2021 Dec 06

NLO #16

- Propagation of light through fibers and waveguides
 - Optical fibers
 - Planar Waveguide
 - Fiber modes
 - Higher order modes
 - Effective mode area
 - Finite element simulating
 - Dispersion and dispersion engineering in fiber
 - Integrated waveguides
 - Example: Supercontinuum in waveguides

-

Optical fiber

Charles Kao

Guiding through index contrast between core and cladding:

$$\Delta = \frac{n_{\rm core} - n_{\rm clad}}{n_{\rm clad}}$$

Can maintain small mode-cross section over long distance.

0.2 dB

0.2 dB/km: 50 % of the light is lost after 15 km (!) of propagation.

Optically relevant:

1 Core (typ. 5-10 μ m diameter for single mode, up to hundreds of μ m for multi-mode)

2 Cladding (125 μm diameter is often standard)

Mechanical protection:

3 Buffer (usually a polymer, 250 μ m is standard)

4 Jacket optional additional protection, usually plastic.

Light propagation in inhomogeneous media

Eigenvalue equation

$$\nabla \times \left(\frac{1}{\varepsilon(\mathbf{r})} \nabla \times \mathbf{H}(\mathbf{r})\right) = \left(\frac{\omega}{\varepsilon}\right)^2 \mathbf{H}(\mathbf{r})$$
linear hermetian operator
Eigenvalue

- Hermitian operator, real eigenvalues
- Eigenmodes orthogonal
- Confined structure have discrete modes

$$(\underline{m{H}_i},\underline{m{H}_j}) = \int m{H}_i^*(m{r}) m{H}_j(m{r}) \, \mathrm{d}m{r} \propto \delta_{ij}$$
 Eigenmodes

Planar waveguide

Intuitive ray optics picture

 n_1

 n_1

Guiding by total internal reflection if

$$\theta < \theta_c$$
, $\cos \theta_c = \frac{n_1}{n_2}$

Transverse resonance condition (discrete modes)

$$2dn_2k_0\sin\theta + 2\phi_r = m\pi$$

$$\nabla^{2} \mathbf{E}(\mathbf{r}) + k_{0} n^{2}(\mathbf{r}) \mathbf{E}(\mathbf{r}) = 0$$

$$\mathbf{E}(\mathbf{r}, t) = \mathbf{E}(x, y) \exp[i(\omega t - \beta z)]$$

$$\frac{\partial}{\partial y} = 0$$

$$\frac{\partial^{2}}{\partial x^{2}} E_{i}(x, y) + (k_{0}^{2} n_{1}^{2} - \beta^{2}) E_{i}(x, y) = 0$$

$$\frac{\partial^{2}}{\partial x^{2}} E_{i}(x, y) + (k_{0}^{2} n_{2}^{2} - \beta^{2}) E_{i}(x, y) = 0$$

Case	Core	Clad	Mode
$\beta > k_0 n_2 , k_0 n_1$	-	-	No physical solution
$k_0 n_1 < \beta < k_0 n_2$	"oscillating"	exponential decay	Confined Guides mode
$\beta < k_0 n_2 , k_0 n_1$	"oscillating"	"oscillating"	radiation mode

General characteristics of solution:

$$\frac{1}{E_i} \frac{\partial^2 E_i}{\partial x^2} = \text{const} > 0$$
 "exponential" (decay / growth)

$$\frac{1}{E_i} \frac{\partial^2 E_i}{\partial x^2} = \text{const} < 0 \qquad \text{"oscillating"}$$

Fiber modes

Cylindrical symmetry implies modes 2π -periodic boundary condition in angular coordinate ϕ

$$E \propto F(r) \exp(il\phi) \exp(i\beta z)$$
 azimuthal mode index l radial mode index m

Single mode condition

$$V = k_0 r_{\text{core}} \left(n_{\text{core}}^2 - n_{\text{clad}}^2 \right)^{1/2}$$

$$V < V_c$$
, $V_c \approx 2.405$

A single-mode fiber supports mode index m only this mode profile (2 polarizations)

6

Effective mode area

Effective mode area:

$$A_{\text{eff}} = \frac{\left(\int |E|^2 \, \mathrm{d}A\right)^2}{\int |E|^4 \, \mathrm{d}A}$$

