
be transformed to diagonal form. If the coordinate axes are chosen along the
main axes, the form is

D̂ = εÊ

ε =ε0

⎡

⎣
εx 0 0
0 εy 0
0 0 εz

⎤

⎦

∇×∇× Ê = ω2µ0 εÊ (4.21)

As in isotropic media, there are plane-wave solutions with

Ê = Ê0e
−jk·r (4.22)

that obey
k×k× Ê = −ω2µ0εÊ (4.23)

The wave vector is orthogonal to the displacement vector but in general
not anymore to the electric field

k ⊥ (εÊ = D̂).

From Faraday’s law we have

jk× Ê = −ωB̂ (4.24)

and therefore, as in the isotropic case, we have

k ⊥ B̂ ∥ Ĥ.

The relationship between field vectors, wave vector and Poynting vector
is shown in Fig. 4.3. The dielectric displacement vector, D̂, ist parallel to
the phase fronts of the wave, but the electric field vector Ê is in general not
parallel to the phase fronts. This is only the case if the polarization defined via
the electric field vector is parallel to a main axis of the dielectric susceptibility
tensor; because then Ê ∥ D̂.

The power flow, given by the Poynting vector S = E×H, is always normal
to E and H and, therefore, is not necessarily parallel to the wave vector.
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The relationship between field vectors, wave vector and Poynting vector
is shown in Fig. 4.3. The dielectric displacement vector, D̂, ist parallel to
the phase fronts of the wave, but the electric field vector Ê is in general not
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As in isotropic media, there are plane-wave solutions with

Ê = Ê0e
−jk·r (4.22)

that obey
k×k× Ê = −ω2µ0εÊ (4.23)

The wave vector is orthogonal to the displacement vector but in general
not anymore to the electric field

k ⊥ (εÊ = D̂).

From Faraday’s law we have

jk× Ê = −ωB̂ (4.24)

and therefore, as in the isotropic case, we have

k ⊥ B̂ ∥ Ĥ.

The relationship between field vectors, wave vector and Poynting vector
is shown in Fig. 4.3. The dielectric displacement vector, D̂, ist parallel to
the phase fronts of the wave, but the electric field vector Ê is in general not
parallel to the phase fronts. This is only the case if the polarization defined via
the electric field vector is parallel to a main axis of the dielectric susceptibility
tensor; because then Ê ∥ D̂.

The power flow, given by the Poynting vector S = E×H, is always normal
to E and H and, therefore, is not necessarily parallel to the wave vector.
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Ê = Ê0e
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The relationship between field vectors, wave vector and Poynting vector
is shown in Fig. 4.3. The dielectric displacement vector, D̂, ist parallel to
the phase fronts of the wave, but the electric field vector Ê is in general not
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Figure 4.3: Relationship between field vectors, wave vector and Poynting vector of
a plane wave in birefringent media.

isotropic

⎡

⎣
xx 0 0
0 xx 0
0 0 xx

⎤

⎦ cubic

uniaxial

⎡

⎣
xx 0 0
0 xx 0
0 0 zz

⎤

⎦
tetragonal
trigonal
hexagonal

biaxial

⎡

⎣
xx 0 0
0 yy 0
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⎤

⎦ orthorhombic

⎡

⎣
xx 0 xz
0 yy 0
xz 0 zz

⎤

⎦ monoclinic

⎡

⎣
xx xy xz
xy yy yz
xz yz zz

⎤

⎦ triclinic

Table 4.1: Form of the dielectric susceptibility tensor for the different crystal sys-
tems.

D parallel to 
phase fronts

E in general not 
parallel to phase 
fronts

S not necessarily
parallel to k
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Figure 4.4: Index ellipsoid

In general, we distinguish between isotropic, uniaxial and biaxial media. In
the isotropic case, all main dielectric constants are equal. In the uniaxial case,
two are equal and different from the third one. And in the case of a biaxial
medium, all three main dielectric constants are different from each other, see
Table 4.1.

In the following, we consider the uniaxial case

εxx = εyy = ε1 ̸= εzz = ε3

The corresponding refractive indices are called ordinary and extraordinary
indices.

n1 = no ̸= n3 = ne.

