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Abbildung 1.1: A simple atom model explaining the e§ect of an optical electric Öeld
on the induced polarization in an atom: (a) without Öeld, (b) with Öeld.

1.2 How does Nonlinear Optics work?

Most nonlinear optical e§ects, especially at not too high intensities rely on a
nonlinear relationship between the electric Öeld applied to a material and its
induced polarization.The polarization is the dipol moment per unit volume,
which can be written as P = Np, where N the number density of elementary
dipolmoments (for example: number of valenz electrons or atoms or molecu-
les) per unit of volume und p is the dipol moment pro elementary dipole. The
induced dipole moment, a vector, is the product of the charge q and its dis-
placement l due to the Öeld in a chosen coordinate system, i.e. p = q ! l.
If the applied Öeld is weak, we expect that the charge separation that sets in
due to the Öeld depends linearly on the Öeld, Abb. 1.1. If the Öeld is increased,
we expect that the induced dipole moment can be expanded in a Taylor series
with respect to the Öeld:
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To do so, we normalized the electric Öeld to an intra-atomic Öeld strength
Ea. If the applied Öeld becomes as strong as this intraatomic Öeld, we expect
that the charge separation will depend very strongly on the applied Öeld, i.e.
we reach Öeld ionization, i.e. the contributions from each order are equal and
of the order of the atomic diameter #(i) = da = 10!10m, i.e. twice the Bohr
radius. The critical electric Öeld from a purely electronic optical nonlinearity
will be on the order of the electric Feld of a 1s electron in hydrogen, here we
assume the Öeld that an valenz or outer electron feels, when it is on average
already pulled away from the remaining atom by twice the bohr radius, which
is

Ea =
e0

4()0d2a
= 1:4 ! 1011

V

m
= 1:4GV=cm; (1.2)

with )0 = 8:854 ! 10!12 F/m the vacuum dielectric constant. From the size of
the interatomic electric Öeld, we sense already that for typical laser intensities
the expected nonlinear optical e§ects will be small. To obtain physically im-
portant quantities, we compute the dielectric polarization of electronic origin
in a typical medium. In a typcial solid or áuid medium a volume of substance
corresponds to roughly 1 mol, i.e. the typical density is NA = 6 ! 1023 cm!3.

P: Polarization (Dipole moment / unit volume)
p: dipole moment per atom or molecule
N: Number density
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To do so, we normalized the electric Öeld to an intra-atomic Öeld strength
Ea. If the applied Öeld becomes as strong as this intraatomic Öeld, we expect
that the charge separation will depend very strongly on the applied Öeld, i.e.
we reach Öeld ionization, i.e. the contributions from each order are equal and
of the order of the atomic diameter #(i) = da = 10!10m, i.e. twice the Bohr
radius. The critical electric Öeld from a purely electronic optical nonlinearity
will be on the order of the electric Feld of a 1s electron in hydrogen, here we
assume the Öeld that an valenz or outer electron feels, when it is on average
already pulled away from the remaining atom by twice the bohr radius, which
is
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with )0 = 8:854 ! 10!12 F/m the vacuum dielectric constant. From the size of
the interatomic electric Öeld, we sense already that for typical laser intensities
the expected nonlinear optical e§ects will be small. To obtain physically im-
portant quantities, we compute the dielectric polarization of electronic origin
in a typical medium. In a typcial solid or áuid medium a volume of substance
corresponds to roughly 1 mol, i.e. the typical density is NA = 6 ! 1023 cm!3.

q: charge that is displaced
l: displacement

Figure 1.1: A simple atom model explaining the effect of in optical electric 
field on the induced polarization in an atom: (a) without field, (b) with field. 2
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Ea. If the applied Öeld becomes as strong as this intraatomic Öeld, we expect
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with )0 = 8:854 ! 10!12 F/m the vacuum dielectric constant. From the size of
the interatomic electric Öeld, we sense already that for typical laser intensities
the expected nonlinear optical e§ects will be small. To obtain physically im-
portant quantities, we compute the dielectric polarization of electronic origin
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corresponds to roughly 1 mol, i.e. the typical density is NA = 6 ! 1023 cm!3.
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To do so, we normalized the electric Öeld to an intra-atomic Öeld strength
Ea. If the applied Öeld becomes as strong as this intraatomic Öeld, we expect
that the charge separation will depend very strongly on the applied Öeld, i.e.
we reach Öeld ionization, i.e. the contributions from each order are equal and
of the order of the atomic diameter #(i) = da = 10!10m, i.e. twice the Bohr
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with )0 = 8:854 ! 10!12 F/m the vacuum dielectric constant. From the size of
the interatomic electric Öeld, we sense already that for typical laser intensities
the expected nonlinear optical e§ects will be small. To obtain physically im-
portant quantities, we compute the dielectric polarization of electronic origin
in a typical medium. In a typcial solid or áuid medium a volume of substance
corresponds to roughly 1 mol, i.e. the typical density is NA = 6 ! 1023 cm!3.

p: nonlinear dipole moment of atom or molecule

a(i): typical excursion of electron cloud at the critical field
is on the order of the Bohr radius
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with )0 = 8:854 ! 10!12 F/m the vacuum dielectric constant. From the size of
the interatomic electric Öeld, we sense already that for typical laser intensities
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Ea : critical field where perturbation theory breaks down: 
ionization field strength
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To do so, we normalized the electric Öeld to an intra-atomic Öeld strength
Ea. If the applied Öeld becomes as strong as this intraatomic Öeld, we expect
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Estimate for nonlinear susceptibilities

6 KAPITEL 1. INTRODUCTION

Nr.: i !(i) Modellwert typ. Materialwert

1 !(1) = Ne$(1)

%0Ea

! 7:5
n=2.9 Quarz: n=1.45

2
!(2) = Ne$(1)

%0E2a

= 5:4 " 10!11m
V

V) =
*n0
,(2)

= 30 kV KDP:V) = 7:5 kV

3
!(3) = Ne$(1)

%0E3a

= 3:7 " 10!22m
2

V 2

n2 =
3,(3)

4n20%0c0

= 1:25 " 10!20m
2

W

Quarz: n2 = 3:2 " 10!20m
2

W

Tabelle 1.2: Linear and nonlinear optical susceptibilities from a simple atom model.
We used n0(KDP)= 2:3, da = $(i) = 10!10 m, e = e0 = 1:6 " 10!19 C, &0 =
8:854 " 10!12 F/m, Ea = e0

4)%0d2a
= 1:4 " 1011 V/m, N = 6 " 1023 " 106m!3.

