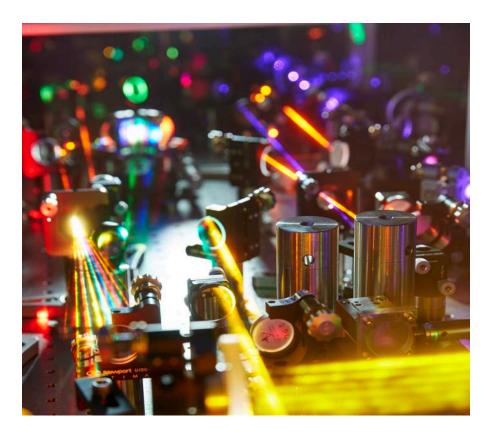
WiSe 2018-2019

Prof. Franz X. Kärtner & Dr. Oliver D. Mücke, Bldg. 99, Room O3.111 & O3.115

Email & phone: franz.kaertner@cfel.de, 040 8998 6350 oliver.muecke@cfel.de, 040 8998 6355


Lectures: Fr 08:30-10:00 and 10:15-11:00, SemRm 4, Jungiusstr. 9

Recitations: Fr 11:15-12:00, SemRm 4, Jungiusstr. 9

Start: October 19, 2018

Content:

Nonlinear optical susceptibilities and symmetries, nonlinear wave equation, second-harmonic generation, phase matching, quasi-phase matching, optical rectification, Manley-Rowe relations, sum-and difference-frequency generation, THz generation, optical parametric amplification, ultrashort-pulse optical parametric (chirped-pulse) amplification, third-order nonlinear effects: third-harmonic generation, Kerr effect, self-phase modulation, self-focusing, stimulated Raman- and Brillouin-scattering, optical solitons, extreme nonlinear optics: carrier-wave Rabi flopping, Bloch oscillations, dynamical Franz-Keldysh effect, strong-field physics in solids, high-harmonic generation, high-order sideband generation, attosecond science: RABBITT, attosecond streaking, transient XUV absorption.

Required Textbook: Class notes will be distributed in class.

Recommended Textbook: Nonlinear Optics, R. W. Boyd, Academic Press,

Third Edition (2008).

Additional References:

1. The Principles of Nonlinear Optics, Y. R. Chen, J. Wiley & Sons NY (1984).

2. *The Elements of Nonlinear Optics*, P. N. Butcher & D. Cotter, Cambridge Studies in Modern Optics 9 (1990).

- 3. Nonlinear Fiber Optics, G. P. Agrawal, Academic Press (1998).
- 4. *Solitons: an introduction*, P. G. Drazin & R. S. Johnson, Cambridge Texts In Applied Mathematics, NY (1989).
- 5. Fundamentals of Attosecond Optics, Z. Chang, CRC Press (2016).
- 6. Attosecond and Strong-Field Physics, C. D. Lin, A.-T. Le, C. Jin, and H. Wei, Cambridge University Press (2018).
- 7. Extreme Nonlinear Optics, M. Wegener, Springer (2005).

Requirements:

9 Problem Sets and a Term Paper Collaboration on problem sets is encouraged.

Course Policy:

Collaboration: Collaboration on problem sets is permitted. However, you must list who you collaborated with, when you hand in your problem sets. Groups may discuss the problems, strategies for solutions, etc. However, each person is expected to do all of the problems independently. You may not copy the problem solutions from other members in your group. Evidence of copying will be considered cheating.

Plagiarism: Direct copying of text from other sources (books, review articles, etc.) on the term papers will be considered plagiarism. Reproduction of figures or data is permitted provided that the reference is cited.

Tentative Schedule:

1		Introduction to Nonlinear Optics
	Franz Kärtner	
2	19/10/2018	Important Nonlinear Optical Processes Overview
3		Nonlinear Optical Susceptibilities
	Oliver Mücke	Problem Set 1 Out
4	26/10/2018	Susceptibility Tensors
5		Nonlinear Wave Equation
	Franz Kärtner	Problem Set 1 Due, Problem Set 2 Out
6	2/11/2018	Second-Harmonic Generation
7		Frequency Doubling of Pulses, Quasi-Phase Matching
	Oliver Mücke	Problem Set 2 Due, Problem Set 3 Out
8	9/11/2018	Optical Parametric Oscillation/Amplification,
		Difference Frequency Generation
9		Electro-Optic Effect and Modulators
	Franz Kärtner	Problem Set 3 Due, Problem Set 4 Out
10	16/11/2018	Acousto-Optic Modulators and Bragg Cells
11		Third-Order Nonlinear Effects
	Franz Kärtner	Problem Set 4 Due, Problem Set 5 Out
12	23/11/2018	Self-Phase Modulation and Self-Focusing

13		Raman and (Stimulated) Brillouin Scattering
	Franz Kärtner	Problem Set 5 Due, Problem Set 6 Out; Distr. Term Paper Proposals
14	30/11/2018	Optical Solitons
15		Ultrashort-Pulse Optical Parametric Amplification
	Oliver Mücke	Problem Set 6 Due, Problem Set 7 Out
16	7/12/2018	Ultrashort-Pulse Optical Parametric Chirped-Pulse
		Amplification
17		High-Energy Few-Cycle Parametric Sources I
	Oliver Mücke	Problem Set 7 Due, Problem Set 8 Out
18	14/12/2018	High-Energy Few-Cycle Parametric Sources II:
		NOPA, OPCPA, passive CEP stabilization in OPA
19		Nonlinear Optics with Two-Level Systems
	Oliver Mücke	Problem Set 8 Due, Term Paper Proposal Due
20	21/12/2018	Carrier-Wave Rabi Flopping
21		Ultrafast Terahertz (THz) Sources
	Franz Kärtner	Problem Set 9 Out
22	11/1/2019	Applications of Ultrafast Terahertz (THz) Sources
23		High-Harmonic Generation
	Oliver Mücke	Problem Set 9 Due
24	18/1/2019	Attosecond Science
25		Strong-Field Physics in Solids I
	Oliver Mücke	~ · · · · · · · · · · · · · · · · · · ·
26	25/1/2019	Strong-Field Physics in Solids II
27		T P P
27		Term Paper Presentation
28		Term Paper Presentation