Further one distinguishes between positive uniaxial, ne > no, and negativ
uniaxial, ne < no, crystals.

If the wave propagates along the z-axis, often also called optical axis or
“fast axis”, there is no birefringence. The refractive index experienced by the
wave is independent of polarization. However, if the wave vector is under
an angle θ to the z-axis, see Fig. 4.4, birefringence occurs. Without loss of
generality, we assume the wave vector lies in the x-z-plane. If we inspect Eq.
(4.23) closer, we find with A× (B×C) = (A ·C)B− (A ·B)C

(
k · Ê

)
k−k2Ê+ ω2µ0εÊ = 0. (4.25)

This equation determines the possible polarizations of the wave, and Eq. (4.24)
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)
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gives the corresponding magnetic fields. From Eq. (4.25) it follows in the x-y-
z-coordinate system

⎛

⎝
k2
0n

2
o + k2

x−k2 kxkz
k2
0n

2
o−k2

kzkx k2
0n

2
e + k2

z−k2

⎞

⎠ Ê = 0 (4.26)

This equation shows, that the wave polarized in the y-direction, i.e., in the
plane orthogonal to the plane defined by the wave vector and the fast axis,
decouples from the other components.

4.3.1 Ordinary wave

This wave is the ordinary wave, because it follows the dispersion relation

k2 = k2
0n

2
o.

As the wave in an isotropic medium, it is purely transversal, k ⊥ Ê ⊥ Ĥ.

4.3.2 Extraordinary wave

Obviously Eq. (4.26) allows also for other waves, with polarization in the
x-z-plane, which have a longitudinal component in the E-field. This is the
extraordinary wave. The dispersion relation of the ordinary wave follows from

det
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k2
0n

2
o + k2

x−k2 kxkz
kzkx k2

0n
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e + k2

z−k2
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or after some brief transformations

k2
z

n2
o

+
k2
x

n2
e

= k2
0. (4.27)

With kx = k sin (θ), kz = k cos (θ) and k = n (θ) k0 we obtain for the refractive
index of the extraordinary wave

1

n (θ)2
=

cos2 (θ)

n2
o

+
sin2 (θ)

n2
e

. (4.28)

Eqs. (4.27), (4.28) determine an ellipsoid for the free-space wave vector of
the refractive index n (θ) of the extraordinary wave, respectively, as shown in
Fig. 4.5. Fig. 4.5 is the surface determined by ω = k0c0. The group velocity,
which is parallel to the Poynting vector, is determined by

υg = ∇kω(k) ∥ S,

y-polarized wave decouples à ordinary wave

Wave in the x-z plane with polarization in x-z plane: extraordinary wave 
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Figure 4.5: Cut through the surface of the index ellipsoid with constant free-space
value ko(kx, ky, kz) or frequencies.

and is normal to the index ellipsoid. To determine the “walk-off” angle between
the Poynting vector and the wave vector, we consider

tan θ =
kx
kz

tanφ = −dkz
dkx

.

From Eq. (4.27) we find

2kzdkz
n2
o

+
2kxdkx
n2
e

= 0, (4.29)

and

tanφ =
n2
okx

n2
ekz

=
n2
o

n2
e

tan θ .

Therefore, we obtain for the walk-off angle between Poynting vector and wave
number vector

tan ϱ = tan (θ − φ) =
tan θ − tanφ

1 + tan θ tanφ
(4.30)
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or
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4.4 Phase matching

Already during the discussion of second-harmonic generation we noticed the
importance of achieving phase matching. In many cases this can be achieved
by exploiting the birefringence of most crystals that have a nonvanishing χ(2).
Other techniques rely on periodic variation of the nonlinear coefficient, which
is called quasi-phase matching, or using the geometrical or mode dispersion in
waveguides.

4.4.1 Birefringent phase matching

In SHG, we introduced the coherence length

ℓc = π|k(2ω)− 2k(ω)|−1 =
λ(ω)

4(n(2ω)− n(ω))
.

Normally the regular material dispersion leads to index changes on the order
of several percent when changing frequency over one octave. Therefore, the
coherence length may be as short as a few microns, if fundamental and second
harmonic have the same polarization.