Thus the dipol moment (1.1) and resulting polarization is

P = &0
!
!(1)E + !(2)E2 + !(3)E3 + " " "

"
; (1.3)

with the suszeptibilities !(i), summarized in 1.2. Especially the Örst order
susceptibility gives us the refractive index by

n2 =
#
1 + !(1)

$
: (1.4)

As table (1.2) shows, the model predicts

!(1) =
Ne0da
Ea"0

(1.5)

for the refractive index n = 2:9. The refractive index of glases in the visilble
range is about 1:5;semiconductors show around 3. The simple model generates
values of the right order of magnitude [7].

1.3 Important nonlinear optical processes

As is obvious from Eq.(1.3) the k-th order polarization term will contain all
frequency components, that are generated when we build the k-th power of the
electric Öeld propagating already in the medium. Letís assume for the moment,
that there are two waves with angular frequencies !1 and !2 and resulting wave
numbers, then the second order term includes

E2 =
%
Ê1 cos (!1t# k1z + '1) + Ê2 cos (!2t# k2z + '2)

&2
: (1.6)

Nonlinear susceptibilities
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electric Öeld propagating already in the medium. Letís assume for the moment,
that there are two waves with angular frequencies !1 and !2 and resulting wave
numbers, then the second order term includes

E2 =
%
Ê1 cos (!1t# k1z + '1) + Ê2 cos (!2t# k2z + '2)

&2
: (1.6)

About right!
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= 3:7 " 10!22m
2

V 2

n2 =
3,(3)

4n20%0c0

= 1:25 " 10!20m
2

W

Quarz: n2 = 3:2 " 10!20m
2

W

Tabelle 1.2: Linear and nonlinear optical susceptibilities from a simple atom model.
We used n0(KDP)= 2:3, da = $(i) = 10!10 m, e = e0 = 1:6 " 10!19 C, &0 =
8:854 " 10!12 F/m, Ea = e0

4)%0d2a
= 1:4 " 1011 V/m, N = 6 " 1023 " 106m!3.

Thus the dipol moment (1.1) and resulting polarization is

P = &0
!
!(1)E + !(2)E2 + !(3)E3 + " " "

"
; (1.3)

with the suszeptibilities !(i), summarized in 1.2. Especially the Örst order
susceptibility gives us the refractive index by

n2 =
#
1 + !(1)

$
: (1.4)

As table (1.2) shows, the model predicts

!(1) =
Ne0da
Ea"0

(1.5)

for the refractive index n = 2:9. The refractive index of glases in the visilble
range is about 1:5;semiconductors show around 3. The simple model generates
values of the right order of magnitude [7].
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frequency components, that are generated when we build the k-th power of the
electric Öeld propagating already in the medium. Letís assume for the moment,
that there are two waves with angular frequencies !1 and !2 and resulting wave
numbers, then the second order term includes
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or

E2 = Ê21 cos
2 (!1t! k1z + '1) + Ê

2
2 cos

2 (!2t! k2z + '2)
+ 2Ê1Ê2 cos (!1t! k1z + '1) cos (!2t! k2z + '2) : (1.7)

Using the addition theorem of the Cosine-function

cos(() " cos()) =
1

2
[cos(( + )) + cos((! ))]

we Önd

E2 =
1

2

!
Ê21 + Ê

2
2

"

+
1

2

!
Ê21 cos [2 (!1t! k1z + '1)] + Ê

2
2 cos [2 (!2t! k2z + '2)]

"

+ Ê1Ê2 cos ((!1 ! !2)t+ (k1 ! k2)z + '1 ! '2) (1.8)

+ Ê1Ê2 cos ((!1 + !2)t+ (k1 + k2)z + '1 + '2) :

Thus the second order polarization will radiate new frequency components.

The generation of new frequency components is the main characteristic of

a nonlinear optical process. Table 1.3 summarizes the di§erent second order

nonlinear optical processes.resulting from.(1.8) as well as some important third

order processes.

Sofar we only considered atoms or molecules. Often the atoms or molecules

are ordered in a crystal structure. The symmetry properties of the crystal

lattice place a major role in the nonlinear optical susceptibilities. We will

look at this later and will Önd that crystal symmetries msay supress certain

nonlinear processes.