- Larger index contrast leads to stronger confinement
- Smaller core radius usually implies smaller effective area; however, when core radius and/or index contrast very small, the mode area can get larger

Effective mode area and wavelength

wavelength

- Larger mode area for larger wavelength
- Can lead to strong chromatic dispersion of nonlinearity, impacting au_{shock}

$$\left(\frac{\partial}{\partial z} + \frac{\alpha}{2} - iD\right) A = i\gamma \left(1 + i\tau_{\text{shock}} \frac{\partial}{\partial \tau}\right) A(z, \tau) \int R(\tau') |A(z, \tau - \tau')|^2 d\tau'$$

Measures of dispersion

Often used measures of dispersion in fibers and waveguides:

Dispersion Measure	Expression	Units	Sign of Anomalous Dispersion	
Dispersion Per Unit Length				
Group Velocity Dispersion (GVD) β_2 corresponds to k_2 in previous Taylor expanion	$eta_2 = rac{\partial^2 eta}{\partial \omega^2} = rac{1}{c} igg(2 rac{\partial n}{\partial \omega} + \omega rac{\partial^2 n}{\partial \omega^2} igg) = -rac{\lambda^2}{2\pi c} D$	s ² / m (often as ps ² / km)	-	
Dispersion Parameter D	$D=-rac{\lambda}{c}rac{\partial^2 n}{\partial \lambda^2}=-rac{2\pi c}{\lambda^2}eta_2$	ps / (nm · km)	+	

Finite element method (FEM)

Coupled eigenvalue problem with $E(x, y, z) = E(x, y) \exp[i\beta z]$ and $H(x, y, z) = H(x, y) \exp[i\beta z]$

$$-i\omegaarepsilon egin{pmatrix} E_x \ E_y \ E_z \end{pmatrix} - egin{pmatrix} 0 & 0 & \partial_y \ 0 & 0 & -\partial_x \ -\partial_y & \partial_x & 0 \end{pmatrix} egin{pmatrix} H_x \ H_y \ H_z \end{pmatrix} = ieta egin{pmatrix} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} egin{pmatrix} H_x \ H_y \ H_z \end{pmatrix}$$

$$i\omega\mu egin{pmatrix} H_x \\ H_y \\ H_z \end{pmatrix} - egin{pmatrix} 0 & 0 & \partial_y \\ 0 & 0 & -\partial_x \\ -\partial_y & \partial_x & 0 \end{pmatrix} egin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = ieta egin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} egin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix}$$

Solver finds Eigenvalue eta for given ω

(e.g. perfect electrical conductor)

Other numeric techniques, e.g.

- Finite difference method
- Beam propagation method and numerous variations exist.

Dispersion Engineering in a fiber

Integrated waveguides

Mode area: $\sim 1 \, \mu m$

Loss: $\sim 0.1 \, \mathrm{dB/cm}$

Examples

Moss et al., Nat. Phot. (2013)

Resonators

Change of waveguide parameter along length

Higher order modes

Consider THG Zero overlap integral Non-zero overlap integral but not generally phase matched Non-zero overlap integral potentially phase matched

Odd and even modes arising from symmetry

Assume Eigenmode: E(x,y)

If $\varepsilon(x,y)=\varepsilon(-x,y)$ then also ${m E}(-x,y)$ is a solution (same frequency, i.e. same mode)

$$\boldsymbol{E}(-x,y) = a\boldsymbol{E}(+x,y)$$

$$\boldsymbol{E}(x,y) = a^2 \boldsymbol{E}(+x,y)$$

Dispersion integrated waveguides

Silicon nitride wave guide of height 800 nm embedded in SiO₂
Solid line: TE, Dotted line: TM, black: fundamental mode, color: higher order (all modes same symmetry as fundamental mode)

Example supercontinuum – waveguide width 700 mn

Example supercontinuum – waveguide width 1300 mn

Multi-mode phase matching

Photonic crystal fiber (PCF) and photonic crystal waveguides

Band diagram of fiber/waveguide

Propagation constant β

Periodic structures can significantly change dispersion

Experiment: Fiber splicing

After lecture