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where the sum over P is the summation over all possible permutations of
frequencies ω1, ....,ωn, that lead to the same resulting frequency ωb and m is
the number of fields with a frequency different from zero. For visualization a
few examples

P̂ (2)
i (ω3) = ε0

∑

jk

χ(2)
ijk(ω3 : ω1,ω2)Êj(ω1)Êk(ω2), (2.6)

ω3 = ω1 + ω2 and k3 = k1 + k2. (2.7)

( −→ Sum Frequency Generation, SFG)

P̂ (2)
i (ω3) = ε0

∑

jk

χ(2)
ijk(ω3 : ω1,−ω2)Êj(ω1)Ê

∗
k(ω2), (2.8)

ω3 = ω1 − ω2 und k3 = k1 − k2. (2.9)

( −→ Differenz Frequency Generation, DFG)

P̂ (3)
i (ω4) =

6ε0
4

∑

jkl

χ(3)
ijkl(ω4 : ω1,ω2,−ω3)Êj(ω1)Êk(ω2)Ê

∗
l (ω3), (2.10)

ω4 = ω1 + ω2 − ω3 und k4 = k1 + k2 − k3. (2.11)

( −→ Four Wave Mixing, FWM)

Remember, the susceptibilities are symmetric with respect to a permutation
of the input frequencies {ωi}, since it is arbitrary which frequency is considered
to be ω1,i.e.there is

χ(n)
ijk(ω : ω1,ω2, ...) = χ(n)

ikj(ω : ω2,ω1, ...). (2.12)

.

2.2 Classical model

To illustrate some interesting properties of the nonlinear optical susceptibili-
ties, we consider the following simple one dimensional model for a nonlinear
dielectric matieral composed of electrons that move in a simple anharmonic
potential V (x). The restoring force of this potential is characterized by being
a nonlinear function of the excursion

F (x) = −∂V (x)

∂x
= −mω2

0x

(
1 +

x

a
+

x2

b2

)
(2.13)

= −mω2
0x−mβ2x

2 −mβ3x
3 (2.14)

with β2 =
ω2
0

a
and β3 =

ω2
0

b2
. (2.15)

2.2. CLASSICAL MODEL 17

The term characterized by β2 results from the asymmetric part of the po-
tential Potential and the term characterized by β3 from the symmetric part.
The equation of motion for the electron with an additional external field E(t)
including also a damping force proportional to velocity ( for example by radi-
ation damping) is than given by

m
d2x

dt2
= −2

ω0

Q
m
dx

dt
+ F (x)− e0E(t)

d2x

dt2
+ 2

ω0

Q

dx

dt
+ ω2

0x+ β2x
2 + β3x

3 = −e0
m
E(t). (2.16)

where ω0 is the resonance frequency of a second order system and 2ω0
Q the

damping constant, and. Q the quality factor of the oscillation. If the an-
harmonicity is weak, and also the applied external field is weak, so that the
resulting motion is small, i.e..
|β2x+ β3x2| " ω2

0, then eq..(??) can be solved with perturbation theory:

x(t) = x0(t) + εx1(t) + ε2x2(t) + ... (2.17)

where the perturbation terms with β2 and β3 are of order ε. Substitution
of the ansatz (??) into eq..(??) and comparing coefficients of equal power in ε
results in

(0) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x0(t) = −e0

m
E(t) (2.18)

(1) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x1(t) = −β2 (x0)

2 − β3 (x0)
3 (2.19)

(2) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x2(t) = −2β2x0x1 − 3β3x

2
0x1 (2.20)

2.2.1 Linear Susceptibility

In zero’s order deflection, and therefore the polarization, is linear with respect
to the field and the complexe deviation amplitude x̂0(ω) is

x0(t) =
1

2

(
x̂0(ω)e

jωt + c.c.
)

P (1)(t) =
1

2

(
P̂ (1)(ω)ejωt + c.c.

)
= −Ne0 · x0(t)

Perturbation Solution:
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In zero’s order deflection, and therefore the polarization, is linear with respect
to the field and the complexe deviation amplitude x̂0(ω) is

x0(t) =
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2

(
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(
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Zero order solution
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Real and Imaginary Part of the Susceptibility
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in case of a time varying field with amplitude Ê(ω) and frequency ω

E(t) =
1

2

(
Ê(ω)ejωt + c.c.