1.3.1 Linear electro-optic or Pockels e§ect

The linear electro-optic e§ect, also called Pockels e§ect, causes a change in

refractive index in certain directions in space, if a static voltage is applied

acrocss certain crystal planes, for example this happens in. KDP (potassium

dihydrogen phosphat) [1]. The corresponding directions in which the Öeld is

applied and where the refractive index change is occuring is a consequence

of the tensor properties of the nonlinear susceptibility tensor, which we will

consider in more depth im the next chapter. If we apply in that crystal, as

shown in Fig. 1.2, a constant electric Öeld Ez along the z-axis a change in
refractive index occurs for Öelds polarized along the x0- and y0-direction. This
phenomenon is called induced birefringence. The phase di§erence between both

polarizations after passage of the crystal is -,,

-, = k(nx0 ! ny0)L : (1.9)
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Induced birefringence when electric field is applied in z-
direction
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8



Electro-optic modulator

KDP: Potassium dihydrogen phosphat:

1.3. IMPORTANT NONLINEAR OPTICAL PROCESSES 7

or

E2 = Ê21 cos
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2
2 cos [2 (!2t! k2z + '2)]

"
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Figure 1.3: Transmission through an electro-optic modulator

ε = n2 = 1 + χ ⇒ n2 − 1 = χ = χ(1) + χ(2)E +
3

4
χ(3)|E|2 + · · ·

or n2 = (n0 +∆n)2 ≈ n2
0 + 2n0∆n.

Using both relationships results for the KDP-crystal the refractive index change
due to the Pockels effect is

∆n =
χ(2)Ez

2n0
= nx′ − ny′ (1.10)

The strength of the linear electro-optic effect for a given crystal is most easily
expressed by the necessary voltage Vπ = Ez ·L along the z-direction to achieve
a differential phase shift between both polarizations of π, which is

Vπ =
λn0

χ(2)
. (1.11)

The corresponding voltage Vπ for KDP can be found in Table 1.2 for a wave-
length λ = 0.55 µm. Again, both values agree by order of magnitude.

For the power transmission of the whole assembly shown in Fig. 1.2 we
obtain

T =
1

2

[
1 + sin

(
π
V

Vπ

)]
, (1.12)

as shown in Fig. 1.3. From Fig. 1.3 follows that this assembly can be used to
modulate light by an applied electrical signal oder even to swich light on and
off.

1.3.2 Self-phase modulation

As we will see later, in an isotropic and homogeneous medium, symmetry
doesn’t allow second order Prozesses. Therefore, in such a medium, such as
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1.2. HOW DOES NONLINEAR OPTICS WORK? 5

Abbildung 1.1: A simple atom model explaining the e§ect of an optical electric Öeld
on the induced polarization in an atom: (a) without Öeld, (b) with Öeld.

1.2 How does Nonlinear Optics work?

Most nonlinear optical e§ects, especially at not too high intensities rely on a
nonlinear relationship between the electric Öeld applied to a material and its
induced polarization.The polarization is the dipol moment per unit volume,
which can be written as P = Np, where N the number density of elementary
dipolmoments (for example: number of valenz electrons or atoms or molecu-
les) per unit of volume und p is the dipol moment pro elementary dipole. The
induced dipole moment, a vector, is the product of the charge q and its dis-
placement l due to the Öeld in a chosen coordinate system, i.e. p = q ! l.
If the applied Öeld is weak, we expect that the charge separation that sets in
due to the Öeld depends linearly on the Öeld, Abb. 1.1. If the Öeld is increased,
we expect that the induced dipole moment can be expanded in a Taylor series
with respect to the Öeld:

p = ql = q

(
#(1)

"
E

Ea

#
+ #(2)

"
E

Ea

#2
+ #(3)

"
E

Ea

#3
+ ! ! !

)
E

jEj
: (1.1)

To do so, we normalized the electric Öeld to an intra-atomic Öeld strength
Ea. If the applied Öeld becomes as strong as this intraatomic Öeld, we expect
that the charge separation will depend very strongly on the applied Öeld, i.e.
we reach Öeld ionization, i.e. the contributions from each order are equal and
of the order of the atomic diameter #(i) = da = 10!10m, i.e. twice the Bohr
radius. The critical electric Öeld from a purely electronic optical nonlinearity
will be on the order of the electric Feld of a 1s electron in hydrogen, here we
assume the Öeld that an valenz or outer electron feels, when it is on average
already pulled away from the remaining atom by twice the bohr radius, which
is

Ea =
e0

4()0d2a
= 1:4 ! 1011

V

m
= 1:4GV=cm; (1.2)

with )0 = 8:854 ! 10!12 F/m the vacuum dielectric constant. From the size of
the interatomic electric Öeld, we sense already that for typical laser intensities
the expected nonlinear optical e§ects will be small. To obtain physically im-
portant quantities, we compute the dielectric polarization of electronic origin
in a typical medium. In a typcial solid or áuid medium a volume of substance
corresponds to roughly 1 mol, i.e. the typical density is NA = 6 ! 1023 cm!3.

Estimate for nonlinear susceptibilities

6 KAPITEL 1. INTRODUCTION

Nr.: i !(i) Modellwert typ. Materialwert

1 !(1) = Ne$(1)

%0Ea

! 7:5
n=2.9 Quarz: n=1.45

2
!(2) = Ne$(1)

%0E2a

= 5:4 " 10!11m
V

V) =
*n0
,(2)

= 30 kV KDP:V) = 7:5 kV

3
!(3) = Ne$(1)

%0E3a

= 3:7 " 10!22m
2

V 2

n2 =
3,(3)

4n20%0c0

= 1:25 " 10!20m
2

W

Quarz: n2 = 3:2 " 10!20m
2

W

Tabelle 1.2: Linear and nonlinear optical susceptibilities from a simple atom model.
We used n0(KDP)= 2:3, da = $(i) = 10!10 m, e = e0 = 1:6 " 10!19 C, &0 =
8:854 " 10!12 F/m, Ea = e0

4)%0d2a
= 1:4 " 1011 V/m, N = 6 " 1023 " 106m!3.

Thus the dipol moment (1.1) and resulting polarization is

P = &0
!
!(1)E + !(2)E2 + !(3)E3 + " " "

"
; (1.3)

with the suszeptibilities !(i), summarized in 1.2. Especially the Örst order
susceptibility gives us the refractive index by

n2 =
#
1 + !(1)

$
: (1.4)

As table (1.2) shows, the model predicts

!(1) =
Ne0da
Ea"0

(1.5)

for the refractive index n = 2:9. The refractive index of glases in the visilble
range is about 1:5;semiconductors show around 3. The simple model generates
values of the right order of magnitude [7].

