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The input frequencies are grouped around the center frequency ω0, and there-
fore it makes sense to expand the wave number around the center frequency
of the fundamental wave

k (ω − ω1) = k0 +

(
∂k

∂ω

)

ω0

(ω − ω1 − ω0) , (4.63)

k (ω1) = k0 +

(
∂k

∂ω

)

ω0

(ω1 − ω0) . (4.64)

With Eqs. (4.63) and (4.64)

⇒ k (ω − ω1) + k (ω1) = 2k0 +
1

υg1
(ω − 2ω0) (4.65)

where
1

υg1
=

1

υg

∣∣∣∣
ω0

=

(
∂k

∂ω

)

ω0

(4.66)

is the inverse group velocity. Then the polarization at the sum-frequency is

P (z,ω) = ε0deffe
−j

(
2k0+

1
υg1

(ω−2ω0)

)
z
∫ ∞

−∞
E1 (ω − ω1)E1 (ω1) dω1. (4.67)

The electric field at frequency ω grows according to Eq. (3.8)

∂E2 (z,ω)

∂z
= −jω0deff

nc0
e
−j

(
2k0+

1
υg1

(ω−2ω0)−k(ω)

)
z
× (4.68)

∫ ∞

−∞
E1 (ω − ω1)E1 (ω1) dω1.

If E1(ω) is the spectrum of the pulse centered around ω0, then the integral will
only be non-zero around ω ≈ 2ω0 The wave number k (ω) around 2ω0 is

k (ω) = k2 +
1

υg2
(ω − 2ω0) , (4.69)

with
1

υg2
=

1

υg

∣∣∣∣
2ω0

=

(
∂k

∂ω

)

2ω0

. (4.70)

For the case of phase matching (k2 = 2k0) and low conversion

E2 (%,ω) = G(%,ω) · F (ω) (4.71)
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where

G (!,ω) = −jω0deff
nc0

ej(∆k!/2) · ! ·
{
sin ∆k!

2

∆k!/2

}
, (4.72)

∆k =

(
1

υg1
− 1

υg2

)
(ω − 2ω0) , (4.73)

and

F (ω) =

∫ ∞

−∞
E1 (ω − ω1)E1 (ω1) dω1. (4.74)

The electric field at the second harmonic can then be written as a Fourier
transform. In the time domain we obtain with the convolution theorem

1

2π

∫ ∞

−∞
G (ω)F (ω) ejωtdω =

∫ ∞

−∞
g (t′) f (t− t′) dt′ (4.75)

where

g(t) =
1

2π

∫ ∞

−∞
G (ω) ejωtdω (4.76)

=





ej2ω0t ω0deff

4nc0
1(

1
υg2

− 1
υg1

) , 0 < t <
(

1
υg2

− 1
υg1

)
!

0, elsewhere






For a fundamental wave E1 (t) = A1 (t) cos (ω0t− k0z) we obtain a second
harmonic wave E2 (!, t) = A2 (!, t) cos (2ω0t− 2k0z)

A2 (!, t) =
ω0deff
4nc0

1(
1

υg2
− 1

υg1

)
∫ !/υg2−!/υg1

0

A2
1 (t− t′) dt′, (4.77)

where A2 (!, t) is the envelope of the generated second-harmonic pulse obtained
by a convolution of a squared input field and a rectangularly shaped pulse of

duration
(

1
υg2

− 1
υg1

)
!. In the limit

(
1

υg2
− 1

υg1

)
! → 0, we obtain

A2 (!, t) =
ω0deff
4nc0

· ! · A2
1 (t) . (4.78)

In the case of
(

1
υg2

− 1
υg1

)
! # tp = pulse length, we obtain from Eq. (4.77) a

rectangularly shaped pulse with duration

!

{
1

υg

∣∣∣∣
2ω

− 1

υg

∣∣∣∣
ω

}
.

phase

f(t)=E1(t)2
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In the case of
(

1
υg2

− 1
υg1

)
! # tp = pulse length, we obtain from Eq. (4.77) a

rectangularly shaped pulse with duration

!

