NLO Lecture 6: Phase Matching

4.3 Wave propagation in linear non-isotropic media
(repetition)
4.4 Phase matching

4.4.1 Birefringent phase matching

4.4.2 Frequency doubling of Gaussian beams

Later:

Quasi-Phasematching in periodically poled crystals, fibers, waveguides, Bragg-structures
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4.3 Wave propagation in linear non-isotropic media

VxVxE=—wueE (4.21)



Wave propagation in linear non-isotropic media

As in isotropic media, there are plane-wave solutions with

A

E = E0€_jk'r (422)
that obey ) X
kxk x E = —wufE (4.23)

Tensor
The wave vector is orthogonal to the displacement vector but in general

not anymore to the electric field

k L (¢E=D).
From Faraday’s law we have

jkxE=—-wB (4.24)
and therefore, as in the isotropic case, we have

k1B H



E H ID. :only when propagation parallel to a main axis

Poynting vector S = E x H, is always normal to E and H

not necessarily parallel to the wave vector

D/ ] D parallel to
__—1 = _— phase fronts
i E in general not
! parallel to phase
\ =K fronts
P i
i S not necessarily

parallel to k

\<

Figure 4.3: Relationship between field vectors, wave vector and Poynting vector of
a plane wave in birefringent media.



Form of dielectric susceptibility tensor

xx 0 0
isotropic 0 xx O cubic
0 0 oz
Cax 00 ] tetragonal
uniaxial 0 xx 0 trigonal
e.g. Beta Barium Borate (BBO)
Lithium Niobate (LN) ] 0 0 L2 ] hexagonal
2z 0 0 |
biaxial 0 wyy O orthorhombic
0 0 =zz
o 0 xz
0 gy O monoclinic
rxz 0 2z
[ 1 Ty T2 )
Yy Yy Yz triclinic
| Tz Yz 2z |

Table 4.1: Form of the dielectric susceptibility tensor for the different crystal sys-
tems.



In the following, we consider the uniaxial case
Exa = Eyy — €1 7é €2z — €3

The corresponding refractive indices are called ordinary and extraordinary
indices.

NG = Ny # Ng = Ne.

Further one distinguishes between positive uniaxial, n., > n,, and negativ
uniaxial, n, < n,, crystals. z

k
Propagation different o

from main axes

Figure 4.4: Index ellipsoid



Nonlinear optical susceptibilities

generality, we assume the wave vector lies in the x-z-plane. If we inspect Eq.
(4.2T3) closer, we find with A x (BxC)=(A-C)B-—(A-B)C

kxk x E = —wz,u{)s];?

<k . E) k_k2E + W2N05E — (). (Possible polarizations) (425)

k2n2 + k2— k2 kok,
k2n2— k2 =0 (4.26)
ko k, k2n2 + k2—k?

. : 2 _ 7.2, 2
y-polarized wave decouples = ordinary wave k* = kono.

As the wave in an isotropic medium, it is purely transversal, k L E | H.

Wave in the x-z plane with polarization in x-z plane: extraordinary wave

k2n? + k2—k? Kok,

det) 1 k. k2n2 + k2—k?

=0



or after some brief transformations

2 2
ke ke o
nZ n2 0
o e

(4.27)

With k, = ksin (0), k, = kcos (0) and k = n (0) ky we obtain for the refractive

index of the extraordinary wave

n ()’ Mo

Ug — vkw(k) H Sa

normal to index ellipsoid and
parallel to Poynting vector

z
\
k
RN

N

N
digf |\ dk,
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Figure 4.5: Cut through the surface of the index ellipsoid with constant free-space

value ko (kz, ky, k) or frequencies.



and is normal to the index ellipsoid. To determine the “walk-off” angle between
the Poynting vector and the wave vector, we consider

k
tanf = —
an k.
dk.,
t = — :
an ¢ i
From ]‘”2) + Ky _ 12 we find
ns o n:
2k, dk, 2k,dk,
e + = 0, (4.29)
and , ,
n:k, _n;
tan ¢ = 2k n? tand .

Therefore, we obtain for the walk-off angle between Poynting vector and wave
number vector

~ tan6f —tang
1+ tanftano

(1 — Z—é) tan 0

e

tan p = tan (0 — ¢)

(4.30)

tan o =

TL2 j
1+ n—Stan29
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Intermediate Summary

k not same direction as S (“walk-off”)

Refractive index depends on polarization and angle
0 betweenk and optical axis (2):

Ng, Ne (9)
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4.4 Phase matching

4.4.1 Birefringent phase matching
In SHG, we introduced the coherence length

Aw)
4(n(2w) — n(w))

0, = 7k (2w) — 2k(w)| ! =

coherence length may be as short as a few microns, if fundamental and second
harmonic have the same polarization.

Propagation along main axis with 'efractive 4

orthorgonal polarization (and index n ( ) — ( )
zero-walkoff angles) ne 2w nO W
non-critical o

phase matching \ e

here: for neg. birefringence, similar for
pos. birefringence

>) _—)—— e —
)
>) -]

wavelength (nm)

12
Figure 4.6: Non-critical phase matching



only approximately. Often this can be further matched by temperature tuning.
Important examples for this technique is the frequency doubling of 1.06-ym
radiation in LiNbO3, CD*A and LBO or frequency doubling of 530-nm light
in KDP.

