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Reminder Waveguides and fibers
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Guided mode a consequence of index contrast

High-index contrast and small core results in strong confinement

Group-velocity dispersion (GVD) can be modified e.g. by change of core size and index contrast



Air-clad dielectric rod
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Need to suspend the 
fiber so that the mode is 
protected…

… microstructured fiber! 

4 µm



Comparison: “Dielectric Rod” and microstructured fiber

4

Joannopoulos et al. 2008, “Photonic Crystals”



Microstructured photonic crystal fiber
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4 µm

• Large index contrast
• Modified internal refractive index guiding
• Can be made “endlessly single-mode”

Russel, Science, 2003

Λ

𝑑

“Smaller features can escape”
Only the fundamental mode is guided.
(effective index contrast between core and 
air-hole cladding decreases for higher order 
modes, no more guiding)

Ray optics limit
(very short wavelength)

Russel, Science, 2003



Photonic crystal fiber
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Russel, Science, 2003

Photonic Crystal fiber (PCF)

Index contrast 
guiding

Photonic Bandgap 
guiding

University of Southampton



Dispersion diagram
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Photonic bandgap
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Bloch modes:

𝐸 𝑧 = 𝑢 𝑧 exp(𝑖𝑘𝑧)

𝑢 𝑧 + 𝑎 = 𝑢(𝑧)



Photonic bandgap guidance

• Hollow-core and large mode area fibers can guide high power

• Low nonlinearity and low dispersion

• Gas or liquid filled for nonlinear and spectroscopic application
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Bozolan et al. Optics Letters (2008)



Modulated fibers/waveguides
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Quasi-phase matching through 
modulation of a fiber / 
waveguide parameter

Δ𝑘 =
2𝜋

Λ

Λ spatial modulation period

Conforti et al. Sci. Rep (2015)



Mode-hybridization / Avoided-mode crossing
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Guo et al., Optica 2020

Supermodes



High-Q Microresonators
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Si3N4

1mm1mm

10 µm

FSR =
𝑐

𝑛𝑔𝐿
=

1

𝑇𝑅

Free-spectral range (separation of 2 resonance frequencies): 1 GHz to 1 THz

Power enhancement: 100x - 1’000’000x 
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Travelling and Standing wave resonators

13

Travelling wave Standing wave



Achieving low loss
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Can reach photon lifetime of  > 10 µs



Coupling light to a resonator
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( 𝐴 2 is number of photons in cavity)

Time evolution:

( 𝑠in
2 is 

number of 
photons per 

second)

Steady-state number of photons in cavityAssume continuous wave laser:

Steady-state

Transform into rotating frame of pump:

Quality-factor



Coupling light to a resonator
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from previous page

Finesse

Power enhancement is 
proportional to Finesse

Coupling regimes

undercoupled

critically coupled

overcoupled

Coupling ratio

( 𝑠in
2 is 

number of 
photons per 

second)



Thermal nonlinearity
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Absorption and heating leads to
a intensity dependent refractive
index and thermal expansion.
This causes a shift of the
resonance frequency
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1 mm

Polarization of the medium:

Nonlinear
Microresonators
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