1.3 Important nonlinear optical processes

As is obvious from Eq.(1.3) the k-th order polarization term will contain all
frequency components, that are generated when we build the k-th power of the
electric Öeld propagating already in the medium. Letís assume for the moment,
that there are two waves with angular frequencies !1 and !2 and resulting wave
numbers, then the second order term includes

E2 =
%
Ê1 cos (!1t# k1z + '1) + Ê2 cos (!2t# k2z + '2)

&2
: (1.6)

Nonlinear susceptibilities
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1.3.2 Self-phase modulation

10 CHAPTER 1. INTRODUCTION

glass, the refractive index in lowest order of the electric field can only depend
quadratically on the field.strength, i.e. it depends on the intensity of the wave

I ≈
∣∣∣Ê
∣∣∣
2

/(2Z0) accordng too

n = n0(ω) + n2II, (1.13)

where Z0 is the impedance of the wave in the medium. Therefore, if an optical
pulse propagates in such a medium, the peak of the pulse receives a larger phase
shift thant the wings of the pulse, called self-phase modulation, see Table 1.3.
The corresponding value from our simple model follows from Gl. (??) when
the second order term is replaced by the third order term

∆n = n2II =
3

4

χ(3)|E|2

2n0
=

3

4

χ(3)Z0I

n0
. (1.14)

The corresponding value for the intensity dependent refractive index coefficient
is then

n2I =
3

4

χ(3)Z0

n2
0

=
3

4

χ(3)

ε0c0n2
0

(1.15)

as listed in Table 1.2. Again this agrees well with the value for quartz.

1.3.3 Self-focussing

A TEM00 laser mode has a Gaussian transverse beam profile. A Gaussian beam
propagating through a medium with an intensity dependent refractive index
will generated a transverse varying index distribution. If the refractive index
increases with intensity, called positive Kerr-effect, then the beam will generate
a lense acting back on the beam itself with a focussing force. If the lensing
is stronger than the diffraction of the beam it comes to the phenomenon of
whole beam self-focussing, which is catastrophic in a 3-dimensional geometry,
it continues until the intensity is so high that effects of higher order kick in,
for example ionization and eventually damage of the material.

1.3.4 Optische Solitonen

The intensity dependent refractive index is especially important in femtosecond
lasers and optical communications, since it occurs in any medium at large peak
intensities. As we will the later in great detail in a one dimensional geometry,
for example for the guided field in an optical fiber, the positive nonlinear
refractive index together with the negative dispersion of the fiber at 1550 nm
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is stronger than the diffraction of the beam it comes to the phenomenon of
whole beam self-focussing, which is catastrophic in a 3-dimensional geometry,
it continues until the intensity is so high that effects of higher order kick in,
for example ionization and eventually damage of the material.

1.3.4 Optische Solitonen

The intensity dependent refractive index is especially important in femtosecond
lasers and optical communications, since it occurs in any medium at large peak
intensities. As we will the later in great detail in a one dimensional geometry,
for example for the guided field in an optical fiber, the positive nonlinear
refractive index together with the negative dispersion of the fiber at 1550 nm
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1.3.3 Self-focusing
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1.3.4 Optical Solitons

2
2

2
b

=D 2b is GVD.

Nonlinear Schrödinger Equation (NLSE)
1.3. IMPORTANT NONLINEAR OPTICAL PROCESSES 11

wavelength enables pulses, that can propagate unperturbed. These pulses have
the form

As(t) = A0
1

cosh
(
t
τ

) , (1.16)

where A0 is the pulse amplitude and τ is the pulse duration. Negative disper-
sion means that higher frequencies have a higher group velocity, i.e. propagate
faster, than lower frequencies. Negative dispersion has to be generated arti-
ficially in femtosecond lasers, for example with prism pairs. Standard glass
fibers show negative dispersion for wavelength larger than 1.3 µm, see Fig.
(Abb. 1.4) [9, 10].
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2 Nonlinear optical susceptibilities

Chapter 2

Nonlinear optical susceptibilities

2.1 Definition

A general electric field can be written as a superposition of waves with different
frequencies (sum or integral)

E(r, t) =
∑

ωa>0

3∑

i=1

1

2

{
Êi(ωa)e

j(ωat−kar) + c.c.
}
ei. (2.1)

where Êi(ωa) is the i-th cartesian component of the electric field with unit
vector ei. The term c.c. (complex conjugate) containes the negative frequency
coponents with Ei(−ωa) = Ei(ωa)∗. The nonlinear polarization will be also
separated into positive and negative frequency components of a given frequency
generated by the applied electric field

P(r, t) =
∑

n

P(n)(r, t) (2.2)

with

P(n)(r, t) =
∑

ωb>0

3∑

i=1

1

2

{
P̂ (n)
i (ωb)e

j(ωbt−kbr) + c.c.
}
ei. (2.3)

For the i-th component of the n-th order nonlinear polarization with fre-
quenz ωb we define the susceptibility tensor as

P̂ (n)
i (ωb) =

ε0
2m−1

∑

P

∑

j...k

χ(n)
ij...k(ωb : ω1, ....,ωn)Êj(ω1) · · · Êk(ωn), (2.4)

ωb =
n∑

i=1

ωi and kb =
n∑

i=1

ki. (2.5)
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where the sum over P is the summation over all possible permutations of
frequencies ω1, ....,ωn, that lead to the same resulting frequency ωb and m is
the number of fields with a frequency different from zero. For visualization a
few examples