{
1

υg

∣∣∣∣
2ω

− 1

υg

∣∣∣∣
ω

}
.

large doubling bandwidth

very small doubling bandwidth
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Eo║
║De
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is given by



ux′

uy′

uz′



 = T ·




ux

uy

uz



 (4.79)

with the transformation matrix T

T =




1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ








cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1





=




cosϕ sinϕ 0
− sinϕ cosϑ cosϕ cosϑ − sinϑ
− sinϕ sinϑ cosϕ sinϑ cosϑ



 . (4.80)

The inverse is

T−1 = TT =




cosϕ − sinϕ cosϑ − sinϕ sinϑ
sinϕ cosϕ cosϑ cosϕ sinϑ
0 − sinϑ cosϑ



 . (4.81)

The fundamental and second-harmonic waves are ordinary or extraordinary
waves. The ordinary wave, (E‖D), is polarized along the x

′
-axis

Eo = Êo · x′ = Êo (cosϕ · x+ sinϕ · y) (4.82)

The dielectric displacement of the extraordinary beam (E ∦ D), is polarized
along the y

′
-axis

De = De · y′ = De (− sinϕ cosϑ · x+ cosϕ cosϑ · y − sinϑ · z) . (4.83)

There are two possible ways to determine the effective nonlinear coefficient.
One way is by transforming the d tensor to a new coordinate system or by
substitution of the fundamental and second-harmonic waves in the old coor-
dinate system and decomposing the second-harmonic fields. For example, for
frequency doubling with KDP, which is a negative uniaxial crystal belonging
to the point group 4̄2m, with type-I phase matching:

fundamental : E(ω) = Eo‖Do

second harmonic : D(2ω) = De

Eo║
║De
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wavelength (nm)

refractive
index n

Figure 4.7: Type-I critical phase matching.

be able to compensate for the index difference at the fastly different frequen-
cies. For the case shown in Fig. 4.6, we have exactly ne(2ω) = no (ω), i.e.,
the fundamental wave is the ordinary wave and the second harmonic is the
extraordinary wave. This case is called non-critical phase matching possible
for negative birefringence ne < no. In the case of positive birefringence, the
fundamental wave needs to be the extraordinary wave and the generated har-
monic the ordinary one. Again these cases are called non-critical or 90◦-phase
matching, since both polarizations are along the main axis and no walk-off be-
tween the waves exists. In this case the interaction between the beams would
be infinite. In practice, non-critical phase matching as shown in Fig. 4.6 occurs
only approximately. Often this can be further matched by temperature tuning.
Important examples for this technique is the frequency doubling of 1.06-µm
radiation in LiNbO3, CD∗A and LBO or frequency doubling of 530-nm light
in KDP.

A more general situation is shown in Fig. 4.7. The birefringence is too
strong for non-critical phase matching. However, by angle-tuning with respect
to the optical axis every index value between ne(2ω) and no (2ω) can be dialed
in, especially no (ω) . This phase matching angle, θp, is determined by

n2ω
e (θp) =

{
sin2 θp
(n2ω

e )2
+

cos2 θp
(n2ω

0 )2

}−1/2

= nω
0

which leads to

tan θp =
n2ω
e

n2ω
0

√
(nω

0 )
2 − (n2ω

0 )2

(n2ω
e )2 − (nω

0 )
2 .

Unfortunately, both waves do not any longer propagate exactly along the same
direction, but walk off from each other. The direction of energy flux for the
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type-I PM

type-II PM

2cosjsinj

multiplication with T
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crystal class 2e → o 2o → e
6,4 0 d15 sinϑ
622,422 0 0
6mm,4mm 0 d15 sinϑ
6̄m2 d22 cos2 ϑ cos 3ϕ -d22 cosϑ sin 3ϕ
3m d22 cos2 ϑ cos 3ϕ d15 sinϑ− d22 cosϑ sin 3ϕ
6̄ (d11 sin 3ϕ+ d22 cos 3ϕ) cos2 ϑ (d11 cos 3ϕ− d22 sin 3ϕ) cosϑ
3 (d11 sin 3ϕ+ d22 cos 3ϕ) cos2 ϑ d15 sinϑ+ (d11 cos 3ϕ− d22 sin 3ϕ) cosϑ
32 d11 sin 3ϕ cos2 ϑ d11 cos 3ϕ cosϑ
4̄ (d14 cos 2ϕ− d15 sin 2ϕ) sin 2ϑ − (d14 cos 2ϕ+ d15 cos 2ϕ) sinϑ
4̄2m d14 cos 2ϕ sin 2ϑ −d14 sin 2ϕ sinϑ

Table 4.3: Effective conversion coefficient deff , if Kleinman symmetry is valid.

