Nonlinear Optics (WiSe 2021/22)

Franz X. Kärtner & Tobias Herr, Bldg. 99, O3.097 & O3.116 Email & phone: franz.kaertner@cfel.de, 040-8998-6350 tobias.herr@cfel.de, 040-8998-6379 Office hour: Tuesday, 16-17 pm

Lectures: Mo, We 13:00 - 14:30, SemRm IV/V, Geb.99 Recitations: Th 15:00 - 16:30, SemRm IV/V, Geb.99 Start: 11.10.2021

•Online Access Link:

https://uni-hamburg.zoom.us/j/64203244710?pwd=U3lzbzRpTEZIcHN6aUpJTnhVc0E4Zz09
Meeting ID: 642 0324 4710
Passcode: NLO21-22

Teaching Assistants:

Dr. Hüseyin Cankaya, O3.133, phone 040-8998-6358, email: <u>hueseyin.cankaya@desy.de</u> Miguel Angel Silva Toledo, O3.093, phone 040-8998-6322, email: <u>miguel.toledo@desy.de</u> Thibault Wildi, O1.011, phone 040-8998-6498, email: <u>thibault.wildi@desy.de</u> Office hour: Thursday, 9:30-11 am

Course Secretary: Uta Freydank 03.095, phone 040-8998-6351, email: uta.freydank@cfel.de

Nonlinear Optics (WiSe 2021/22)

Prerequisites: A basic course in Electrodynamics

Required Text: Class notes will be distributed in class.

Requirements: 11 Problem Sets, Collaboration on problem sets is encouraged.

Grade breakdown: Problem sets (30%), Participation (20%), Oral Ex.(50%)

Recommended Text:

Nonlinear Optics, R. W. Boyd, Academic Press, Third Edition (2008)

Additional References:

The Principles of Nonlinear Optics, Y. R. Chen, J. Wiley & Sons NY (1984). The Elements of Nonlinear Optics, P. N. Butcher & D. Cotter, Cambridge Studies in Modern Optics 9 (1990).

Nonlinear Fiber Optics, G. P. Agrawal, Academic Press (1998).

Solitons: an introduction, P. G. Drazin & R. S. Johnson, Cambridge Texts In Applied Mathematics, NY (1989).

Extreme Nonlinear Optics, M. Wegener, Springer (2005).

Syllabus

1	<u>11.10.2021</u>	Introduction to Nonlinear Optics
FXK	Mo	
2	13.10.2021	Important Nonlinear Optical Processes Overview
FXK	We	
<mark>3</mark>	18.10.2021	Nonlinear Optical Susceptibilities
FXK	Mo	Problem Set 1 Out
4	20.10.2021	Susceptibility Tensors
FXK	We	
5	25.10.2021	Nonlinear Wave Equation
FXK	Mo	Problem Set 1 Due, Problem Set 2 Out
<mark>6</mark>	27.10.2021	Second-Harmonic Generation
TH	We	
7	1.11.2021	Frequency Doubling of Pulses, Quasi-Phase Matching
FXK	Mo	Problem Set 2 Due, Problem Set 3 Out
8	3.11.2021	Optical Parametric Oscillation/Amplification, Difference Frequency
FXK	We	Generation
<mark>9</mark>	<u>8.11.2021</u>	Electro-Optic Effect and Modulators
TH	Mo	Problem Set 3 Due, Problem Set 4 Out
<mark>10</mark>	10.11.2021	Acousto-Optic Modulators and Bragg Cells
TH	We	
11	15.11.2021	Third-Order Nonlinear Effects
TH	Mo	Problem Set 4 Due, Problem Set 5 Out
12	17.11.2021	Self-Phase Modulation and Self-Focusing
TH	We	