P̂ (2)
i (ω3) = ε0

∑

jk

χ(2)
ijk(ω3 : ω1,ω2)Êj(ω1)Êk(ω2), (2.6)

ω3 = ω1 + ω2 and k3 = k1 + k2. (2.7)

( −→ Sum Frequency Generation, SFG)

P̂ (2)
i (ω3) = ε0

∑

jk

χ(2)
ijk(ω3 : ω1,−ω2)Êj(ω1)Ê

∗
k(ω2), (2.8)

ω3 = ω1 − ω2 und k3 = k1 − k2. (2.9)

( −→ Differenz Frequency Generation, DFG)

P̂ (3)
i (ω4) =

6ε0
4

∑

jkl

χ(3)
ijkl(ω4 : ω1,ω2,−ω3)Êj(ω1)Êk(ω2)Ê

∗
l (ω3), (2.10)

ω4 = ω1 + ω2 − ω3 und k4 = k1 + k2 − k3. (2.11)

( −→ Four Wave Mixing, FWM)

Remember, the susceptibilities are symmetric with respect to a permutation
of the input frequencies {ωi}, since it is arbitrary which frequency is considered
to be ω1,i.e.there is

χ(n)
ijk(ω : ω1,ω2, ...) = χ(n)

ikj(ω : ω2,ω1, ...). (2.12)

.

2.2 Classical model

To illustrate some interesting properties of the nonlinear optical susceptibili-
ties, we consider the following simple one dimensional model for a nonlinear
dielectric matieral composed of electrons that move in a simple anharmonic
potential V (x). The restoring force of this potential is characterized by being
a nonlinear function of the excursion

F (x) = −∂V (x)

∂x
= −mω2

0x

(
1 +

x

a
+

x2

b2

)
(2.13)

= −mω2
0x−mβ2x

2 −mβ3x
3 (2.14)

with β2 =
ω2
0

a
and β3 =

ω2
0

b2
. (2.15)
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2.2 Classical model for nonlinear optical suszeptibility 
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The term characterized by β2 results from the asymmetric part of the po-
tential Potential and the term characterized by β3 from the symmetric part.
The equation of motion for the electron with an additional external field E(t)
including also a damping force proportional to velocity ( for example by radi-
ation damping) is than given by

m
d2x

dt2
= −2

ω0

Q
m
dx

dt
+ F (x)− e0E(t)

d2x

dt2
+ 2

ω0

Q

dx

dt
+ ω2

0x+ β2x
2 + β3x

3 = −e0
m
E(t). (2.16)

where ω0 is the resonance frequency of a second order system and 2ω0
Q the

damping constant, and. Q the quality factor of the oscillation. If the an-
harmonicity is weak, and also the applied external field is weak, so that the
resulting motion is small, i.e..
|β2x+ β3x2| " ω2

0, then eq..(??) can be solved with perturbation theory:

x(t) = x0(t) + εx1(t) + ε2x2(t) + ... (2.17)

where the perturbation terms with β2 and β3 are of order ε. Substitution
of the ansatz (??) into eq..(??) and comparing coefficients of equal power in ε
results in

(0) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x0(t) = −e0

m
E(t) (2.18)

(1) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x1(t) = −β2 (x0)

2 − β3 (x0)
3 (2.19)

(2) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x2(t) = −2β2x0x1 − 3β3x

2
0x1 (2.20)

2.2.1 Linear Susceptibility

In zero’s order deflection, and therefore the polarization, is linear with respect
to the field and the complexe deviation amplitude x̂0(ω) is

x0(t) =
1

2

(
x̂0(ω)e

jωt + c.c.
)

P (1)(t) =
1

2

(
P̂ (1)(ω)ejωt + c.c.

)
= −Ne0 · x0(t)

Perturbation Solution:
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of the ansatz (??) into eq..(??) and comparing coefficients of equal power in ε
results in

(0) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x0(t) = −e0

m
E(t) (2.18)

(1) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x1(t) = −β2 (x0)

2 − β3 (x0)
3 (2.19)

(2) :

(
d2

dt2
+ 2

ω0

Q

d

dt
+ ω2

0

)
x2(t) = −2β2x0x1 − 3β3x

2
0x1 (2.20)

2.2.1 Linear Susceptibility

In zero’s order deflection, and therefore the polarization, is linear with respect
to the field and the complexe deviation amplitude x̂0(ω) is

x0(t) =
1

2

(
x̂0(ω)e

jωt + c.c.
)

P (1)(t) =
1

2

(
P̂ (1)(ω)ejωt + c.c.

)
= −Ne0 · x0(t)

Zero order solution

20



2.2.1 Linear Susceptibility

21



Real and Imaginary Part of the Susceptibility

18 CHAPTER 2. NONLINEAR OPTICAL SUSCEPTIBILITIES

in case of a time varying field with amplitude Ê(ω) and frequency ω

E(t) =
1

2

(
Ê(ω)ejωt + c.c.

)
(2.21)

e Eq.l.(2.18) with x0(t) or its Fourier transforms

(0) : x0(ω) =
−e0

m
(
ω2
0 − ω2 + j 2

Qω0ω
)Ê(ω),

(1) : P̂ (1)(ω) =
Ne20

m
(
ω2
0 − ω2 + j 2

Qω0ω
)Ê(ω) = ε0χ

(1)Ê(ω).

Therefore, the linear susceptibility is

χ(1)(ω) =
Ne20

mε0
(
ω2
0 − ω2 + j 2

Qω0ω
) =

ω2
P(

ω2
0 − ω2 + j 2

Qω0ω
) (2.22)

where ωP =
√

Ne20
mε0

is.the plasma frequency.Eq.(??) is the Drude-Lorenz expres-
sion for the dispersion in a dielectric. Real- und imaginary parts of the linear
suszeptibility are shown in Figure 2.1 for a quality factor Q = 10.