- Type-I critical phase-matching-
refractive
index n

|

wavelength (nm)

Figure 4.7: Type-I critical phase matching.
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A more general situation is shown in Fig. 4.7. The birefringence is too
strong for non-critical phase matching. However, by angle-tuning with respect
to the optical axis every index value between n.(2w) and n, (2w) can be dialed
in, especially n, (w). This phase matching angle, 6, is determined by

) 2 —1/2 for 0, — 90d
sin” 6 cos” 0 or 9, = 90deg
2w _ 4 p W ---> Non-critical phase
(0,) - { } s

e (ngw)Q (ngw)Q matching

n

which leads to

tan 0, =

n2e \/ (n)? — (n2)’

ng” | (n2)” — (nf)*

Walk-off angle (between fundamental and harmonic propagation direction)
(ng)? 1 1 , An |
tan p = S5 — Ty (SN 20, &~ — sin 20,
2 L(mg)? (ng*) n

only valid for small birefringence
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Walk - Off

(n%)? 1 1 , An
tan p = 5 2 (22 sin 20, ~ —— sin 20,
7xis
ep
NSRRI

— 20

Figure 4.8: Walk-off between ordinary and extraordinary wave.
VT
14 a — F’UJO .

Gaussian beam with w, — walk-off length
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Type-Il phase matching

refractive A

index n
nO
Phase matching achieved when:
w ]' w w n
ng (0p) = §{ne (0p) +ng }- c
- >
A2 A wavelength (nm)

Typel Type ll
ne < n, (neg. uniaxial) :| oo - e oe — e
ne > N, (pos. uniaxial) :| ee =0 o0e — 0

Table 4.2: Phase-matching configurations
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Acceptance angle

d
Ak = (ko —2H0], + = (ko — 2k)| DG+ ..
» - df 0,
~ ATAG [ dng,(0)  dng
A df o ),

For type-I phase matching, there is dn,,/df = dn¥/df = 0 and
sin2f  cos?0 )V
w(0) = .
a0 = { i

The angle-induced phase mismatch can then be rewritten as

X WANG, 2sinfcos  2sinfcosb
Ak = — () —
) ”2“{ (n2+)? (n3°)? }
27TA9 W\ 3 1 1 .
- a0 {<n3w>2‘<nzw>2}sm2€p'

For a given crystal length ¢ the phase mismatch should not be larger than the
half-width at half-maximum (HWHM) of the sinc*— function, i.e., Ak = 7 /¢,
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For a given crystal length ¢ the phase mismatch should not be larger than the
half-width at half-maximum (HWHM) of the sinc®*— function, i.e., Ak = 7/¢,

_ A e[ L] -
~20sin20, 00 (22 (n2)?

With An? = n2¥ —n? (n2¥)~? = (n?)~2 — 2(n?) 3 An* and n* = n%, we

A6

obtain
A

A = — :
0 40 sin 20, An?@

For most cases |A#| is on the order of a few milliradians, e.g., for KHyPO,
(KDP) at A = 1.064 um , n¥ = 1.466, n* = 1.506, n*¥ = 1.487, n** = 1.534.
For this case, the phase-matching angle is 0, = 49.9° and for a 1-cm long

crystal, there is |A#| = 0.001.
For type-1I phase matching under the condition n2(6,) = [n¥ + n¥] /2, we

obtain 20 [ _dn* (0 dn¥ (60
Op

Ak A do do
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Weak birefringence

For weak birefringence and if the wavelength dependence of both indices is
similar, than the acceptance angle is roughly twice as large as for type-I phase
matching. For non-critical phase matching, that is 90°-phase matching, the
above derivation can not be used, since the phase-matching error depends
second order on the acceptance angle. One finds

o, e f 11 ,
= 200 s — o } (49 (1.33)

(15

Ak

which simplifies for small birefringence to

\ 1/2
Al ~ { STA T } (4.34)

For A =1 um, An = 0.047 and ¢ = 1 cm, we find |Af| = 0.02, e.g., this accep-
tance angle is an order of magnitude higher than for cricital phase matching,
which justifies the names critical and non-critical phase matching.
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Acceptance bandwidth

Akzw+{%(k2w—2kw)} AN+ ... (4.35)

p

d [No, Ny AN [ 1 dns, dn,,
~ AT AN - P Sl - 4.36
" {d)\ ( P >}A A {203()\/2) X }Ap (4:36)

A)\{ldn

_dn
by AN

2.d\

= 4T —

A

w} (4.37)

The acceptance bandwidth follows again from the condition, that the phase

mismatch over the propagation length must stay smaller than the HWHM of
the sinc*— function, i.e., |Ak| < 7/f or
}—1

AJLdn
40 1 2 dA
where )\ is the wavelength of the fundamental wave and £ the interaction length.