T T T

Syllabus

1.0		
10	10.11.2021	Acousto-Optic Modulators and Bragg Cells
TH	We	
11	15.11.2021	Third-Order Nonlinear Effects
TH	Mo	Problem Set 4 Due, Problem Set 5 Out
12	17.11.2021	Self-Phase Modulation and Self-Focusing
TH	We	
13	22.11.2021	Raman and (Stimulated) Brillouin Scattering
FXK	Mo	Problem Set 5 Due, Problem Set 6 Out
<mark>14</mark>	24.11.2021	Lab Demonstrations I
FXK,	We	
TH		
<mark>15</mark>	29.11.2021	Optical Solitons
15 FXK	29.11.2021 Mo	Optical Solitons <i>Problem Set 6 Due, Problem Set 7 Out</i>
15 FXK 16	29.11.2021 Mo 1/12/2021	Optical Solitons Problem Set 6 Due, Problem Set 7 Out Dispersion Engineering in Fiber
15 FXK 16 TH	29.11.2021 Mo 1/12/2021 We	Optical Solitons <i>Problem Set 6 Due, Problem Set 7 Out</i> Dispersion Engineering in Fiber
15 FXK 16 TH 17	29.11.2021 Mo 1/12/2021 We 6/12/2021	Optical Solitons Problem Set 6 Due, Problem Set 7 Out Dispersion Engineering in Fiber Integrated Waveguides
15 FXK 16 TH 17 TH	29.11.2021 Mo 1/12/2021 We 6/12/2021 Mo	Optical Solitons Problem Set 6 Due, Problem Set 7 Out Dispersion Engineering in Fiber Integrated Waveguides Problem Set 7 Due, Problem Set 8 Out
15 FXK 16 TH 17 TH 18	29.11.2021 Mo 1/12/2021 We 6/12/2021 Mo 8/12/2021	Optical Solitons Problem Set 6 Due, Problem Set 7 Out Dispersion Engineering in Fiber Integrated Waveguides Problem Set 7 Due, Problem Set 8 Out FEM and FDTD Numeric Simulation of Waveguide and
15 FXK 16 TH 17 TH 18 18 TH	29.11.2021 Mo 1/12/2021 We 6/12/2021 Mo 8/12/2021 We	Optical Solitons Problem Set 6 Due, Problem Set 7 Out Dispersion Engineering in Fiber Integrated Waveguides Problem Set 7 Due, Problem Set 8 Out FEM and FDTD Numeric Simulation of Waveguide and Nonlinear Structures
15 FXK 16 TH 17 TH 18 TH	29.11.2021 Mo 1/12/2021 We 6/12/2021 Mo 8/12/2021 We	Optical Solitons Problem Set 6 Due, Problem Set 7 Out Dispersion Engineering in Fiber Integrated Waveguides Problem Set 7 Due, Problem Set 8 Out FEM and FDTD Numeric Simulation of Waveguide and Nonlinear Structures
15 FXK 16 TH 17 TH 18 TH 18 TH	29.11.2021 Mo 1/12/2021 We 6/12/2021 Mo 8/12/2021 We 13/12/2021	Optical Solitons Problem Set 6 Due, Problem Set 7 Out Dispersion Engineering in Fiber Integrated Waveguides Problem Set 7 Due, Problem Set 8 Out FEM and FDTD Numeric Simulation of Waveguide and Nonlinear Structures Supercontinua, NLSE and Numeric Simulation

Syllabus

20	15/12/2021	Similaritons, Dark Solitons, and Nonlinear Attractors
TH	We	
21	03/01/2022	Ultrafast Terahertz (THz) Sources
FXK	Mo	Problem Set 9 Due, Problem Set 10 Out
22	05/01/2022	Applications of Ultrafast Terahertz (THz) Sources
FXK	We	
23	10/01/2022	Ultrashort-Pulse Optical Parametric Amplification
FXK	Mo	Problem Set 10 Due, Problem Set 11 Out
<mark>24</mark>	12/01/2022	Ultrashort-Pulse Optical Parametric Chirped Pulse
FXK	We	Amplification
<mark>25</mark>	17/01/2022	High-Energy Few-Cycle Parametric Sources
FXK	Mo	Problem Set 11 Due
<mark>26</mark>	19/01/2022	Nonlinear Microresonators
TH	We	
<mark>27</mark>	24/01/2022	Integrated combs, Brillouin and Raman laser, OPOs
TH	Mo	
<mark>28</mark>	26/01/2022	Lab Demonstrations II
FXK, TH	We	
<mark>29</mark>	27/01/2022	BA and MS Thesis Topics

Multiphoton Microscopy (MPM)

Chung *et al.*, "Multimodal imaging platform for optical virtual skin biopsy," Biomed. Opt. Exp. **10**, 514-525 (2018).