χ(1) = χ(1)′ + jχ(1)′′ (2.23)

χ(1)′ =
ω2
P

ω2
0

(
1− ω2

ω2
0

)

[(
1− ω2

ω2
0

)2
+ 4

Q2
ω2

ω2
0

] (2.24)

χ(1)′′ = −ω2
P

ω2
0

2
Q

ω
ω0[(

1− ω2

ω2
0

)2
+ 4

Q2
ω2

ω2
0

] (2.25)

For a sufficiently large offset from a resonance (transition) the real part usu-
ally dominates, i.e. it does make a contribution to the refractive index and the
absorption from the transition is neglegible. This is because the real part only
drops inversely proportional to the offset frequency, whereas the absorption
drops off with the square, if one expands the above expressions as a function
of the offset frequency.In total, this may result in large frequency intervals,
where the absorption in a medium can be neglected, but has a refractive index
significantly different from 1. The medium is completely reactive.
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Figure 2.1: Susceptibility arising from the linear harmonic oscillator model for the
electron cloud surrounding an atomic core.

For high quality factors, Q ≥ 3 and the positive frequency range, the
susceptibility can be approximated by a complexe Lorentzian profile, i.e. the
second order system is replaced by a complexe first order system.

χ(1)(ω) =
ω2
P(

ω2
0 − ω2 + j 2

Qω0ω
) (2.26)

=
ω2
P

2jω′
0



 1(
1
Q + j (ω − ω′

0)
) − 1(

1
Q + j (ω + ω′

0)
)



 (2.27)

≈ ω2
P

2jω0



 1(
1
Q + j (ω − ω0)

) − 1(
1
Q + j (ω + ω0)

)



 (2.28)

≈ ω2
P

2jω0

1(
1
Q + j (ω − ω0)

) , für ω um +ω0. (2.29)

where ω′
0 = ω0

√
1− 1

Q2 is the exact resonance frequency of the damped

harmonic oscillator.

Real and Imaginary Part of the Susceptibility

23



Real and Imaginary Part of the Susceptibility

2.2. CLASSICAL MODEL 19

1.0

0.5

0.0

im
a
g
in

a
ry

 p
a
rt

: 
 -

!
''(

ω
)

2
/Q

∗

2.01.51.00.50.0

ω���ω/ 0

0.6

0.4

0.2

0.0

-0.2

-0.4

re
a
l p

a
rt:

!
'(
ω

)
2

/Q
∗

2
Q

Q=10

Figure 2.1: Susceptibility arising from the linear harmonic oscillator model for the
electron cloud surrounding an atomic core.

For high quality factors, Q ≥ 3 and the positive frequency range, the
susceptibility can be approximated by a complexe Lorentzian profile, i.e. the
second order system is replaced by a complexe first order system.

χ(1)(ω) =
ω2
P(

ω2
0 − ω2 + j 2

Qω0ω
) (2.26)

=
ω2
P

2jω′
0



 1(
1
Q + j (ω − ω′

0)
) − 1(

1
Q + j (ω + ω′

0)
)



 (2.27)

≈ ω2
P

2jω0



 1(
1
Q + j (ω − ω0)

) − 1(
1
Q + j (ω + ω0)

)



 (2.28)

≈ ω2
P

2jω0

1(
1
Q + j (ω − ω0)

) , für ω um +ω0. (2.29)

where ω′
0 = ω0

√
1− 1

Q2 is the exact resonance frequency of the damped

harmonic oscillator.

2.2. CLASSICAL MODEL 19

1.0

0.5

0.0

im
a

g
in

a
ry

 p
a

rt
: 

 -
!

''(
ω

)
2
/Q

∗

2.01.51.00.50.0

ω���ω/ 0

0.6

0.4

0.2

0.0

-0.2

-0.4

re
a
l p

a
rt:

!
'(
ω

)
2
/Q

∗

2
Q

Q=10

Figure 2.1: Susceptibility arising from the linear harmonic oscillator model for the
electron cloud surrounding an atomic core.

For high quality factors, Q ≥ 3 and the positive frequency range, the
susceptibility can be approximated by a complexe Lorentzian profile, i.e. the
second order system is replaced by a complexe first order system.

χ(1)(ω) =
ω2
P(

ω2
0 − ω2 + j 2

Qω0ω
) (2.26)

=
ω2
P

2jω′
0



 1(
1
Q + j (ω − ω′

0)
) − 1(

1
Q + j (ω + ω′

0)
)



 (2.27)

≈ ω2
P

2jω0



 1(
1
Q + j (ω − ω0)

) − 1(
1
Q + j (ω + ω0)

)



 (2.28)

≈ ω2
P

2jω0

1(
1
Q + j (ω − ω0)

) , für ω um +ω0. (2.29)

where ω′
0 = ω0

√
1− 1

Q2 is the exact resonance frequency of the damped

harmonic oscillator.