)
(2.21)

e Eq.l.(2.18) with x0(t) or its Fourier transforms

(0) : x0(ω) =
−e0

m
(
ω2
0 − ω2 + j 2

Qω0ω
)Ê(ω),

(1) : P̂ (1)(ω) =
Ne20

m
(
ω2
0 − ω2 + j 2

Qω0ω
)Ê(ω) = ε0χ

(1)Ê(ω).

Therefore, the linear susceptibility is

χ(1)(ω) =
Ne20

mε0
(
ω2
0 − ω2 + j 2

Qω0ω
) =

ω2
P(

ω2
0 − ω2 + j 2

Qω0ω
) (2.22)

where ωP =
√

Ne20
mε0

is.the plasma frequency.Eq.(??) is the Drude-Lorenz expres-
sion for the dispersion in a dielectric. Real- und imaginary parts of the linear
suszeptibility are shown in Figure 2.1 for a quality factor Q = 10.

χ(1) = χ(1)′ + jχ(1)′′ (2.23)

χ(1)′ =
ω2
P

ω2
0

(
1− ω2

ω2
0

)

[(
1− ω2

ω2
0

)2
+ 4

Q2
ω2

ω2
0

] (2.24)

χ(1)′′ = −ω2
P

ω2
0

2
Q

ω
ω0[(

1− ω2

ω2
0

)2
+ 4

Q2
ω2

ω2
0

] (2.25)

For a sufficiently large offset from a resonance (transition) the real part usu-
ally dominates, i.e. it does make a contribution to the refractive index and the
absorption from the transition is neglegible. This is because the real part only
drops inversely proportional to the offset frequency, whereas the absorption
drops off with the square, if one expands the above expressions as a function
of the offset frequency.In total, this may result in large frequency intervals,
where the absorption in a medium can be neglected, but has a refractive index
significantly different from 1. The medium is completely reactive.
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Figure 2.1: Susceptibility arising from the linear harmonic oscillator model for the
electron cloud surrounding an atomic core.

For high quality factors, Q ≥ 3 and the positive frequency range, the
susceptibility can be approximated by a complexe Lorentzian profile, i.e. the
second order system is replaced by a complexe first order system.

χ(1)(ω) =
ω2
P(

ω2
0 − ω2 + j 2

Qω0ω
) (2.26)

=
ω2
P

2jω′
0



 1(
1
Q + j (ω − ω′

0)
) − 1(

1
Q + j (ω + ω′

0)
)



 (2.27)

≈ ω2
P

2jω0



 1(
1
Q + j (ω − ω0)

) − 1(
1
Q + j (ω + ω0)

)



 (2.28)

≈ ω2
P

2jω0

1(
1
Q + j (ω − ω0)

) , für ω um +ω0. (2.29)

where ω′
0 = ω0

√
1− 1

Q2 is the exact resonance frequency of the damped

harmonic oscillator.

Real and Imaginary Part of the Susceptibility
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2.2.2. Nonlinear Susceptibility
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2.2.2 Nonlinear susceptibility

Here, we consider weak nonlinearities and, therefore, we consider only the term
x(1) in the solution.

x1(t) = x̂1(0) +
1

2

(
x̂1(ω)e

jωt + c.c.
)

+
1

2

(
x̂1(2ω)e

j2ωt + c.c.
)
+

1

2

(
x̂1(3ω)e

j3ωt + c.c.
)

With the susceptibility χ(1)(ω), which is up to the prefactor−Ne0/ε0 equal to
the impulse repsonse of Eq.(2.18), we can find the first order amplitudes of all
the different frequency components according to

x̂1(0) = −β2
1

ω2
0

∣∣∣∣∣∣



 −e0

m
(
ω2
0 − ω2 + j 2

Qω0ω
)





∣∣∣∣∣∣

2 ∣∣∣Ê(ω)
∣∣∣
2

(2.30)

= −β2
χ(1)(0)

ω2
P

(
−Ne0

ε0

)−2 ∣∣χ(1)(ω)
∣∣2
∣∣∣Ê(ω)

∣∣∣
2

, (2.31)

x̂1(2ω) =
−β2

2

χ(1)(2ω)