(1962)). Fig. 4.13 shows a layered medium. In the first layer, frequency dou-
bling occurs. Due to phase mismatch the second harmonic runs out of phase
with the driving wave and therefore the generating polarization. If the sign of
the nonlinearity is switched in the second layer, a phase advance by π is intro-
duced in the driving polarization, which rephases it with the already present
second harmonic and the process continues with maximum efficiency, see Fig.
4.13. In total, this leads again to a quadratic increase of the second harmonic
with distance on average over several periods of the layered medium, as in the
case of phase matching. This is called quasi-phase matching. However, the
curvature of the parabolic growth is weaker in the case of QPM when com-
pared to direct phase matching. To understand this we rewrite Eq. (4.2) for
SHG with a spatially varying nonlinear coefficient

∂Ê(2ω)

∂z
= − jω

n2ωc
deff (z)Ê(ω)Ê(ω)ej(k(2ω)−2k(ω))z. (4.86)

Since the spatial modulation is periodic, we can represent it as a Fourier series

deff (z) =
+∞∑

m=−∞
dme

jmκz. (4.87)

If the period of the nonlinear coefficient corresponds to twice the coherence
length at a given frequency, i.e., κ = k(2ω)−2k(ω), then SHG is rephased and
grows over multiple periods on average like

∂Ê(2ω)

∂z
= − jω

n2ωc
d−1Ê(ω)Ê(ω) (4.88)
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The generated nonlinear polarization in the old coordinate system is then




P (2)
x (2ω)

P (2)
y (2ω)

P (2)
z (2ω)



 = ε0




d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36



 .





Ex(ω)2

Ey(ω)2

Ez(ω)2

2Ey(ω)Ez(ω)
2Ex(ω)Ez(ω)
2Ex(ω)Ey(ω)





= ε0




0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d36



 .





cos2 ϕ
sin2 ϕ
0
0
0

sin (2ϕ)




Êo2




P (2)
x (2ω)

P (2)
y (2ω)

P (2)
z (2ω)



 = ε0




0
0

d36 sin (2ϕ)



 Êo2

In the new system this corresponds to the polarization




P (2)
x′ (2ω)

P (2)
y′ (2ω)

P (2)
z′ (2ω)



 = ε0d36 sin (2ϕ)




0

− sinϑ
cosϑ



 Êo2 (4.84)

since the polarization P (2)
y′ (2ω) is related to the dielectric displacement of the

extraordinary beam. To see that, we would need to rederive Eq. (3.8) in non-
isotropic media for the dielectric displacement, instead of the electric fields

deff = −d36 sin (2ϕ) sinϑ. (4.85)

because of Kleinman symmetry d36 = d14. The effective nonlinear coefficients
for type-I phase matching for the different point groups are given in Table 4.3.

4.4.5 Quasi-phase matching (QPM)

Sometimes phase matching by birefringence is not possible. In that case, or for
achieving a collinear interaction of waves, one can use quasi-phase matching
(QPM), a technique introduced by N. Bloembergen, Nobel Prize in Physics
1981 (J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “In-
teractions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127, 6



12

4.4. PHASE MATCHING 69

phase matching

single crystal periodically poled crystal

Figure 4.13: Growth of second harmonic as a function of distance z in a crystal for
different cases: a) homogeneous crystal and b) periodically poled crystal.

see Fig. 4.14. The other terms average out. Reversal of deff can be achieved in
ferroelectrica, by poling the direction of the polarization periodically. Usually
this is done already during growth of the crystal, or afterwards by applying
strong periodically poled electric fields at elevated temperatures.

Figure 4.14: Quasi-phase matching. The wave number mismatch is compensated by
periodic poling of the effective nonlinear coefficient.
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http://www.covesion.com

high technological relevance!

custom-engineer phase matching
e.g., mid-IR, THz generation
fan-out QPM gratings
chirped QPM gratings
waveguide QPM devices etc.
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Figure 4.13: Growth of second harmonic as a function of distance z in a crystal for
different cases: a) homogeneous crystal and b) periodically poled crystal.

see Fig. 4.14. The other terms average out. Reversal of deff can be achieved in
ferroelectrica, by poling the direction of the polarization periodically. Usually
this is done already during growth of the crystal, or afterwards by applying
strong periodically poled electric fields at elevated temperatures.

Figure 4.14: Quasi-phase matching. The wave number mismatch is compensated by
periodic poling of the effective nonlinear coefficient.

Dktotal= Dkprocess+2p/L(z)
L(z) grating period

no walk-off
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