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4.4.3 Frequency doubling of pulses
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is the inverse group velocity. Then the polarization at the sum-frequency is
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The electric field at frequency w grows according to Eq. (3.8)
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If F;(w) is the spectrum of the pulse centered around wy, then the integral will
only be non-zero around w ~ 2wy The wave number k (w) around 2wy is
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For the case of phase matching (ks = 2ky) and low conversion
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The electric field at the second harmonic can then be written as a Fourier
transform. In the time domain we obtain with the convolution theorem
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For a fundamental wave F;(t) = Aj (t)cos (wot — koz) we obtain a second
harmonic wave Fs (£,t) = A (£,t) cos (2wot — 2k 2)
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where Aj (£, 1) is the envelope of the generated second-harmonic pulse obtained

by a convolution of a squared input field and a rectangularly shaped pulse of

duration (1)1—2 — ;) ?. In the limit (—2 — ﬁ) ¢ — 0, we obtain
o R Iarge doubling bandwidth
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In the case of (U— — —) ¢ > t, = pulse length, we obtain from Eq. (4.77) a
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rectangularly shaped pulse with duration very small doubling bandwidth

Lol ol

1

Uqg

2w



4.4.3 Effective nonlinear coefficients

Fig. 4.12. The d tensor of the crystal in a coordinate system (x,y, z) aligned

with the main axis (a, b, ¢) of the index ellipsoid is in diagonal form. For the
purpose of phase matching the crystal is rotated such that the beams propa-
gate in direction z’ of a new coordinate system (x’,y’,z’). The new coordinate
system follows from the old one by two transformations, a rotation around the
z-axis by an angle ¢ and another rotation around the x’-axis by an angle -1.
The transformation of a vector u from the old to the new coordinate system

point group 42m .
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kllZ




4.4.3 Effective nonlinear coefficients
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The fundamental and second-harmonic waves are ordinary or extraordinary
waves. The ordinary wave, (E||D), is polarized along the z'-axis



E° = F°.x' = E°(cosp - x+sing-y) (4.82)

T'he dielectric displacement of the extraordinary beam (E }f D), is polarized
Wong the y -axis

D¢=D¢y' =D (—sinpcostd-x+cospcost-y —sint}-z).  (4.83)

I'here are two possible ways to determine the effective nonlinear coefficient.
One way is by transforming the d tensor to a new coordinate system or by
substitution of the fundamental and second-harmonic waves in the old coor-
linate system and decomposing the second-harmonic fields. For example, for
Tequency doubling with KDP, which is a negative uniaxial crystal belonging
'0 the point group 42m, with type-I phase matching:

refractive
index n

fundamental : E(w) = E°|D°

second harmonic : D(2w) = D¢

x‘/z }‘L wavelength (nm) 8

Figure 4.7: Type-I critical phase matching.
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In the new system this corresponds to the polarization multiplication with T
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since the polarization P;, ')('Zw) 1s related to the dielectric displacement of the
extraordinary beam. To see that, we would need to rederive Eq. (3.8) in non-
1sotropic media for the dielectric displacement, mstead of the electric fields

de.ff = _d36 sin (2,9) sin 9.

(4.85)

Because of Kleinman symmetry dsg = dyy. The effective nonlinear coeflicients
for type-I phase matching for the different point groups are given in Table 4.3.
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Table 4.3: Effective conversion coefficient d.sy, if Kleinman symmetry is valid.
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4.4.5 Quasi-phase matching (QPM)

Sometimes to achieve phase matching of a nonlinear process in the desired
wavelength range 1s not possible by birefringence only. In that case, or for
achieving a collinear interaction of waves, one can use quasi-phase matching
(QPM), a technique introduced by N. Bloembergen, Nobel Prize in Physics
1981 (J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “In-

teractions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127, 6
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phase matching
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b) periodically poled crystal

high technological relevance!

custom-engineer phase matching
e.g., mid-IR, THz generation

fan-out QPM gratings
chirped QPM gratings
waveguide QPM devices etc.

http://www.covesion.com

Figure 4.13: Growth of second harmonic as a function of distance z in a crystal for
different cases: a) homogeneous crystal and b) periodically poled crystal.
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occurs. Due to phase mismatch the second harmonic runs out of phase with
the driving wave and therefore the generating polarization. If the sign of the
nonlinearity 1s switched 1n the second layer, a phase advance by 7 1s introduced
in the driving polarization, which rephases 1t with the already present second
harmonic and the process continues with maximum efficiency, see Fig. 4.13.
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Since the spatial modulation is periodic, we can represent it as a Fourier series
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If the period of the nonlinear coefficient corresponds to twice the coherence
length at a given frequency, i.e., k = k(2w) — 2k(w), then SHG is rephased and
grows over multiple periods on average like
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4.5 Optical rectification

Beside frequency doubling, the y(? nonlinearity also gives rise to optical rec-
tification, that results in a DC voltage in the nonlinear optical medium

P; (0) = eoxijn (0; w1, —w1) Ej (wi) By (w1).- (4.89)

Due to dispersion, in general

Xijk (0 1 w1, —w1) # Xajk (2w : w1, w1), (4.90)
but due to the symmetry relations for y in lossless media, 1t holds
Xijk (0:wy,—wq) = Xkji (wy : wy,0). (4.91)

This ensures that the coeflicients for optical rectification are the same as for

the Pockels effect. Optical rectification can be used to generate short THz
pulses via rectification of femtosecond laser pulses.
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4.6 Manley-Rowe relations

Three plane waves propagating in z-direction with frequencies wy, wo, and
wy, and interacting via a Y®) nonlinearity, can be described by the coupled
equations

dE (w A . _—
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with coupling coefficients and difference wave number
K; = widegs/n;co, and Ak = kg — ky — ks. (4.95)

We multiply Eq. (4.92) by nicoco B5* (wy) /2, and add the complex conjugated
part, thus obtaining
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We again assume a lossless medium, 1.e., desr = d;‘ff, and treat Egs. (4.93),

(4.94) similar to Eq. (4.92), and obtain
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Le., for each photon, that is created (annihilated) at frequency w3, one photon

at frequency w; and one photon at frequency wy must be annihilated (created).
The corresponding spatial variations of the intensities ‘” d‘:‘) scale with the
frequencies w;. This 1s an mteresting result, because no quantum-mechanical
treatment has been used to obtain 1t. Nevertheless, this classical nonlinear
electrodynamical treatment already strongly suggests a photon hypothesis £ =
n- hv.
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