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4.6 Manley-Rowe relations

Three plane waves propagating in z-direction with frequencies wy, wo, and
wy, and interacting via a Y®) nonlinearity, can be described by the coupled
equations

dE (wl)

5 = —jr1E (w3) E* (wg) e778%, (4.92)
dE (w A 3 _—

d(_,, D) ik (ws) B (wr) €0, (4.93)
dEd(fJ ) — ke (wn) B (wn) 2%, (4.94)

with coupling coefficients and difference wave number
K; = widegs/n;co, and Ak = kg — ky — ks. (4.95)

We multiply Eq. (4.92) by nicoco B5* (wy) /2, and add the complex conjugated
part, thus obtaining

( 1 ) d[d(tul) b ]EO;ieffE'(wg) Ev* (w2) E* (wl)e—jAkz + c.c.
Wi z



We again assume a lossless medium, 1.e., desr = d;‘ff, and treat Egs. (4.93),

(4.94) similar to Eq. (4.92), and obtain

1dl(w) 1dl(wy) 1 dl(w)

— — 4.96
wp dz wo dz w3 dz ( )

Le., for each photon, that is created (annihilated) at frequency w3, one photon

at frequency w; and one photon at frequency wy must be annihilated (created).
The corresponding spatial variations of the intensities ‘” d‘:‘) scale with the
frequencies w;. This 1s an mteresting result, because no quantum-mechanical
treatment has been used to obtain 1t. Nevertheless, this classical nonlinear
electrodynamical treatment already strongly suggests a photon hypothesis £ =
n- hv.




4.7 Sum-frequency generation (SFG)

If the nonlinear medium 1s rradiated by two mput fields with frequencies w;
and ws, it is possible to to generate the sum frequency ws = wy +ws via a -
process. The corresponding coupled-wave equations describing the amplitudes
at the three frequencies are

OF (ws)

TR —jrsE (wy) E (wp) e2* (4.97)
dEc‘?(wQ) = —jroE (w3) E* (wy) e794% (4.98)
O] i () B () 92, (4.99)

with Ak = k(ws) — k(w1) — k(wa) and k; = widess/nico. In the special case

W; = Wy, we again obtain frequency doubling. In the low-conversion case, we

can solve Egs. (4.97)-(4.99) in an analogous manner to the case of frequency
doubling. Assuming E (wy) and F (w;) to be constant, we obtain

2k2n sin Ak£/2)?

I(ws,0) = —2° / } .

_ = 27 (, ) smAakt/Z
e (m){ ARC/2 (4.100)



One mmportant spectroscopic application of sum-frequency generation is
the up-conversion of a weak signal at frequency w; with a strong signal at
frequency wo. This can be used to time-resolve weak light-emission dynamics
or to convert a signal in the far infrared into the visible spectral range, where
much better photodetectors are available. By using a strong signal at ws,

the weak signal can even significantly be enhanced. If the pump signal at
frequency wy 1s a short pulse, a short slice can temporally be “gated” out of
the mput signal. Under the assumption of a strong pump signal at ws and
phase matching, we obtain

aEa—(:)?’) = — {jﬁsE (WQ)} E (w1), (4.101)
) Limb )} B (). (4.102)

In addition, the boundary conditions F(ws,z = 0) = 0 and E(wy,z = 0) =
Ey(wy) apply. Since the system (4.101)-(4.102) is linear, we try an exponential

ansatz of the form F (wy3,z) = Ep(w13) e7*. With this ansatz we obtain
from (4.101)-(4.102)

+jvEp (w3) + {]'fi3E0 (wz)} Eo(wy) =0

{1 B () } Bo (ws) % B (wr) = 0.



For solutions to exist (the determinant of the coefficient matrix must vanish),
it must hold

v? = K1K3| B (wp) |2 (4.103)
or s
5 {2/{1&3[ (w2)} | (4.104)
nacp&o

The fundamental solutions are cosine and sine functions, and together with
the boundary conditions i1t follows

~ -~

E(w3) = Asinyz (4.105)
and

E (w;) = Ey (w) cosyz. (4.106)
Substitution into Eq.(4.101) yields

A= [ By (wy) €99, (4.107)
winsg

]?0 (wa)
|Eo (w2) |

contains the phase of the pump wave. The factor —j in Eq. (4.107) again
mmplies, that the driving polarization advances the generated electric field by
7/2. For the intensities we then obtain

where

eJo(w2) —



o z—ilo (wy) sin? vz (4.108)

I (wy) = Iy (wy) cos® vz (4.109)

We realize that for 4z > /2 again backconversion into w; occurs. As in the
best case each photon at frequency w; 1s converted into a photon at frequency
ws, 1t follows for the maximum enhancement 1n intensity

Ima.x (Ld3) w3
= —, 4.110
ly(w1)  wy’ ( )

that again corresponds to the Manley-Rowe relation.



