NLO Lecture 3: Nonlinear Optical Susceptibilities
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2.2 Classical model for nonlinear optical suszeptibility
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Perturbation Solution:
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2.2.1 Linear Susceptibility
1
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Eq. (2.18) with xo(t) or its Fourier transforms
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Real and Imaginary Part of the Susceptibility
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Real and Imaginary Part of the Susceptibility
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Figure 2.1: Susceptibility arising from the linear harmonic oscillator model for the
electron cloud surrounding an atomic core.



Real and Imaginary Part of the Susceptibility

w
W) = (2.26)
(wo —w? + ]awow)
2 1 1
_ 2“{13, _ (2.27)
o | (F+iw=uh) (§+i+uep).
2 1 1
~ 2P - (2.28)
2340 (%—I—j(w—wo)) (%—i—j(w%—w@)_
2
1
~ 2P  fir w um +wyp. (2.29)

274 (é +7(w— Wo))

where w) = wp,/1 — é is the exact resonance frequency of the damped

harmonic oscillator.



2.2.2. Nonlinear Susceptibility
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With the susceptibility x)(w), which is up to the prefactor—Ney/ey equal to
the impulse repsonse of Eq.(2.18), we can find the first order amplitudes of all
the different frequency components according to
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2.3 Miller’s 6-Coefficient

XE?%(Qw LW, W) B XE?IZ(QCU LW, w)
— 2
X G @)X (@) (12(2) = 1) (n2(w) = 1)
—mﬁg 8(2)
2 N2

Experimentally one finds, that these coeflicients do not depend strongly on
the material for morganic materials. We assume that the deviation x (see
Eq. (2.13)) is the lattice constant with a ~ (N)~/3, then we obtain with Eq.
(2.15) for the Miller coeflicient
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2.4 Properties of the nonlinear susceptibilities

2.4.1 Physical fields are real
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2.4.2 Permutation symmetry
numbering 1 to n arbitrary — use symmetric definition
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2.4.3 Symmetry for lossless media

two additional symmetries:
« imaginary part of the susceptibility describes loss and gain
— susceptibilities of lossless media are real

« complete permutation symmetry independent, if the frequency is
an input or output frequency
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In combination with first symmetry (Eq. (2.40))
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This implies that in the lossless case, the susceptibilities for sum- and difference-
frequency generation are equal 1f the frequencies and polarizations ivolved are
chosen accordingly. For the classical model treated before, this 1s immediately
clear. Furthermore, it can also generally be proven by a quantum mechanical
derivation of the susceptibility or with the help of the energy conservation [3].
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2.4.4 Kleinman’s symmetry

low-frequency range: medium lossless,

susceptibilities essentially independent of wavelength

— indices of susceptibilities can arbitrarily be permuted,
nonlinearity responds instantaneously to the electric field
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2.4.5 Neumann’s principle

coordinate transformations (inversion, mirror image and rotation) T
of field and polarization vectors E and P
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employing Einstein’s summation convention
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— nonlinear susceptibilities are tensors

transformations, that do not change the physical reference between
the fields and media, leave the susceptibilities invariant.

The 32 crystal classes, that can be derived from the 7 crystal
systems, are characterized by being invariant under a point
group. l.e., the susceptibility tensor of materials, belonging to a
certain crystal class, must be invariant under the corresponding
point group (Neumann’s principle). 15




Example: let’'s consider inversion 7;; = (—1)d;;

susceptibility tensor of the inverted medium
(.n.) s '_. -n—{-]_ (Tl) .-) o -
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If the medium is invariant under inversion, it follows for n=even
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i.e., in an inversion symmetric medium, the susceptibility
tensors of even orders vanish
(no linear electro-optic effect, no SHG)

Of the 32 crystal classes, already 11 possess inversion symmetry.

Remaining 21 non- centrosymmetrlc crystal classes, the number of

nonvanishing tensor elements \fJL further reduce because of other

symmetries. The symmetry properties of \; JZ are the same as those

of the piezo-electric tensor.
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If the even nonlinear optical processes are forbidden by symmetry
(e.g., in media such as glasses, gases, fluids), processes of third
order are the dominating nonlinearity. The existing inversion
symmetry also reduces thg non-vanishing susceptibility tensor
elements of third order \Uu .
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2.5 The reduced susceptibility tensor of second order

second-order susceptibilities are expressed in terms of nonlinear
. '2'
coefficients diji. = %\(,)
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If Kleinmann symmetry condition is valid (or for SHG), the nonlinear
coefficients can be formulated in reduced form d;i = dix; = di , i.€e.,
In these cases the indices j and k can be permuted.
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