Optical virtual skin biopsy by SHG/THG

Excitation wavelength: 1.25 µm, SHG: fibrous tissue, THG: epidermal cells

High Order Harmonic Generation (HHG)

P. Corkum, Phys. Rev. Lett. 71, 1994 (1993) K. C. Kulander, SILAP Conference (1992)

Maximizing the recollision energy within a period

L. E. Chipperfield *et al.*, Phys. Rev. Lett. 102, 063003 (2009)

C. Jin et al., Nature Commun. 5:4003 (2014)

S. Haessler et al., Phys. Rev. X 4, 021028 (2014)

www.lpr-journal.org

LASER & PHOTONICS REVIEWS

C. Manzoni *et al.* LPR **9**, 129 (2015)

Coherent pulse synthesis: towards sub-cycle optical waveforms

Cristian Manzoni, Oliver D. Mücke, Giovanni Cirmi, Shaobo Fang, Jeffrey Moses, Shu-Wei Huang, Kyung-Han Hong, Giulio Cerullo, Franz X. Kärtner

WILEY-VCH

G. M. Rossi *et al.*, Nature Photonics **14**, 629-635, (2020)

1.1 Why Nonlinear Optics?

- Capacitiy limits to optical communications due to fiber nonlinearities
- Nonlinear laser spectroscopy
- Ultrashort pulse lasers, intrinsic nonlinearities
- Limits to laser amplifiers set by optical nonlinearities
- Frequency conversion, UV, EUV, MID-IR, THz,
- Strong-field physics in gases, liquids and solids
- High order harmonic generation (HHG)
- Micromachining of materials
- Laser Surgery
- Nonlinear Microscopy
- Microwave measurement techniques, such as electro-optical sampling and electro-optical conversion

The Nobel Prize in Physics 1981

Photo from the Nobel Foundation archive.

Nicolaas Bloembergen

Prize share: 1/4

Photo from the Nobel Foundation archive.

Arthur Leonard Schawlow

Prize share: 1/4

Photo from the Nobel Foundation archive.

Kai M. Siegbahn

Prize share: 1/2

The Nobel Prize in Physics 2005

Photo: J.Reed Roy J. Glauber Prize share: 1/2

Photo: Sears.P.Studio John L. Hall Prize share: 1/4

Photo: F.M. Schmidt **Theodor W. Hänsch** Prize share: 1/4

The Nobel Prize in Chemistry 2014

© Nobel Media AB. Photo: A. Mahmoud Eric Betzig Prize share: 1/3

© Nobel Media AB. Photo: A. Mahmoud **Stefan W. Hell**

Prize share: 1/3

© Nobel Media AB. Photo: A. Mahmoud **William E. Moerner** Prize share: 1/3

The Nobel Prize in Physics 2018

© Arthur Ashkin Arthur Ashkin Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud **Gérard Mourou**

Prize share: 1/4

© Nobel Media AB. Photo: A. Mahmoud Donna Strickland

Prize share: 1/4

Typical optical nonlinearities are weak

	typ. Ti:sa CPA	L3-HAPLS @ ELI	SULF 10 PW
pulse energy $E_{\mathbf{p}}$	5 mJ	≥30 J	130 J
repetition rate $f_{\mathbf{r}}$	1 kHz	10 Hz	
pulse duration $\tau_{\rm p}$	30 fs	$\leq 30 \text{ fs}$	24 fs
peak power P	$166 \mathrm{GW}$	$\geq 1 \text{ PW}$	$5.4 \ \mathrm{PW}$
peak intensity I	$3 \times 10^{15} \mathrm{W/cm^2}$	$3.5 \times 10^{19} \text{ W/cm}^2$	$2 \times 10^{22} \mathrm{ W/cm^2}$
peak field E	1.6 GV/cm	162 GV/cm	3.9 TV/cm

