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Nonlinear Optics (WiSe 2021/22)

Prerequisites: A basic course in Electrodynamics

Required Text: Class notes will be distributed in class.

Requirements: 11 Problem Sets, Collaboration on problem sets is encouraged.

Grade breakdown: Problem sets (30%), Participation (20%), Oral Ex.(50%)

Recommended Text:  
Nonlinear Optics, R. W. Boyd, Academic Press, Third Edition (2008)

Additional References:
The Principles of Nonlinear Optics, Y. R. Chen, J. Wiley & Sons NY (1984).
The Elements of Nonlinear Optics, P. N. Butcher & D. Cotter, Cambridge Studies in 
Modern Optics 9 (1990).
Nonlinear Fiber Optics, G. P. Agrawal, Academic Press (1998).
Solitons: an introduction, P. G. Drazin & R. S. Johnson, Cambridge Texts In Applied 
Mathematics, NY (1989).
Extreme Nonlinear Optics, M. Wegener, Springer (2005). 
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Multiphoton Microscopy (MPM)
N-photon excitation 

fluorescence (2PEF/3PEF)
Second-harmonic 

generation
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inhomogeneity

Cells in epidermis

50 μm

50 μm 50 μm

Chung et al., “Multimodal imaging platform for optical virtual skin biopsy ….,” 
Biomed. Opt. Exp. 10, 514-525 (2018).

Protein crystal (3PEF)



Optical virtual skin biopsy by SHG/THG

100 μm

Excitation wavelength: 1.25 μm, SHG: fibrous tissue, THG: epidermal cells
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High Order Harmonic Generation (HHG)

P. Corkum, Phys. Rev. Lett. 71, 1994 (1993)
K. C. Kulander, SILAP Conference (1992)
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Maximizing the recollision energy within a period

800nm + 400nm + 267nm + 200nm + 1600nm
w +    2w +     3w +     4w +   0.5 w

maximize cut-off energy
sinusoidal ~ 3.17UP

synthesized ~ 9UP

L. E. Chipperfield et al., Phys. Rev. Lett. 102, 063003 (2009)
C. Jin et al., Nature Commun. 5:4003 (2014)
S. Haessler et al., Phys. Rev. X 4, 021028 (2014)

“perfect waveform” for HHG
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C. Manzoni 
et al. LPR 9, 
129 (2015)

G. M. Rossi et al., Nature Photonics  
14, 629-635, (2020)
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1.1 Why Nonlinear Optics?

12

• Capacitiy limits to optical communications due to fiber nonlinearities

• Nonlinear laser spectroscopy

• Ultrashort pulse lasers, intrinsic nonlinearities

• Limits to laser amplifiers set by optical nonlinearities

• Frequency conversion, UV, EUV, MID-IR, THz, ….

• Strong-field physics in gases, liquids and solids

• High order harmonic generation (HHG)

• Micromachining of materials

• Laser Surgery

• Nonlinear Microscopy

• Microwave measurement techniques, such as electro-optical sampling and 

electro-optical conversion
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Nobel Prizes in Physics related to NLO
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Typical optical nonlinearities are weak
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18G. Mourou, J. A. Wheeler, and T. Tajima, Europhys. News 46, 31 (2015)
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Optics and Photonics News 
Oct. 2017

https://www.youtube.com/watch?v=rDpLT7yTQvA
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1.2 How does Nonlinear Optics work?

1.2. HOW DOES NONLINEAR OPTICS WORK? 5

Abbildung 1.1: A simple atom model explaining the e§ect of an optical electric Öeld
on the induced polarization in an atom: (a) without Öeld, (b) with Öeld.

1.2 How does Nonlinear Optics work?

Most nonlinear optical e§ects, especially at not too high intensities rely on a
nonlinear relationship between the electric Öeld applied to a material and its
induced polarization.The polarization is the dipol moment per unit volume,
which can be written as P = Np, where N the number density of elementary
dipolmoments (for example: number of valenz electrons or atoms or molecu-
les) per unit of volume und p is the dipol moment pro elementary dipole. The
induced dipole moment, a vector, is the product of the charge q and its dis-
placement l due to the Öeld in a chosen coordinate system, i.e. p = q ! l.
If the applied Öeld is weak, we expect that the charge separation that sets in
due to the Öeld depends linearly on the Öeld, Abb. 1.1. If the Öeld is increased,
we expect that the induced dipole moment can be expanded in a Taylor series
with respect to the Öeld:
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To do so, we normalized the electric Öeld to an intra-atomic Öeld strength
Ea. If the applied Öeld becomes as strong as this intraatomic Öeld, we expect
that the charge separation will depend very strongly on the applied Öeld, i.e.
we reach Öeld ionization, i.e. the contributions from each order are equal and
of the order of the atomic diameter #(i) = da = 10!10m, i.e. twice the Bohr
radius. The critical electric Öeld from a purely electronic optical nonlinearity
will be on the order of the electric Feld of a 1s electron in hydrogen, here we
assume the Öeld that an valenz or outer electron feels, when it is on average
already pulled away from the remaining atom by twice the bohr radius, which
is

