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2.4 Properties of the nonlinear susceptibilities

2.4.1 Physical fields are real

(51010 enn) = A (=t 01, e i) (2.40)
wp = ) Wi (2.41)
i=1

2.4.2 Permutation symmetry
numbering 1 to n arbitrary — use symmetric definition
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2.4.3 Symmetry for lossless media

two additional symmetries:

« imaginary part of the susceptibility describes loss and gain
— susceptibilities of lossless media are real

« complete permutation symmetry independent, if the frequency is
an input or output frequency

NS5 (W5 0, Wl W) = XS g (03 00 = W, W ), (243)
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This implies that in the lossless case. the susceptibilities for sum- and difference-
frequency generation are equal 1f the frequencies and polarizations imnvolved are
chosen accordingly. For the classical model treated before, this 1s immediately
clear. Furthermore, 1t can also generally be proven by a quantum mechanical

derivation of the susceptibility or with the help of the energy conservation [3].



2.4.4 Kleinman’s symmetry

low-frequency range: medium lossless,

susceptibilities essentially independent of wavelength

— indices of susceptibilities can arbitrarily be permuted,
nonlinearity responds instantaneously to the electric field

\i._.j._.g_,_.s[ib’bi-v-wz,...iﬂik ----- Wp) = ;. i.o.s\Wbl W Wi, wWy) (2.45)
— \EH}EH = const.
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2.4.5 Neumann’s principle

coordinate transformations (inversion, mirror image and rotation) T

of field and polarization vectors E and P

E, Too Tary To. E,

E, | =| Tys Tyy Ty E,

Ez Tzfl Tzry Tzrz E'.
E=T-E
E=T"1.E

inversion, mirror image and rotation are
orthogonal transformations: T? =T

E=T1".F



employing Einstein’s summation convention

E; = (Tiw)" By = Ty Ey (2.51)
Py =Ty Py (2.52)

relations in the two coordinate systems
P = e Ej--- By (2.53)
P = e\ JEy - By, (2.54)

Then

i’}.,,ﬂ{”] = Pf;”] :a‘o'ﬂux.E}T;}.SijjEjf'TMEH-~-T515Esf (2.55)
s = Loy T (2.56)

— nonlinear susceptibilities are tensors

transformations, that do not change the physical reference between
the fields and media, leave the susceptibilities invariant.

The 32 crystal classes, that can be derived from the 7 crystal
systems, are characterized by being invariant under a point
group. l.e., the susceptibility tensor of materials, belonging to a
certain crystal class, must be invariant under the corresponding
point group (Neumann’s principle).




Example: let’s consider inversion T = (—1)dy;

susceptibility tensor of the inverted medium
oo = (=) (2.57)

If the medium is invariant under inversion, it follows for n=even

W= (= =0 (2.58)

ij...8 ij...8

I.e., in an inversion symmetric medium, the susceptibility
tensors of even orders vanish
(no linear electro-optic effect, no SHG)

Of the 32 crystal classes, already 11 possess inversion symmetry.
Remaining 21 non- centrosymmetrlc crystal classes, the number of
nonvanishing tensor elements \fjk further reduce because of other
symmetries. The symmetry properties of \Uk are the same as those
of the piezo-electric tensor.



If the even nonlinear optical processes are forbidden by symmetry
(e.g., in media such as glasses, gases, fluids), processes of third
order are the dominating nonlinearity. The existing inversion
symmetry also reduces tbﬁ non-vanishing susceptibility tensor
elements of third order ijx .



2.5 The reduced susceptibility tensor of second order

second-order susceptibilities are expressed in terms of nonlinear
- 2
coefficients diji. = %\Eﬂl

lﬁ}mj(wn + wm) = 250 Z dijk(Wn + W @ Wp, L.L,-',H)Ej(wﬂ_)Ek(;um), (2.59)
jk
If Kleinmann symmetry condition is valid (or for SHG), the nonlinear
coefficients can be formulated in reduced form d;;. = dix; = da, i.€.,
In these cases the indices j and k can be permuted.
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31 32 33 o4 3
For SHG ) ] ) -~ B2 -
] _ ] i E (w)2
P (2w dip dip dig dig dis dig EHEJE
Py(zw) = £ (fgl dgg {’E’Qg ﬂ{z;l djfj‘. dgg oF {L ,‘)Em(w)
| P(2w) | | d31 dsp d3z dzq d3s dse | ;EF(Z)E”(‘*
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The Bravais lattices can be divided into

7 crystal systems and 14 Bravais lattices

T T

7 point groups 14 space groups

The 7 crystal systems and their hierachy:

Cubic
cubic trigonal l
/—_—‘—.—"‘-L
a Hexagonal Tetragonal
a a Trlgonol }—> Orthorhombic
monoclinic @ l
= Monoclinic
Triclinic
tetragonal # o
frigonal = rhombohedral
A
c
b{
a 2 friclinic
~(
d b
orthorhombic
c .~ e
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3 5 a 3 a

