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Coupling light to a resonator

2

( 𝐴 2 is number of photons in cavity)

Time evolution:

( 𝑠in
2 is 

number of 
photons per 

second)

Steady-state number of photons in cavityAssume continuous wave laser:

Steady-state

Quality-factor

Transform into rotating frame of pump:

Detuning



Coupling light to a resonator
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from previous page

Finesse

Power enhancement is 
proportional to Finesse

Coupling regimes

undercoupled

critically coupled

overcoupled

Coupling ratio

( 𝑠in
2 is 

number of 
photons per 

second)



Resonance spectrum and chromatic dispersion
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Dispersion leads to non-equidistant resonance frequencies
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1 mm

Polarization of the medium:

Nonlinear
Microresonators
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Nonlinear coupling in a resonator
Wave equation in radial coordinates:

Resonantor eigenmodes

𝜙



Nonlinear coupling in a resonator

From previous page:
SVEA

Projection onto mode with index 𝜇 by multiplication with and integration over 𝜙.

Normalizing again such that 𝐴𝜇
2

is number of photons in mode 𝜇.

𝜙



Full coupled mode equations

• Coupled eigenmode equations
• One equation for each eigenmode of the resonator

𝑠𝑖𝑛 = 𝑃𝑖𝑛/ℏ𝜔𝑝

𝐴𝜇
2

is number of photons in mode 𝜇

loss input

nonlinear coupling

pump detuning



Full coupled mode equations

From previous page:

Oscillating term for non-zero dispersion

Instead of using resonator eigenmodes to describe system one can use an equidistant 
frequency grid with frequencies 𝜔𝑝 + 𝜇𝐷1:

in



Coupling light to a nonlinear resonator

Effective nonlinear detuning

From previous page (consider only mode 𝜇 = 0):
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Similar to thermal effect

Steady state:



Three-mode system Modulation instability (MI) in a resonator

𝜔𝜔0𝜔−1 𝜔+1

Derivation similar to Modulation instability in non-resonant systems

Parametric gain: 𝐺 = 𝑅𝑒 1 + 𝜆 𝜅

Threshold: 𝐺 > 𝜅 (i.e. gain compensates loss)

Required 𝐷2 > 0 (anomalous GVD)

Eigenvalues



Cascaded FWM in a system with large FSR

frequency

Δ Δ ΔΔ

1. Degenerate FWM / MI
requires anomalous group velocity dispersion

Optical spectrum:

Parametric Gain

2. Cascaded Non-Degenerate FWM



wavelength

Δ Δ ΔΔ

δ δ

Primary spacing Δ
Secondary spacing δ

Δ ≠ n∙δ
(n=1,2, ..)

δ δδδ δ δ δδ

Cascaded FWM in a system with small FSR



wavelength
Need to carefully tune system such that Δ =  n∙δ

Spacing 2

Spacing 1

Comb generation via cascaded FWM in a system with small FSR



Lugiato-Lefever-equation and soliton solution

The coupled mode equations can be transformed into the time domain
(similar to what was done in the context of the NLSE)

• This equation in similar to the NLSE, but includes detuning, loss and external driving
• There is a “solitonic” solution with sech-shape envelope existing on top of a continuous wave background: 

→ Dissipative solitons



Dissipative temporal cavity soliton properties

Frequency domain field:

Time domain:

After finding the maximal detuning



Solitons and nonlinear resonance shape



Optical frequency

Power

Pump Laser Tuning

Intracavity Power
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Simulation of nonlinear dynamics

Based on coupled mode equations



Optical frequency

Power

Pump Laser Tuning

25 fs pulses (five optical cycles)
200 GHz repetition rate
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Soliton frequency combs

nth Comb Line at                                                     

Frequency combs:



Soliton Crystals 

& Soliton Molecules
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Weng et al., Nat. Comm. (2020)



Microresonator Solitons
Applications

Arbitrary optical waveform synthesis

Review: Kippenberg, et al. Science (2018) 11