4.8 Difference-frequency generation (DFG)

Next we look at the generation of the difference frequency w; = wy — wo,
Ak = k(w1) + k(w2) — k(ws). Again in the low-conversion limit with E (ws)
and E (w9) assumed to be constant, we obtain

2,
I (wy ) = B 1 (ws)I(wy) {

N9aN3Coen

= 4 2
smAk[/Q} | (4.111)

Akl/2

This can, e.g., be used to generate ifrared hight from two visible light fields
for spectroscopic applications. Another case 1s, if a strong pump wave at w3
converts light from wy to wy. For a strong pump wave, E (w3) is constant,

E* in contrast to SFG

dEa(f"l) = —jr1E (w3) E* (wo) 2% (4.112)
dEa(f"Q) = —jroE (w3) E* (wy) e78%2. (4.113)

The boundary conditions are now E(ws, z = 0) = Ey(ws) and E(wy,z =0) = 0.
With the ansatz E (wy9,2) = Ey (w12) e™% we obtain when phase-matched

£yEo (w1) + 5 {mE (ws) } By (wn) = 0

{—imaB* (ws) } Eo (wr) £ B (wn) = 0,



which enforces

72 = K1kl E (ws) |2 (4.114)

In comparison to sum-frequency generation, the fundamental solutions are now

hyperbolic functions A A
E (wy) = Asinh~yz

and ) A A
E (wy) = Ep (w) coshyz + Bsinhyz

After back substitution, it again follows B =0 and

A=—j [R5 B3 (u) .
won1

I (wy) = (wi/w2)lo (wg) sinh®~z,

Thus 1t follows

I (w2) = Ip (ws) cosh?®7z.

This 1s indeed a different behavior compared to sum-frequency generation.

Both waves grow! |At first glimpse, 1t seems that energy 1s not conserved. Of

course, this can not be the case. The required energy actually comes from
the pump wave, however, this can not be observed because of the assumption
E (w3) = const. For high conversion, we obtain for the intensity ratio of the
low-frequency waves

[(wi) w1

I((.UQ) N (JJQ'




4.9 Optical parametric amplification (OPA)

Already for difference-frequency generation it became obvious, that in this fre-
quency mixing process, gain can be achieved. We inspect this process now
more generally taking into account losses and without the assumption of per-
fect phase matching. This will allow us to derive the underlying equations
governing the amplification process, 1ts gain bandwidth and associated ampl-
fier noise. We keep the assumption of a constant pump wave at ws. Then it

holds )
symmetric d
OE (w

+ a1 E(w) = —jr B (ws) E* (wy) e92%2 (4.115)

in 1 and 2 )

R + QQE(wQ) = —jf{.QE (LU3) E* (W1) ejAkz. (4116)
We again look for an exponential solution E (w1) ~ Ep(wy)eY*+i8k2/2  and
E (wy) ~ Ey (wy) €7'*+i8%2/2 with suitable initial values denoted by the index
0. It follows

{ eyt %} Eo (w;) + {jﬁ1E(w3)} E§ (wy) =0 (4.117)
Himb @)} B+ {7 o= 5 B =0, | iy

10



From the determinant condition, 1t follows

" . JAk - 2

72+ {on + g} + araz + (Ak/2)° + (ar = a1) 5= = mma | E (wg)| =0
(o1 + ao) ) — iAk] 2)

=>7’=—1T2:t{[ 12 2+72 ] + K1K9 E(wg)' } (4.119)

For the case of phase matching and no losses, we find
v 2
7 = Riky | B (ws)] (4.120)

For the case of equal losses oy = ap = o, we obtain

1/2

Y =—a+{? - (Ak/2)°} " = —a+g, (4.121)

where

1/2
g= {7y — (Ak/2)*}" (4.122)
The solutions of the coupled equations (4.115)-(4.116) are of the form

A~

E (wy, £) = emot+iak/2)e {EO (wy) cosh g€ + Bsinh ge} (4.123)

~

E (wo, ) = e ot 3(AK/2)E {E’o (ws) cosh gf + D sinh g€} (4.124)




Insertion into the coupled equations (4.115)-(4.116) yields

NG s K1
B = —]2—E0 (w1) = ]—E (wg) EO (wg) (4.125)
g g
Ak - Ko 5
b= —JQ—QEO (wo) — ]; E (w3) Ef (w1). (4.126)