However, if fundamental and second-harmonic wave have different polar-
ization in a birefringent medium, as shown in Fig. 4.6, the birefringence may



22

4.4. PHASE MATCHING 53

wavelength (nm)

refractive
index n

Figure 4.6: Non-critical phase matching

or

tan ϱ =

(
1− n2

o
n2
e

)
tan θ

1 + n2
0

n2
e
tan2 θ

. (4.31)

4.4 Phase matching

Already during the discussion of second-harmonic generation we noticed the
importance of achieving phase matching. In many cases this can be achieved
by exploiting the birefringence of most crystals that have a nonvanishing χ(2).
Other techniques rely on periodic variation of the nonlinear coefficient, which
is called quasi-phase matching, or using the geometrical or mode dispersion in
waveguides.

4.4.1 Birefringent phase matching

In SHG, we introduced the coherence length

ℓc = π|k(2ω)− 2k(ω)|−1 =
λ(ω)

4(n(2ω)− n(ω))
.

Normally the regular material dispersion leads to index changes on the order
of several percent when changing frequency over one octave. Therefore, the
coherence length may be as short as a few microns, if fundamental and second
harmonic have the same polarization.

However, if fundamental and second-harmonic wave have different polar-
ization in a birefringent medium, as shown in Fig. 4.6, the birefringence may

4.4 Phase matching

4.4.1 Birefringent phase matching

4.4. PHASE MATCHING 53

wavelength (nm)

refractive
index n

Figure 4.6: Non-critical phase matching

or

tan ϱ =

(
1− n2

o
n2
e

)
tan θ

1 + n2
0

n2
e
tan2 θ

. (4.31)

4.4 Phase matching

Already during the discussion of second-harmonic generation we noticed the
importance of achieving phase matching. In many cases this can be achieved
by exploiting the birefringence of most crystals that have a nonvanishing χ(2).
Other techniques rely on periodic variation of the nonlinear coefficient, which
is called quasi-phase matching, or using the geometrical or mode dispersion in
waveguides.

4.4.1 Birefringent phase matching

In SHG, we introduced the coherence length

ℓc = π|k(2ω)− 2k(ω)|−1 =
λ(ω)

4(n(2ω)− n(ω))
.

Normally the regular material dispersion leads to index changes on the order
of several percent when changing frequency over one octave. Therefore, the
coherence length may be as short as a few microns, if fundamental and second
harmonic have the same polarization.

However, if fundamental and second-harmonic wave have different polar-
ization in a birefringent medium, as shown in Fig. 4.6, the birefringence may

4.4. PHASE MATCHING 53

wavelength (nm)

refractive
index n

Figure 4.6: Non-critical phase matching

or

tan ϱ =

(
1− n2

o
n2
e

)
tan θ

1 + n2
0

n2
e
tan2 θ

. (4.31)

4.4 Phase matching

Already during the discussion of second-harmonic generation we noticed the
importance of achieving phase matching. In many cases this can be achieved
by exploiting the birefringence of most crystals that have a nonvanishing χ(2).
Other techniques rely on periodic variation of the nonlinear coefficient, which
is called quasi-phase matching, or using the geometrical or mode dispersion in
waveguides.

4.4.1 Birefringent phase matching

In SHG, we introduced the coherence length

ℓc = π|k(2ω)− 2k(ω)|−1 =
λ(ω)

4(n(2ω)− n(ω))
.

Normally the regular material dispersion leads to index changes on the order
of several percent when changing frequency over one octave. Therefore, the
coherence length may be as short as a few microns, if fundamental and second
harmonic have the same polarization.