The 14 Bravais lattices: introduction of special bases preserves the point symmetry —

body /foce
3 cubic lattices: sc, bcc, fcc bo
2 tetragonal lattices: st, ct ] =
4 orthorhombic lattices: s0, bco, fco, bco
2 monoclinic lattices: sm, cm

1 triclinic lattice
1 trigonal lattice
1 hexagonal lattice

14 Bravais lattices in 7 crystal systems
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The 14 Bravais lattices

A o

Simple Face-centered Body-centered
cubic cubic cubic
Simple Body-centered Hexagonal
tetragonal tetragonal
Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
Simple Base-centered Triclinic

Rhombohedral Monoclinic monoclinic
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The crystals can be divided into

32 crystallographic point groups and
230 space groups

The 32 crystallographic point groups originate from the point groups of the
7 crystal systems by systematic reduction of the symmetry (see Ashcroft&Mermin:
Solid State Physics, Chapter 7, Tables 7.2 and 7.3, Saunders College Publ. (1976):
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3
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crystal
system

trichnie

monoclinic

ortho-
rhombic

crystal
class

dao
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0 dig
0 dog
dy; 0 m 1 z
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dﬂ %25 m Ly
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diz 0
dog 0
0 dis
dys 0 21y
0 ds IRE conv.
%15 % KTP, KNbO,
0 0 B&NaNb5015
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( 0
das 0
0 dag a-HIO;
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crystal
system
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crystal crystal
system class
hexa-
gonal Ca || 6
Car || 6
Dy || 6m2
Dy || 6m2
Cey || 6mm
Dy || 622

cubic T 23
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0 0 dig 0
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0 0 0 0
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0 0 dy 0
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0 0 0 (
0 0 dy 0
0 0 0 dy
0 0 0 0

all elements vanish

oo &

)
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CdSs, CdSe
Zn0, ZnS

GaAs, InP
InSh
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crystal dE?J (2w : w,w) [10_12%] 04k [10_13%]
Te dyy = +690 (@ A = 10.6 pm) | +0.7
CdGeAss dsg = +264 (@ A\ = 10.6 pm) | +1.72
II]P d14 — +263 +13
GaAs dyy = +105 (@ A = 10.6 pm) | +1.15
KNbO4 das = —20.3 —4.43
da = —11.3 —2.04
d3s = —13.5 —2.12
LiNbO; dag = —4 — .62
dag = —27 —3.9
BaTi0; dag = —bH —0.7
ds; = —13.5 —1.91
Bagf‘faf\:b5015 d33 = 21 —|—3?2
dss = —15 +2.21
L1104 dy = —4.4 +3.45
KHyPOy4 (KDP) d3g = dig = +0.39 +2.3
NH Hs POy (ADP) dag = dyy = +0.47 +2.5
S10y (Quartz) dyy = +0.3 +1.15
KTiPO4 (KTP) day = dgp = +3.3 +2.3
5-BaByOy4 (BBO) | dyg = +2.3 +4.16
ds; = +0.1 +0.177
LiB3Os (LBO) dag = +1.1 +2.124
dsp = —1.0 +1.95
DAST dyy =630 (@ A = 1.5 pm) +65.5

Table 2.1: Nonlinear optical coeflicients for frequency doubling and Miller coefh-
cients of several important anorganic materials and the organic material DAST. 16



Example to illustrate how the susceptibility tensor of a crystal class,
that is invariant with respect to a point group, is restricted:

point group mm2 (e.g., KTP und KNbPO,)
This crystal class is invariant under 180° rotations around z-axis
and mirror images on the planes m1 and m2, that

contain the rotation axis

tensor elements transform just like the coordinates

AL
Z
/ n
my . (T,9y,2) — (—x,9, 2),
me . (T,9,2) — (x,—vy, 2), .
2 0 (rvy.z) — (=1, —Yy.2) Y
/




From the two mirror 1mages follows that all elements of the d tensor, for
which an odd number of occurrence of the index 1 or 2 happens, must vanish.

digq1 = digp=di33=di23=10

da 1.1

d313 = d3ag=d312=0.

dooo =dpz3=do13=70

The 2-fold axis requires, that the tensor elements, for which the indices 1 and

2 together occurr an odd number of times, must vanish

dipo = 0. di13#0
dag1 = 0. daa3+#0

d311#0, d3227#0, d3ss#0

For the pomt group mm?2 then the following relation between nonlinear

polarization and field holds

P(2wiw,w) = 2e0disEL(w)E.(w)
)

ﬁy(gw;w,w) = QEode w)E,(w)

(2wiw,w) = eodsi E2(w) + codsa B2 (w) + godas B2 (w)
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2.6 The third-order susceptibility tensor

If the second-order nonlinear processes are forbidden by symmetry,
then the dominating nonlinearities are of third order.

This is obviously the case in particular for isotropic media, such as
liquids, gases or glasses, as they are inversion symmetric.

Isotropic media in addition possess other symmetry properties,
e.g., invariance under mirror imaging on a plane. This symmetry
requires that each index must occur twice, unless the
corresponding tensor element vanishes.