The other way around, if a bandwidth 2A\ needs to be frequency doubled, a
phase matched crystal can only have the length ¢

N (1ldn dn| )7
“m{m —aw} (4.39)

dn

AN = — —
o, QA

(4.38)

~

2w
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Acceptance bandwidth... when frequency doubling a pulse

(temporal overlap)
its second harmonic. The group velocity of a pulse is given by

dw d /c c ckdnd\
_ W @ ey 6 cianaa 4.4
YT dk T dk (n ) n n?d\dk (4.40)
where
dA-_ df2my (2 2mdnd)
dt dk\ k ) k2 k d\dk
d\ — (2mn/k?)
dx ) (4.41)
dk — Zmdn
that is )
c Adn |
— {1 == , 4.42
Vs n{ nd)\} (4.42)

Two pulses with duration ¢, but with different group velocities will overlap

over a length
(=~ by { 1 }_1 :
2w

2 (v

1

Vg

w
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Acceptance bandwidth... when frequency doubling a pulse

With Eq. (4.42) we obtain

toe [1 dn
:’“5{55

dn
0y AN

)

Using the time-bandwidth relationship

1 A2

™ RFT A

(4.43)

we find the maximum crystal length similar to the one derived from the phase
matching condition (4.39)
}1

T 2AN 1 2 d)

_dn
vy AN




4.4.2 Frequency doubling of Gaussian beams

A laser emits radiation in a TEMy, - mode, i.e., a Gaussian beam. The electric
field of a Gaussian beam is described by

A

E(x,y,z2)

A wo

=

exp {—(fc2 +y

(arctan)

2){

oy - w0{1+(73%)2}1/2

1

exp{—j(kz — @)} X

gk

A2
_ -1) 7~
¢ = tan {ng }

o=

2
Twg

A2

_|_

w?(2)

)]

2R(z)

)

(4.44)

(4.45)

(4.46)

(4.47)
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Gaussian beam

, 2b
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|
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Gaussian laser beam
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Figure 4.10: Intensity distribution of a Gaussian beam.

The confocal parameter of the beam is twice the Rayleigh range and given by

2
21wy

b —
A

see Fig. 4.10. The Rayleigh range is the distance, over which the beam cross
sectional area doubles, mw?(z) < 2rw?. The opening angle of the beam due to

diffraction is
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Gaussian beam continued

In the near field (z < b), the beam is close to a plane wave

I2+y2

E(:L',y) = Eyexp (— 5 > exp(—jkz)

Wy

or

A

A T .
E(r) = Eyexp (_E) exp(—jkz)
0

2

with the peak intensity

27
nc€0/ / ]EO\ exp( 2) rdrdeo
0
nce TTw
0|E0|2< 2“)#13 ]0< )

(4.50)

(4.51)

(4.52)

(4.53)

Iy = 22| Ep|? on beam axis. The effective area, Aeyy,
of a Gaussian beam is therefore

P mw?
Aeff — I_O — TO

(4.54)
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Gaussian beam continued

~ /]"2

Plane wave with radial beam profile: E(rr) — EO exp <— —2) exp(—jkz)
w

0

~

jwiderr - .
Eo(r,0) = L5l B20y0 = ik B2(r)0

Mo, C

widegy wadegy

where we introduced the interaction coefficient x = =
Gaussian shape for the second harmonic

T2,C 2no,c

2

Es(r () = —jﬁ:EA?fEe—Qrz/im :

The frequency-doubled beam shows only half the cross section compared to the

fundamental beam ws = w; /+/2 or the confocal parameter by = w32/ (\/2) =

7mwi/\ = by. Thus the confocal parameters of both beams are the same. The
total generated power at 2w is

!

2 4
2w 27242 5
— Pk ET(7 )2 (4.58)

N

nagceo [F7 [ - 5 O NowCEY gy [(TWT
|Es(r) | rdrdo = — 5 r-E (4.57)
0o Jo
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Estimate of conversion efficiency for Gaussian beam

similar to the case of plane waves. From Eq. (4.59) we obtain for the conversion

efficiency

_— Py _ 2w? (dsz> (i) 2 (4.61)

P g3\ nd Tw?

Thus the conversion efficiency is proportional to (dgf f / n3). Thus for choosing
a crystal for efficient frequency doubling, not only the elfective nonlinearity
ders should be as high as possible, but simultaneously, the refractive index n
should be small. Fig. 4.11 gives an overview over the figure of merit defined
by FOM= d;,;/n’. From Fig. 4.10 we see that for £ > b the beam cross
section increases and the conversion drops. A numerical optimization without
any approximations results in the crystal length ¢ = 2.84 - b for maximum

conversion. With this result and b = 27wi /A, we obtain for the maximum
conversion efficiency

P2 2&)2 dsz
nopt — Fl — 80)\03 ( n3 568P1 . g (462)

The weaker the focus and the longer the crystal, the larger is the conversion
in a x(?-process, if phase matching is maintained over the full length.
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Figure 4.11: Figure of merit (FOM) for different nonlinear optical materials.
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