However, if fundamental and second-harmonic wave have different polar-
ization in a birefringent medium, as shown in Fig. 4.6, the birefringence may

54 CHAPTER 4. FREQUENCY DOUBLING

wavelength (nm)

refractive
index n

Figure 4.7: Type-I critical phase matching.

be able to compensate for the index difference at the fastly different frequen-
cies. For the case shown in Fig. 4.6, we have exactly ne(2ω) = no (ω), i.e.,
the fundamental wave is the ordinary wave and the second harmonic is the
extraordinary wave. This case is called non-critical phase matching possible
for negative birefringence ne < no. In the case of positive birefringence, the
fundamental wave needs to be the extraordinary wave and the generated har-
monic the ordinary one. Again these cases are called non-critical or 90◦-phase
matching, since both polarizations are along the main axis and no walk-off be-
tween the waves exists. In this case the interaction between the beams would
be infinite. In practice, non-critical phase matching as shown in Fig. 4.6 occurs
only approximately. Often this can be further matched by temperature tuning.
Important examples for this technique is the frequency doubling of 1.06-µm
radiation in LiNbO3, CD∗A and LBO or frequency doubling of 530-nm light
in KDP.

A more general situation is shown in Fig. 4.7. The birefringence is too
strong for non-critical phase matching. However, by angle-tuning with respect
to the optical axis every index value between ne(2ω) and no (2ω) can be dialed
in, especially no (ω) . This phase matching angle, θp, is determined by

n2ω
e (θp) =

{
sin2 θp
(n2ω

e )2
+

cos2 θp
(n2ω

0 )2

}−1/2

= nω
0

which leads to

tan θp =
n2ω
e

n2ω
0

√
(nω

0 )
2 − (n2ω

0 )2

(n2ω
e )2 − (nω

0 )
2 .

Unfortunately, both waves do not any longer propagate exactly along the same
direction, but walk off from each other. The direction of energy flux for the

non-critical 
phase matching 
(for neg. birefringence)

similar for pos. 
birefringence
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extraordinary wave (here the SH) deviates from the wave vector. Since real
beams are of finite diameter, the overlap and therefore interaction of the beams
is limited; see Fig. 4.8. The walk-off angle ρ at phase matching is

tan ρ =
(nω

0 )
2

2

{
1

(n2ω
e )2

− 1

(n2ω
0 )2

}
sin 2θp ≈

∆n

n
sin 2θp

where the approximation is only valid for small birefringence. For 90◦-phase
matching the walk-off disappears. If Gaussian beams with waist w0 are used,
the interaction length due to walk-off is limited to

ℓa =

√
π

ϱ
w0.

This distance is also often called aperture distance. The phase matching tech-
nique just discussed is called type-I phase matching. Type-I phase matching
is recognized by the orthogonality in polarization between fundamental and
second-harmonic wave.

Another phase-matching method, called type-II, is shown in Fig. 4.9, again
for the case of a negative birefringent material. In this method, the harmonic
wave is an extraordinary or e-wave and there are two fundamental waves, one
with e-polarization and one with o-polarization. Only if both polarizations
are present, light at the second harmonic is generated. In this case, phase

only valid for small birefringence
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Type I Type II
ne < no (neg. uniaxial) : oo → e oe → e
ne > no (pos. uniaxial) : ee → o oe → o

Table 4.2: Phase-matching configurations

matching is achieved if

n2ω
e (θp) =

1

2
{nω

e (θp) + nω
0 }.

Table 4.2 shows the polarizations of fundamental and harmonic wave for the
different phase-matching configurations.

Acceptance angle

To carry out frequency doubling successfully, it is very important to know
about the sensitivity of the frequency doubling as a function of variation in
angle between fundamental and second harmonic. This will give us a sense for
the precision we need to point the beams for efficient doubling. We investigate
the phase mismatch as a function of the acceptance angle for type-I phase
matching

∆k = (k2ω − 2kω)|θp +
d

dθ
(k2ω − 2kω)

∣∣∣∣
θp
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For type-I phase matching, there is dnω/dθ = dnω
o /dθ = 0 and

n2ω(θ) =

{
sin2 θ

(n2ω
e )2

+
cos2 θ

(n2ω
0 )2

}−1/2

.

The angle-induced phase mismatch can then be rewritten as

∆k = −2π∆θ

λ
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3
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2 sin θ cos θ

(n2ω
e )2

− 2 sin θ cos θ

(n2ω
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λ
(nω

o )
3
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(n2ω
e )2

}
sin 2θp.