ω2
P

(
−Ne0

ε0

)−2

χ(1)(ω)2Ê(ω)2, (2.32)

x̂1(ω) =
−3β3

4

χ(1)(ω)

ω2
P

(
−Ne0

ε0

)−3 ∣∣χ(1)(ω)
∣∣2 (χ(1)(ω)

)
(2.33)

×
∣∣∣Ê(ω)

∣∣∣
2

Ê(ω), (2.34)

x̂1(3ω) =
−β3

4

χ(1)(3ω)

ω2
P

(
−Ne0

ε0

)−3

χ(1)(ω)3Ê(ω)3. (2.35)

From these solutions we can derive the corresponding susceptibilities ac-
cording to

χ(2)(0;ω,−ω) = −mβ2

e0

(
−Ne0

ε0

)−2

χ(1)(0)
∣∣χ(1)(ω)

∣∣2 , (2.36)

χ(2)(2ω;ω,ω) =
−mβ2

2e0

(
−Ne0

ε0

)−2

χ(1)(2ω)χ(1)(ω)2, (2.37)

χ(3)(ω;ω,−ω,ω) =
−3mβ3

4e0

(
−Ne0

ε0

)−3 ∣∣χ(1)(ω)
∣∣2 (χ(1)(ω)

)2
, (2.38)

χ(3)(3ω;ω,ω,ω) =
−mβ3

4e0

(
−Ne0

ε0

)−3

χ(1)(3ω)χ(1)(ω)3. (2.39)
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∣∣∣Ê(ω)

∣∣∣
2

, (2.31)

x̂1(2ω) =
−β2

2

χ(1)(2ω)

ω2
P

(
−Ne0

ε0

)−2
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j2ωt + c.c.
)
+

1

2

(
x̂1(3ω)e

j3ωt + c.c.
)

With the susceptibility χ(1)(ω), which is up to the prefactor−Ne0/ε0 equal to
the impulse repsonse of Eq.(2.18), we can find the first order amplitudes of all
the different frequency components according to

x̂1(0) = −β2
1

ω2
0

∣∣∣∣∣∣



 −e0

m
(
ω2
0 − ω2 + j 2

Qω0ω
)





∣∣∣∣∣∣

2 ∣∣∣Ê(ω)
∣∣∣
2

(2.30)

= −β2
χ(1)(0)

ω2
P

(
−Ne0

ε0

)−2 ∣∣χ(1)(ω)
∣∣2
∣∣∣Ê(ω)

∣∣∣
2

, (2.31)

x̂1(2ω) =
−β2

2

χ(1)(2ω)

ω2
P

(
−Ne0

ε0

)−2

χ(1)(ω)2Ê(ω)2, (2.32)

x̂1(ω) =
−3β3

4

χ(1)(ω)

ω2
P

(
−Ne0

ε0

)−3 ∣∣χ(1)(ω)
∣∣2 (χ(1)(ω)

)
(2.33)

×
∣∣∣Ê(ω)

∣∣∣
2

Ê(ω), (2.34)

x̂1(3ω) =
−β3

4

χ(1)(3ω)

ω2
P

(
−Ne0

ε0

)−3

χ(1)(ω)3Ê(ω)3. (2.35)

From these solutions we can derive the corresponding susceptibilities ac-
cording to

χ(2)(0;ω,−ω) = −mβ2

e0

(
−Ne0

ε0

)−2

χ(1)(0)
∣∣χ(1)(ω)

∣∣2 , (2.36)

χ(2)(2ω;ω,ω) =
−mβ2

2e0

(
−Ne0

ε0

)−2

χ(1)(2ω)χ(1)(ω)2, (2.37)

χ(3)(ω;ω,−ω,ω) =
−3mβ3

4e0

(
−Ne0

ε0

)−3 ∣∣χ(1)(ω)
∣∣2 (χ(1)(ω)

)2
, (2.38)

χ(3)(3ω;ω,ω,ω) =
−mβ3

4e0

(
−Ne0

ε0

)−3

χ(1)(3ω)χ(1)(ω)3. (2.39)
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2.3 Miller’s d-Coefficient

2.3. MILLER’S -δ COEFFIZIENT 21

Thus in this pertrubation theory, we can express teh higher order suscep-
tibilities as a product of the first order susceptibilities which are evaluated at
the input or output frequencies. This means that nonlinear optical effects
become large, when either one of the input frequencies is resonant with a tran-
sition or at least the generated frequency is resonant (resonant enhancement).
The other way around is, that we can suppress frequency products by not
choosen them to be resonant optical nonlinearities. In general resonantly en-
hanced nonlinearities are always very lossy and therefore not useful for efficient
frequency conversion. In applications, where losses are very detremental the
participating frequencies are chosen nonresonant.