24



2.2.2. Nonlinear Susceptibility
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2.2.2 Nonlinear susceptibility

Here, we consider weak nonlinearities and, therefore, we consider only the term
x(1) in the solution.

x1(t) = x̂1(0) +
1

2

(
x̂1(ω)e

jωt + c.c.
)

+
1

2

(
x̂1(2ω)e

j2ωt + c.c.
)
+

1

2

(
x̂1(3ω)e

j3ωt + c.c.
)

With the susceptibility χ(1)(ω), which is up to the prefactor−Ne0/ε0 equal to
the impulse repsonse of Eq.(2.18), we can find the first order amplitudes of all
the different frequency components according to

x̂1(0) = −β2
1

ω2
0

∣∣∣∣∣∣



 −e0

m
(
ω2
0 − ω2 + j 2

Qω0ω
)





∣∣∣∣∣∣

2 ∣∣∣Ê(ω)
∣∣∣
2

(2.30)

= −β2
χ(1)(0)

ω2
P

(
−Ne0

ε0

)−2 ∣∣χ(1)(ω)
∣∣2
∣∣∣Ê(ω)

∣∣∣
2

, (2.31)

x̂1(2ω) =
−β2

2

χ(1)(2ω)

ω2
P

(
−Ne0

ε0

)−2

χ(1)(ω)2Ê(ω)2, (2.32)

x̂1(ω) =
−3β3

4

χ(1)(ω)

ω2
P

(
−Ne0

ε0

)−3 ∣∣χ(1)(ω)
∣∣2 (χ(1)(ω)

)
(2.33)

×
∣∣∣Ê(ω)

∣∣∣
2

Ê(ω), (2.34)

x̂1(3ω) =
−β3

4

χ(1)(3ω)

ω2
P

(
−Ne0

ε0

)−3

χ(1)(ω)3Ê(ω)3. (2.35)

From these solutions we can derive the corresponding susceptibilities ac-
cording to

χ(2)(0;ω,−ω) = −mβ2

e0

(
−Ne0

ε0

)−2

χ(1)(0)
∣∣χ(1)(ω)

∣∣2 , (2.36)

χ(2)(2ω;ω,ω) =
−mβ2

2e0

(
−Ne0

ε0

)−2

χ(1)(2ω)χ(1)(ω)2, (2.37)

χ(3)(ω;ω,−ω,ω) =
−3mβ3

4e0

(
−Ne0

ε0

)−3 ∣∣χ(1)(ω)
∣∣2 (χ(1)(ω)

)2
, (2.38)

χ(3)(3ω;ω,ω,ω) =
−mβ3

4e0

(
−Ne0

ε0

)−3

χ(1)(3ω)χ(1)(ω)3. (2.39)
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χ(1)(ω)2Ê(ω)2, (2.32)

x̂1(ω) =
−3β3

4

χ(1)(ω)

ω2
P

(
−Ne0

ε0

)−3 ∣∣χ(1)(ω)
∣∣2 (χ(1)(ω)

)
(2.33)

×
∣∣∣Ê(ω)
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2.3 Miller’s d-Coefficient
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Thus in this pertrubation theory, we can express teh higher order suscep-
tibilities as a product of the first order susceptibilities which are evaluated at
the input or output frequencies. This means that nonlinear optical effects
become large, when either one of the input frequencies is resonant with a tran-
sition or at least the generated frequency is resonant (resonant enhancement).
The other way around is, that we can suppress frequency products by not
choosen them to be resonant optical nonlinearities. In general resonantly en-
hanced nonlinearities are always very lossy and therefore not useful for efficient
frequency conversion. In applications, where losses are very detremental the
participating frequencies are chosen nonresonant.

2.3 Miller’s -δ coeffizient

Experimentally one finds, that the nonlinear suszeptibility for the second har-
monic χ(2)(2ω;ω,ω) does not depend strongly on the material. Due to the
relationships between the nonlinear suszeptibility and the linear susceptibili-
ties one can define the Miller coefficients. 2.37 by

δijk =
χ(2)
ijk(2ω : ω,ω)

χ(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω)

=
χ(2)
ijk(2ω : ω,ω)

(n2(2ω)− 1) (n2(ω)− 1)2

=
−mβ2

2

ε20
N2e30

.

Experimentally one finds, that these coefficients do not depend strongly on the
material. Assuming that the deviation x see Eq.(2.13is the lattice constant is
d a ≈ (N)−1/3. Then we obtain with Eq.(2.15) for the Miller coefiicient.

|δijk| ≈
mω2

0

2

ε20
N5/3e30

.

If we assume that the mid-IR channels are λ0 = 200 nm, ω0 = 3π· fs−1and the
military in the vehicle and the near infrared transparent is. With a = 3 ·10−10

m−1,

|δijk| ≈ 3.7 · 10−12 V

m

agrees well with the given susceptibility in table 2.1:

2.3. MILLER’S -δ COEFFIZIENT 21

Thus in this pertrubation theory, we can express teh higher order suscep-
tibilities as a product of the first order susceptibilities which are evaluated at
the input or output frequencies. This means that nonlinear optical effects
become large, when either one of the input frequencies is resonant with a tran-
sition or at least the generated frequency is resonant (resonant enhancement).
The other way around is, that we can suppress frequency products by not
choosen them to be resonant optical nonlinearities. In general resonantly en-
hanced nonlinearities are always very lossy and therefore not useful for efficient
frequency conversion. In applications, where losses are very detremental the
participating frequencies are chosen nonresonant.

2.3 Miller’s -δ coeffizient

Experimentally one finds, that the nonlinear suszeptibility for the second har-
monic χ(2)(2ω;ω,ω) does not depend strongly on the material. Due to the
relationships between the nonlinear suszeptibility and the linear susceptibili-
ties one can define the Miller coefficients. 2.37 by

δijk =
χ(2)
ijk(2ω : ω,ω)

χ(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω)

=
χ(2)
ijk(2ω : ω,ω)

(n2(2ω)− 1) (n2(ω)− 1)2

=
−mβ2

2

ε20
N2e30

.

Experimentally one finds, that these coefficients do not depend strongly on the
material. Assuming that the deviation x see Eq.(2.13is the lattice constant is
d a ≈ (N)−1/3. Then we obtain with Eq.(2.15) for the Miller coefiicient.

|δijk| ≈
mω2

0

2

ε20
N5/3e30

.