Note the symmetry between both solutions. Anyway, the two waves are gen-
erally called signal and idler wave. If the optical parametric amplifier (OPA)
1s seeded by one wave only and if wy # we, then this wave 1s amplified inde-
pendent of the phase

sinh?=cosh?2-1

- af
b (Awl’é]) ‘ = {c:osh2 gl + (Alc/Qg)2 sinh? gl} = % {72 cosh? gl — (Ak/Q)Q}
Eo (wy) g
(4.127)
We define the parametric gain as
E (wy 0) e » sinh? gl
Gy (f) = : —1=G; (¢ 074 4.128
) = [ {0 =00 (4128)
Note that for small gain, 1.e., v < Ak, the gain has the form g bec_:omes
Imaginary.
sin? { [(Ak/2) =17 ¢} sinh — sin
Gy () = (y0)° (4.129)
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that can me further simplified to
sin? (Ak£/2
Gy (§) = (ye)? 2 BX2)

(Ak£/2)?

for v << Ak/2. In the opposite limit for large gain v > Ak/2

psinh’gl 1 ,,

G1 (9= 00" 0= 4 (4.130)
We define the bandwidth of the OPA wvia
{(Ak/2)2 — 2} o=, (4.131)

that for small gain implies Ak = 27 /f, as we already found for frequency
doubling. In general, we obtain from Eq. (4.131)

N 2) 1/2
S {1+ (L[> } (2r/0) . (4.132)

c m

This means that the bandwidth increases with the gain. For the ratio between
the bandwidths at high and low gain, we obtain

A . v
legh Gain _ {1 i (76/’”)2}1/2 - (4.133)
Af Low Gain

Fig. 4.15 shows the gain as function of Akf for various values of ~£.
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gain bandwidth increases
with stronger pumping

noncollinear type-l OPAs
feature ultrabroad
bandwidth for few-optical-
cycle pulse generation

(— later lecture)

= Akf
27

Figure 4.15: Gain of an optical parametric amplifier (OPA) as function of the wave
number difference and gain.
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4.10 Optical parametric oscillation (OPO)

In a single pass through a parametric amplifier medium, which 1s described
by Eqs. (4.123)-(4.126), the signal and idler waves grow when phase-matched
(Ak = 0) according to

E (w1, 0) ¥ = Eg (w) cosh £ — ]%E (w3) E§ (wo) sinh v¢ (4.134)

E (ws, £) €°?* = E (wy) coshy£ — J%E (w3) E% (wy) sinh~2. (4.135)

Most often parametric amplifiers only permit gain for passage in a single di-
rection. In the other direction, only damping occurs

E' (w1,€) = Ep (wq) e~

E' (ws, £) = o (w) e

If feedback of the parametric amplifier 1s realized by means of a Fabry-Pérot
resonator and 1if the field 1s larger after a round trip than at the beginning, so
the amplifier 1s turned into a self-starting oscillator. The threshold condition
1s that the losses must equal the gain

E} (w1) = Eo (w1)

Ep (wn) = Eo (w)
or inserted into Eqs. (4.134)-(4.135) it follows with e 22 ~ 1 — 20/
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A A e A
0 (wl_) 0 (w1) coshyf — jﬂE (w3) Ep (wa) sinh ¢
1 —2a4¢ 7

E3 (wo)
1 — 209

Again the solution of this equation system 1s only non-zero, if the determinant
of the coefficient matrix vanishes, 1.e.,

1 1 K1K9 | ~
[cosh vl — 1_—M][cosh vl — T %0 B‘ ‘E (w3)
so that

1 1 1 1
1 — coshyt —= 40~ 1. pedn
g (1—2a1€+1—202€)+(1—2a2€) (1—2a1£) (&:136)

or

= E} (w2) cosh ¢ + ]%E* (ws) Eo (w1) sinh 2.

2
sinh? ¢ = sinh? v¢

A/Q

201 i l?
coshy/ =1+ b

T (4.137)

For a; = as =~ a and the case of small losses or small gain af, v/ < 1, it
follows "

X
(v6)? = 4al. coshz =1+ (4.138)

One distinguishes between doubly resonant parametric oscillators (DROs) and
singly resonant ones (SRO). In the first case, both signal and idler waves are
resonant, i the second case only the signal wave. The threshold for SROs 1s
many times higher than for DRO. Nevertheless, most OPOs are singly reso-
nant, because 1t 1s much more difficult to operate a DRO.
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