For a given crystal length ℓ the phase mismatch should not be larger than the
half-width at half-maximum (HWHM) of the sinc2− function, i.e., ∆k = π/ℓ,

∆θ =
λ

2ℓ sin 2θp
(nω

o )
−3

{
1

(n2ω
0 )2

− 1

(n2ω
e )2

}−1

With ∆n2ω = n2ω
0 − n2ω

e , (n2ω
0 )−2 = (n2ω

e )−2 − 2(n2ω
e )−3∆n2ω and n2ω

e = nω
o , we

obtain

∆θ = − λ

4ℓ sin 2θp∆n2ω
.

For most cases |∆θ| is on the order of a few milliradians, e.g., for KH2PO4

(KDP) at λ = 1.064 µm , nω
e = 1.466, nω

o = 1.506, n2ω
e = 1.487, n2ω

o = 1.534.
For this case, the phase-matching angle is θp = 49.9◦ and for a 1-cm long
crystal, there is |∆θ| = 0.001.

For type-II phase matching under the condition n2ω
e (θp) = [nω

e + nω
o ] /2, we

obtain

∆k =
2π∆θ

λ

{
2
dn2ω

e (θ)

dθ
− dnω

e (θ)

dθ

}

θp

(4.32)

For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90◦-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds

∆k =
2π

λ
(nω

o )
3

{
1

(n2ω
e )2

− 1

(n2ω
0 )2

}
(∆θ)2 (4.33)

which simplifies for small birefringence to

∆θ ≈
{

λ

2ℓ∆n2ω

}1/2

. (4.34)

For λ =1 µm, ∆n = 0.047 and ℓ = 1 cm, we find |∆θ| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.
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(KDP) at λ = 1.064 µm , nω
e = 1.466, nω

o = 1.506, n2ω
e = 1.487, n2ω

o = 1.534.
For this case, the phase-matching angle is θp = 49.9◦ and for a 1-cm long
crystal, there is |∆θ| = 0.001.
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For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90◦-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds
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which simplifies for small birefringence to
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}1/2

. (4.34)

For λ =1 µm, ∆n = 0.047 and ℓ = 1 cm, we find |∆θ| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.
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For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90◦-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds
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which simplifies for small birefringence to
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For λ =1 µm, ∆n = 0.047 and ℓ = 1 cm, we find |∆θ| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.
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For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90◦-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds
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which simplifies for small birefringence to
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. (4.34)

For λ =1 µm, ∆n = 0.047 and ℓ = 1 cm, we find |∆θ| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.
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For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90◦-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds
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which simplifies for small birefringence to
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For λ =1 µm, ∆n = 0.047 and ℓ = 1 cm, we find |∆θ| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.
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For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90◦-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds
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which simplifies for small birefringence to
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{

λ

2ℓ∆n2ω

}1/2

. (4.34)

For λ =1 µm, ∆n = 0.047 and ℓ = 1 cm, we find |∆θ| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.
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Acceptance bandwidth

Perfect phase matching is usually achievable only for a single frequency. Be-
cause the refractive index is wavelength dependent, efficient frequency doubling
is only possible over a limited frequency range. This frequency or wavelength
range is called acceptance bandwidth. Again, an estimate for the acceptance
bandwidth can be derived from the phase mismatch

∆k = {k2ω − 2kω}|λp
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{
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The acceptance bandwidth follows again from the condition, that the phase
mismatch over the propagation length must stay smaller than the HWHM of
the sinc2− function, i.e., |∆k| < π/ℓ or
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where λ is the wavelength of the fundamental wave and ℓ the interaction length.
The other way around, if a bandwidth 2∆λ needs to be frequency doubled, a
phase matched crystal can only have the length ℓ
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(4.39)

which will limit the maximum conversion efficiency. Thus the acceptance band-
width is essential for frequency doubling of short pulses, because of their spec-
tral width. If the acceptance bandwidth is smaller than the pulse bandwidth,
the doubled pulse will be longer and the efficiency will be reduced. This can
also be understood as temporal walk-off between the fundamental pulse and
its second harmonic. The group velocity of a pulse is given by
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n
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that is
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Two pulses with duration tp but with different group velocities will overlap
over a length
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With Eq. (4.42) we obtain
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.