If we assume that the mid-IR channels are λ0 = 200 nm, ω0 = 3π· fs−1and the
military in the vehicle and the near infrared transparent is. With a = 3 ·10−10

m−1,

|δijk| ≈ 3.7 · 10−12 V

m

agrees well with the given susceptibility in table 2.1:

2.3. MILLER’S -δ COEFFIZIENT 21

Thus in this pertrubation theory, we can express teh higher order suscep-
tibilities as a product of the first order susceptibilities which are evaluated at
the input or output frequencies. This means that nonlinear optical effects
become large, when either one of the input frequencies is resonant with a tran-
sition or at least the generated frequency is resonant (resonant enhancement).
The other way around is, that we can suppress frequency products by not
choosen them to be resonant optical nonlinearities. In general resonantly en-
hanced nonlinearities are always very lossy and therefore not useful for efficient
frequency conversion. In applications, where losses are very detremental the
participating frequencies are chosen nonresonant.

2.3 Miller’s -δ coeffizient

Experimentally one finds, that the nonlinear suszeptibility for the second har-
monic χ(2)(2ω;ω,ω) does not depend strongly on the material. Due to the
relationships between the nonlinear suszeptibility and the linear susceptibili-
ties one can define the Miller coefficients. 2.37 by

δijk =
χ(2)
ijk(2ω : ω,ω)

χ(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω)

=
χ(2)
ijk(2ω : ω,ω)

(n2(2ω)− 1) (n2(ω)− 1)2

=
−mβ2

2

ε20
N2e30

.

Experimentally one finds, that these coefficients do not depend strongly on the
material. Assuming that the deviation x see Eq.(2.13is the lattice constant is
d a ≈ (N)−1/3. Then we obtain with Eq.(2.15) for the Miller coefiicient.

|δijk| ≈
mω2

0

2

ε20
N5/3e30

.

If we assume that the mid-IR channels are λ0 = 200 nm, ω0 = 3π· fs−1and the
military in the vehicle and the near infrared transparent is. With a = 3 ·10−10

m−1,

|δijk| ≈ 3.7 · 10−12 V

m

agrees well with the given susceptibility in table 2.1:

2.3. MILLER’S -δ COEFFIZIENT 21

Thus in this pertrubation theory, we can express teh higher order suscep-
tibilities as a product of the first order susceptibilities which are evaluated at
the input or output frequencies. This means that nonlinear optical effects
become large, when either one of the input frequencies is resonant with a tran-
sition or at least the generated frequency is resonant (resonant enhancement).
The other way around is, that we can suppress frequency products by not
choosen them to be resonant optical nonlinearities. In general resonantly en-
hanced nonlinearities are always very lossy and therefore not useful for efficient
frequency conversion. In applications, where losses are very detremental the
participating frequencies are chosen nonresonant.

2.3 Miller’s -δ coeffizient

Experimentally one finds, that the nonlinear suszeptibility for the second har-
monic χ(2)(2ω;ω,ω) does not depend strongly on the material. Due to the
relationships between the nonlinear suszeptibility and the linear susceptibili-
ties one can define the Miller coefficients. 2.37 by

δijk =
χ(2)
ijk(2ω : ω,ω)

χ(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω)

=
χ(2)
ijk(2ω : ω,ω)

(n2(2ω)− 1) (n2(ω)− 1)2

=
−mβ2

2

ε20
N2e30

.

Experimentally one finds, that these coefficients do not depend strongly on the
material. Assuming that the deviation x see Eq.(2.13is the lattice constant is
d a ≈ (N)−1/3. Then we obtain with Eq.(2.15) for the Miller coefiicient.

|δijk| ≈
mω2

0

2

ε20
N5/3e30

.

If we assume that the mid-IR channels are λ0 = 200 nm, ω0 = 3π· fs−1and the
military in the vehicle and the near infrared transparent is. With a = 3 ·10−10

m−1,

|δijk| ≈ 3.7 · 10−12 V

m

agrees well with the given susceptibility in table 2.1:

2.3. MILLER’S -δ COEFFIZIENT 21

Thus in this pertrubation theory, we can express teh higher order suscep-
tibilities as a product of the first order susceptibilities which are evaluated at
the input or output frequencies. This means that nonlinear optical effects
become large, when either one of the input frequencies is resonant with a tran-
sition or at least the generated frequency is resonant (resonant enhancement).
The other way around is, that we can suppress frequency products by not
choosen them to be resonant optical nonlinearities. In general resonantly en-
hanced nonlinearities are always very lossy and therefore not useful for efficient
frequency conversion. In applications, where losses are very detremental the
participating frequencies are chosen nonresonant.

2.3 Miller’s -δ coeffizient

Experimentally one finds, that the nonlinear suszeptibility for the second har-
monic χ(2)(2ω;ω,ω) does not depend strongly on the material. Due to the
relationships between the nonlinear suszeptibility and the linear susceptibili-
ties one can define the Miller coefficients. 2.37 by

δijk =
χ(2)
ijk(2ω : ω,ω)

χ(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω)

=
χ(2)
ijk(2ω : ω,ω)

(n2(2ω)− 1) (n2(ω)− 1)2

=
−mβ2

2

ε20
N2e30

.

Experimentally one finds, that these coefficients do not depend strongly on the
material. Assuming that the deviation x see Eq.(2.13is the lattice constant is
d a ≈ (N)−1/3. Then we obtain with Eq.(2.15) for the Miller coefiicient.

|δijk| ≈
mω2

0

2

ε20
N5/3e30

.

If we assume that the mid-IR channels are λ0 = 200 nm, ω0 = 3π· fs−1and the
military in the vehicle and the near infrared transparent is. With a = 3 ·10−10

m−1,

|δijk| ≈ 3.7 · 10−12 V

m

agrees well with the given susceptibility in table 2.1:
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