— the possible 34=81 tensor elements already reduce to
21 elements.
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The cubic symmetry, 1.e., symmetry with respect to 90° rotations around
one of the axes, in addition requires, that the number of immdependent tensor
clements are reduced to 3 (compare exercise):

LTYY — YYIT — TTZZ — ZZXTX — YY<z =— Z2YY

TYTY
TYYT
rrrr = yyyy = 222z = (rxxyy + ryry + ryyr)

YTYr = TZTZ = ZLZT = YZYz = Y2y

YITY = TZZL = ZTXZ = YZ2Y = ZYY=Z

The nonvanishing tensor elements for the various crystal classes are summa-
rized in the table below [4], where the following notation for tensor elements
1s employed:

P; Bw;w,w,w) = gocijml; (w) Ex (w) Ep (w) .

The last three indices are again permutable, for this reason a reduced notation
1s used

Cijkl = Cip
for the last three mdices according to the follwing list:
p |1 2 3 4 D 6 7 8 9 0
gkl | 111 | 222 | 333 | 233 | 133 | 223 | 113 | 122 | 112 | 123
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Chapter 3: The wave equation with sources

The polarization 1s a source for electromagnetic fields. From Maxwell's equa-
tions we have (in SI units)

)
VxE = —E (Faraday)
ot
oD
VxH = J+ e (Ampere, Maxwell)

The material equations for a non-magnetic medium are

B = ugH,
D = 5E+P, (3.1)
J = oE.

Moreover, we assume that no free charges are present. thus
V-D=p=0. (3.2)
Then there also can not flow currents from free charges

J=0. 22



%,
ot
From (3.1), (3.2) and in absence of free carriers, it follows V-E = —V - P /55 &
0, which 1s only approximately fulfilled i nonlinear optics due to the nonlinear
polarization part. We then obtain

0 0? 02

AE— ,ugcrd—E pgcgd?E ,u,gdsz

VxVxE=V(V-E)—AE =—w— (V xH).

With P =sov(WE + Py and the relative dielectric number ¢, = 1 + )
follows

0 02 0?
AE— ELGU7E Ho< nurd QE =05 BYe

where we assumed, that the linear dielectric susceptibility does not depend on
frequency, 1.e., the medium 1s dispersion free.

Py (3.3)

23



The nonlinear wave equation (3.3) can be solved approximately
for the case of plane quasi-monochromatic waves propagating into
the positive z-direction:

E(z,t) = 8E(z, t)eltF), (3.4)
Pyi(z,t) = PPyp(z,t)e?@=F2), (3.5)

Slowly Varying Envelope Approximation (SVEA)

)
\EE(z,t) > .LE(::;.f).

o by Prr(2,t)] > ngmL(w f)} (3.6)
d ) i
lwPNL(z, ) > ERML(_:.I‘-) o |wE(z,t)] > Y —FE(z,1)]. (3.7)

Inserting the ansatzes (3.4) and (3.5) in (3.3)

PE %,
_— _2ik—F — k*E — wE E
922 "0z Hoo (j N ot )
i 0
—1pcoey | — FE + 29w—FE — W2 E
fo<0 (.dfg + 2] o7 )

{)2 . ~ - | he— z
= [ ( )ngﬁ,L +ijPmL —w Pu) (&-p) /o),
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Employing the dispersion relation k% = ip=ps,w? the two leading terms cancel,
and within the SVEA (3.6).(3.7) it follows
9, w O

5 L+ 9J——E = —jwpgo E + pow? Pyy, (& - p) edFF0)2,
92

ik
J 2 01

where we introduced the velocity of light in the linear medium as ¢ = / ,tL{}EUEr_l
We divide this equation by 27k and transform 1t into a comoving time frame

using ' =t — z/c, (z = 2'), and obtain

. , 1 o s i
—E(2,t') = —aB(z,t) — s jwZ,Pyi(2,t) (&-p) *F= (3.8)

0z 2
with the damping constant @ = 0Z,/2 and the impedance of the medium
7 =1 _ [_po
W ED Er?uCD EUE?‘:M ’

25



Some remarks on

%E(:. t') = —aE(z 1) — éj;uZwRyL(:.f’) (e-p)el* M (3.8)
*The medium conductivity o leads to losses and therefore
damping of the propagating wave.
*The medium’s nonlinear polarization can lead to both gain or
damping, depending on the relative phase between the electric
field and the polarization (parametric amplification, frequency
conversion, stimulated scattering processes as Raman and Brillouin
scattering, multi-photon absorption).
*If the nonlinear polarization is in phase or in opposite phase of
the electric field, it corresponds to a a nonlinear change of the
refractive index, leading to a phase shift of the electric field
(Pockels effect, Kerr effect).
*If the polarization is advancing the field by 90°, the polarization is
supplying energy to the field. In the opposite case, the polarization
is extracting energy from the field.
phase relation is changing during propagation, if no phase
matching of the process, i.e., k = kp, is achieved. 26