Using the time-bandwidth relationship

tp ≈
1

∆f
=

λ2

c∆λ
(4.43)

we find the maximum crystal length similar to the one derived from the phase
matching condition (4.39)
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4.4.2 Frequency doubling of Gaussian beams

A laser emits radiation in a TEM00 - mode, i.e., a Gaussian beam. The electric
field of a Gaussian beam is described by

Ê(x, y, z) = Ê0
w0

w(z)
exp{−j(kz − φ)}× (4.44)
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(4.45)

φ = tan−1
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}

(4.47)
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Ê(x, y, z) = Ê0
w0

w(z)
exp{−j(kz − φ)}× (4.44)

exp

{
−(x2 + y2)

[
1

w2(z)
+

jk

2R(z)

]}

w(z) = w0

{
1 +

(
λz

πw2
0

)2
}1/2

(4.45)

φ = tan−1

{
λz

πw2
0

}
(4.46)

R(z) = z

{
1 +

(
πw2

0

λz

)2
}

(4.47)
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that is

υg =
c

n

{
1− λ

n

dn

dλ

}−1

. (4.42)

Two pulses with duration tp but with different group velocities will overlap
over a length

ℓ ≈ tp
2

{
1

υg

∣∣∣∣
ω

− 1

υg

∣∣∣∣
2ω

}−1

.

With Eq. (4.42) we obtain

⇒ ℓ ≈ tpc

2λ

{
1

2

dn

dλ

∣∣∣∣
2ω

− dn

dλ

∣∣∣∣
ω

}−1

.

Using the time-bandwidth relationship

tp ≈
1

∆f
=

λ2

c∆λ
(4.43)

we find the maximum crystal length similar to the one derived from the phase
matching condition (4.39)

⇒ ℓ ≈ λ
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{
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dn
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∣∣∣∣
2ω

− dn

dλ

∣∣∣∣
ω

}−1

.

4.4.2 Frequency doubling of Gaussian beams

A laser emits radiation in a TEM00 - mode, i.e., a Gaussian beam. The electric
field of a Gaussian beam is described by

Ê(x, y, z) = Ê0
w0

w(z)
exp{−j(kz − φ)}× (4.44)

exp

{
−(x2 + y2)

[
1

w2(z)
+

jk

2R(z)

]}

w(z) = w0
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nonlinear crystal

Gaussian laser beam

Figure 4.10: Intensity distribution of a Gaussian beam.

The confocal parameter of the beam is twice the Rayleigh range and given by

b =
2πw2

0

λ
(4.48)

see Fig. 4.10. The Rayleigh range is the distance, over which the beam cross
sectional area doubles, πw2(z) < 2πw2

0. The opening angle of the beam due to
diffraction is

∆θ ≈ w(z)

z
≈ λ

πw0
. (4.49)

In the near field (z ≪ b), the beam is close to a plane wave

Ê(x, y) = Ê0 exp

(
−x2 + y2

w2
0

)
exp(−jkz) (4.50)

or

Ê(r) = Ê0 exp

(
− r2

w2
0

)
exp(−jkz) (4.51)

P =
ncε0
2

∫ ∞

0

∫ 2π

0

|Ê0|2 exp
(
−2r2

w2
0

)
rdrdφ (4.52)

=
ncε0
2

|Ê0|2
(
πw2

0

2

)
⇒ P = I0

(
πw2

0

2

)
, (4.53)

with the peak intensity I0 =
ncε0
2 |Ê0|2 on beam axis. The effective area, Aeff ,

of a Gaussian beam is therefore

Aeff =
P

I0
=

πw2
0

2
. (4.54)
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nonlinear crystal

Gaussian laser beam

Figure 4.10: Intensity distribution of a Gaussian beam.

