^{2021 Dec 08} NLO #17

- Dispersion engineering in fiber and wavegiudes (cont)
 - Photonic crystal fiber
 - Photonic crystal wavegiudes
 - Mode hybridization
- High-Q microresonators (linear regime)

Reminder Waveguides and fibers

Guided mode a consequence of index contrast

High-index contrast and small core results in strong confinement

Group-velocity dispersion (GVD) can be modified e.g. by change of core size and index contrast

Air-clad dielectric rod

ir SiO₂ Air

Air

Need to suspend the fiber so that the mode is protected...

... microstructured fiber!

Comparison: "Dielectric Rod" and microstructured fiber

Microstructured photonic crystal fiber

- Large index contrast
- Modified internal refractive index guiding
- Can be made "endlessly single-mode"

"Smaller features can escape" Only the fundamental mode is guided. (effective index contrast between core and air-hole cladding decreases for higher order modes, no more guiding)

Russel, Science, 2003

Photonic crystal fiber

Russel, Science, 2003

University of Southampton

Photonic Crystal fiber (PCF)

Index contrast guiding

Photonic Bandgap guiding

Dispersion diagram

Photonic bandgap

Bloch modes:

 $E(z) = u(z) \exp(ikz)$ u(z + a) = u(z)

Photonic bandgap guidance

- Hollow-core and large mode area fibers can guide high power
- Low nonlinearity and low dispersion
- Gas or liquid filled for nonlinear and spectroscopic application

Modulated fibers/waveguides

Quasi-phase matching through modulation of a fiber / waveguide parameter

Mode-hybridization / Avoided-mode crossing

High-Q Microresonators

Free-spectral range (separation of 2 resonance frequencies): 1 GHz to 1 THz ECD $- \frac{c}{c} = \frac{1}{c}$

$$FSR = \frac{c}{n_g L} = \frac{1}{T_R}$$

Power enhancement: 100x - 1'000'000x

Travelling and Standing wave resonators

Travelling wave

Standing wave

Can reach photon lifetime of $> 10 \ \mu s$

Coupling light to a resonator

 $ilde{A} = A(t)\,{
m e}^{-i\omega_0 t}$ ($|A|^2$ is number of photons in cavity)

Time evolution:

Steady-state number of photons in cavity

Transform into rotating frame of pump:

$$a = A e^{i(\omega_{\rm p} - \omega_0)t} \longrightarrow \frac{\mathrm{d}a(t)}{\mathrm{d}t} = -(i(\omega_0 - \omega_{\rm p}) + \frac{\kappa}{2})a(t) + \sqrt{\kappa_{\rm ext}}s_{\rm in}(t)$$

Assume continuous wave laser:

$$s_{\rm in}(t) = s_{\rm in} \qquad \longrightarrow \qquad a = \frac{\sqrt{\kappa_{\rm ext}}}{i(\omega_0 - \omega_{\rm p}) + (\frac{\kappa}{2})} \cdot s_{\rm in} \qquad \longrightarrow \qquad |a|^2 = \frac{\kappa_{\rm ext}}{(\omega_0 - \omega_{\rm p})^2 + (\frac{\kappa}{2})^2} \cdot |s_{\rm in}|^2$$

Coupling light to a resonator

from previous page

Power enhancement is proportional to Finesse

Thermal nonlinearity

 $-\frac{d\omega}{dT} = \frac{1}{n}\frac{dn}{dT} + \frac{1}{L}\frac{dL}{dT}$

Absorption and heating leads to a intensity dependent refractive index and thermal expansion. This causes a shift of the resonance frequency

Nonlinear Microresonators

Polarization of the medium:

$\tilde{P}(t) = \epsilon_0 \left[\chi^{(1)} \tilde{E}(t) + \chi^{(2)} \tilde{E}^2(t) + \chi^{(3)} \tilde{E}^3(t) + \cdots \right]$