2.3 Miller’s -δ coeffizient

Experimentally one finds, that the nonlinear suszeptibility for the second har-
monic χ(2)(2ω;ω,ω) does not depend strongly on the material. Due to the
relationships between the nonlinear suszeptibility and the linear susceptibili-
ties one can define the Miller coefficients. 2.37 by

δijk =
χ(2)
ijk(2ω : ω,ω)

χ(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω)

=
χ(2)
ijk(2ω : ω,ω)

(n2(2ω)− 1) (n2(ω)− 1)2

=
−mβ2

2

ε20
N2e30

.

Experimentally one finds, that these coefficients do not depend strongly on the
material. Assuming that the deviation x see Eq.(2.13is the lattice constant is
d a ≈ (N)−1/3. Then we obtain with Eq.(2.15) for the Miller coefiicient.

|δijk| ≈
mω2

0

2

ε20
N5/3e30

.

If we assume that the mid-IR channels are λ0 = 200 nm, ω0 = 3π· fs−1and the
military in the vehicle and the near infrared transparent is. With a = 3 ·10−10

m−1,

|δijk| ≈ 3.7 · 10−12 V

m

agrees well with the given susceptibility in table 2.1:
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2.4 Properties of the nonlinear susceptibilities

11

2.4.1 Physical fields are real

2.4.2 Permutation symmetry
numbering 1 to n arbitrary ® use symmetric definition



2.4.3 Symmetry for lossless media

12

two additional symmetries:
• imaginary part of the susceptibility describes loss and gain
® susceptibilities of lossless media are real

• complete permutation symmetry independent, if the frequency is 
an input or output frequency

In combination with first symmetry (Eq. (2.40))



2.4.4 Kleinman’s symmetry

13

low-frequency range: medium lossless, 
susceptibilities essentially independent of wavelength
® indices of susceptibilities can arbitrarily be permuted,

nonlinearity responds instantaneously to the electric field



2.4.5 Neumann’s principle

14

coordinate transformations (inversion, mirror image and rotation) T
of field and polarization vectors E and P

inversion, mirror image and rotation are 
orthogonal transformations: 



15

employing Einstein’s summation convention

relations in the two coordinate systems

Then

® nonlinear susceptibilities are tensors
transformations, that do not change the physical reference between 
the fields and media, leave the susceptibilities invariant. 
The 32 crystal classes, that can be derived from the 7 crystal 
systems, are characterized by being invariant under a point 
group. I.e., the susceptibility tensor of materials, belonging to a 
certain crystal class, must be invariant under the corresponding 
point group (Neumann’s principle).



16

Example: let’s consider inversion

susceptibility tensor of the inverted medium

If the medium is invariant under inversion, it follows for n=even

i.e., in an inversion symmetric medium, the susceptibility 
tensors of even orders vanish 
(no linear electro-optic effect, no SHG)

Of the 32 crystal classes, already 11 possess inversion symmetry. 
Remaining 21 non-centrosymmetric crystal classes, the number of 
nonvanishing tensor elements        further reduce because of other 
symmetries. The symmetry properties of        are the same as those 
of the piezo-electric tensor.



17

If the even nonlinear optical processes are forbidden by symmetry 
(e.g., in media such as glasses, gases, fluids), processes of third 
order are the dominating nonlinearity. The existing inversion 
symmetry also reduces the non-vanishing susceptibility tensor 
elements of third order         .



2.5 The reduced susceptibility tensor of second order

18

second-order susceptibilities are expressed in terms of nonlinear
coefficients

If Kleinmann symmetry condition is valid (or for SHG), the nonlinear 
coefficients can be formulated in reduced form                        , i.e., 
in these cases the indices j and k can be permuted.

For SHG