Ea =
e0

4()0d2a
= 1:4 ! 1011

V

m
= 1:4GV=cm; (1.2)

with )0 = 8:854 ! 10!12 F/m the vacuum dielectric constant. From the size of
the interatomic electric Öeld, we sense already that for typical laser intensities
the expected nonlinear optical e§ects will be small. To obtain physically im-
portant quantities, we compute the dielectric polarization of electronic origin
in a typical medium. In a typcial solid or áuid medium a volume of substance
corresponds to roughly 1 mol, i.e. the typical density is NA = 6 ! 1023 cm!3.

P: Polarization (Dipole moment / unit volume)
p: dipole moment per atom or molecule
N: Number density
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To do so, we normalized the electric Öeld to an intra-atomic Öeld strength
Ea. If the applied Öeld becomes as strong as this intraatomic Öeld, we expect
that the charge separation will depend very strongly on the applied Öeld, i.e.
we reach Öeld ionization, i.e. the contributions from each order are equal and
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with )0 = 8:854 ! 10!12 F/m the vacuum dielectric constant. From the size of
the interatomic electric Öeld, we sense already that for typical laser intensities
the expected nonlinear optical e§ects will be small. To obtain physically im-
portant quantities, we compute the dielectric polarization of electronic origin
in a typical medium. In a typcial solid or áuid medium a volume of substance
corresponds to roughly 1 mol, i.e. the typical density is NA = 6 ! 1023 cm!3.

q: charge that is displaced
l: displacement

Figure 1.1: A simple atom model explaining the effect of in optical electric 
field on the induced polarization in an atom: (a) without field, (b) with field. 21



Perturbation Expansion
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the interatomic electric Öeld, we sense already that for typical laser intensities
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p: nonlinear dipole moment of atom or molecule

a(i): typical excursion of electron cloud at the critical field
is on the order of the Bohr radius
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Ea : critical field where perturbation theory breaks down: 
ionization field strength
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Estimate for nonlinear susceptibilities

6 KAPITEL 1. INTRODUCTION

Nr.: i !(i) Modellwert typ. Materialwert
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= 30 kV KDP:V) = 7:5 kV

3
!(3) = Ne$(1)

%0E3a

= 3:7 " 10!22m
2

V 2

n2 =
3,(3)

4n20%0c0

= 1:25 " 10!20m
2

W

Quarz: n2 = 3:2 " 10!20m
2

W

Tabelle 1.2: Linear and nonlinear optical susceptibilities from a simple atom model.
We used n0(KDP)= 2:3, da = $(i) = 10!10 m, e = e0 = 1:6 " 10!19 C, &0 =
8:854 " 10!12 F/m, Ea = e0

4)%0d2a
= 1:4 " 1011 V/m, N = 6 " 1023 " 106m!3.

Thus the dipol moment (1.1) and resulting polarization is

P = &0
!
!(1)E + !(2)E2 + !(3)E3 + " " "

"
; (1.3)

with the suszeptibilities !(i), summarized in 1.2. Especially the Örst order
susceptibility gives us the refractive index by

n2 =
#
1 + !(1)

$
: (1.4)

As table (1.2) shows, the model predicts

!(1) =
Ne0da
Ea"0

(1.5)

for the refractive index n = 2:9. The refractive index of glases in the visilble
range is about 1:5;semiconductors show around 3. The simple model generates
values of the right order of magnitude [7].

1.3 Important nonlinear optical processes

As is obvious from Eq.(1.3) the k-th order polarization term will contain all
frequency components, that are generated when we build the k-th power of the
electric Öeld propagating already in the medium. Letís assume for the moment,
that there are two waves with angular frequencies !1 and !2 and resulting wave
numbers, then the second order term includes

E2 =
%
Ê1 cos (!1t# k1z + '1) + Ê2 cos (!2t# k2z + '2)

&2
: (1.6)
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About right!
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