The confocal parameter of the beam is twice the Rayleigh range and given by

b =
2πw2

0

λ
(4.48)

see Fig. 4.10. The Rayleigh range is the distance, over which the beam cross
sectional area doubles, πw2(z) < 2πw2

0. The opening angle of the beam due to
diffraction is

∆θ ≈ w(z)

z
≈ λ

πw0
. (4.49)

In the near field (z ≪ b), the beam is close to a plane wave

Ê(x, y) = Ê0 exp

(
−x2 + y2

w2
0

)
exp(−jkz) (4.50)

or

Ê(r) = Ê0 exp

(
− r2

w2
0

)
exp(−jkz) (4.51)

P =
ncε0
2

∫ ∞

0

∫ 2π

0

|Ê0|2 exp
(
−2r2

w2
0

)
rdrdφ (4.52)

=
ncε0
2

|Ê0|2
(
πw2

0

2

)
⇒ P = I0

(
πw2

0

2

)
, (4.53)

with the peak intensity I0 =
ncε0
2 |Ê0|2 on beam axis. The effective area, Aeff ,

of a Gaussian beam is therefore

Aeff =
P

I0
=

πw2
0

2
. (4.54)
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The simplest estimate for the frequency doubling including the beam shape is
done in the limit of low conversion and using the expression in the near field.
Under these assumptions we obtain

Ê2(r, ℓ) = −jω1deff
n2ωc

Ê2
1(r)ℓ = −jκÊ2

1(r)ℓ (4.55)

where we introduced the interaction coefficient κ = ω1deff
n2ωc

= ω2deff
2n2ωc

. With the
Gaussian shape for the second harmonic

Ê2(r, ℓ) = −jκÊ2
1ℓe

−2r2/w2
1 . (4.56)

The frequency-doubled beam shows only half the cross section compared to the
fundamental beam w2 = w1/

√
2 or the confocal parameter b2 = πw2

2/ (λ/2) =
πw2

1/λ = b1. Thus the confocal parameters of both beams are the same. The
total generated power at 2ω is

P2 =
n2ωcε0

2

∫ 2π

0

∫ ∞

0

|Ê2(r)|2rdrdφ =
n2ωcε0

2
κ2Ê4

1ℓ
2

(
πw2

1

4

)
(4.57)

=
n2ω

nω
P1κ

2Ê2
1ℓ

2/2 (4.58)

⇒ P2

P1
=

n2ω

nω

Γ2ℓ2

2
=

Γ2ℓ2

2
(4.59)

where n = nω = n2ω, assuming phase matching. Expressed by the intensity
ratio we obtain

I2
I1

= Γ2ℓ2 (4.60)

similar to the case of plane waves. From Eq. (4.59) we obtain for the conversion
efficiency

η =
P2

P1
=

2ω2

ε0c3

(
d2eff
n3

)(
P1

πw2
1

)
· ℓ2. (4.61)

Thus the conversion efficiency is proportional to
(
d2eff/n

3
)
. Thus for choosing

a crystal for efficient frequency doubling, not only the effective nonlinearity
deff should be as high as possible, but simultaneously, the refractive index n
should be small. Fig. 4.11 gives an overview over the figure of merit defined
by FOM= d2eff/n

3. From Fig. 4.10 we see that for ℓ > b the beam cross
section increases and the conversion drops. A numerical optimization without
any approximations results in the crystal length ℓ = 2.84 · b for maximum
conversion. With this result and b = 2πw2

1/λ, we obtain for the maximum
conversion efficiency

ηopt =
P2

P1
=

2ω2

ε0λc3

(
d2eff
n3

)
5.68P1 · ℓ. (4.62)

Estimate of conversion efficiency for Gaussian beam
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As this equation shows, the optimum conversion efficiency is achieved for ℓ ∼ b.
The weaker the focus and the longer the crystal, the larger is the conversion
in a χ(2)-process, if phase matching is maintained over the full length.

Figure 4.11: Figure of merit (FOM) for different nonlinear optical materials.

4.4.3 Frequency doubling of pulses

As noticed during derivation of the acceptance bandwidth, mismatch in the
group velocities of fundamental and second harmonic leads to lengthening of
the generated second-harmonic pulse. Therefore, we like to investigate this
case closer. A short pulse has a continuum of frequencies and we need to take
all mixing products into account

P (z,ω) = ϵ0deff

∫ ∞

−∞
E1 (ω − ω1)E1 (ω1) e

−j(k(ω−ω1)+k(ω1))zdω1.