Table 1.1: Ti:sapphire laser source parameters for a typical Ti:sapphire chirpedpulse amplifier (CPA) commonly used in attoscience, the High-Repetition-Rate Advanced Petawatt Laser System (HAPLS) [16] designed/built by Lawrence Livermore National Laboratory (LLNL) for the Extreme Light Infrastructure (ELI), and the Shanghai Superintense Ultrafast Laser Facility (SULF) [17, 18, 19], which will be scaled up to the 100-PW Station of Extreme Light (SEL) until 2023 [17]. $P = E_{\rm p}/\tau_{\rm p}, I = P/A$. For the typical Ti:sa CPA, $A = \pi r^2$ with $r = 40 \,\mu{\rm m}$. For L3-HAPLS, focusing is assumed to reach a laser strength parameter $a_0 = 4$, with $a_0 = 0.85 \times 10^{-9} \,\lambda [\mu{\rm m}] \, \left(I[{\rm W/cm}^2]\right)^{1/2}$. $E = \sqrt{2Z_0I}$ with $Z_0 = 377 \,\Omega$.

Optics and Photonics News Oct. 2017

The High-repetition-rate Advanced Petawa Laser System (HAPLS) has been built by Lawrence Uvermore National Laboratory for the Extreme Light Infrastructure facility in the Czech Republic. Coursey of LIML

Thomas M. Spinka and Constantin Haefner

High-Average-Power Ultrafast Lasers

https://www.youtube.com/watch?v=rDpLT7yTQvA

SULF The 5PW CPA amplifier (2014)

1.2 How does Nonlinear Optics work?

P: Polarization (Dipole moment / unit volume)

p: dipole moment per atom or molecule*N*: Number density

$$\mathbf{P} = N\mathbf{p}$$

q: charge that is displaced

I: displacement

$$\mathbf{p} = q \cdot \mathbf{l}$$

Figure 1.1: **A simple atom model** explaining the effect of in optical electric field on the induced polarization in an atom: (a) without field, (b) with field.

Perturbation Expansion

p: nonlinear dipole moment of atom or molecule

$$\mathbf{p} = q\mathbf{l} = q\left\{\alpha^{(1)}\left(\frac{E}{E_a}\right) + \alpha^{(2)}\left(\frac{E}{E_a}\right)^2 + \alpha^{(3)}\left(\frac{E}{E_a}\right)^3 + \cdots\right\}\frac{\mathbf{E}}{|\mathbf{E}|}.$$
 (1.1)

 $\alpha^{(l)}$: typical excursion of electron cloud at the critical field is on the order of the Bohr radius

$$\alpha^{(i)} = d_a = 10^{-10} \mathrm{m}$$

 E_a : critical field where perturbation theory breaks down: ionization field strength

$$E_a = \frac{e_0}{4\pi\epsilon_0 d_a^2} = 1.4 \cdot 10^{11} \frac{V}{m} = 1.4 GV/cm, \qquad (1.2)$$

 $\epsilon_0 = 8.854 \cdot 10^{-12}$ F/m the vacuum dielectric constant

Estimate for nonlinear susceptibilities

1 mol, i.e. the typical density is $N_A = 6 \cdot 10^{23} \text{ cm}^{-3}$ Nonlinear susceptibilities

$$P = \epsilon_0 \left[\chi^{(1)} E + \chi^{(2)} E^2 + \chi^{(3)} E^3 + \cdots \right], \qquad (1.3)$$

order i	$\chi^{(i)}$	model value	typ. material value
1	$\chi^{(1)} = \frac{Ne\alpha^{(1)}}{\epsilon_0 E_a}$ ≈ 7.5	n=2.9	Quartz: $n=1.45$
2	$\begin{array}{c} \chi^{(2)} \\ = 5. \end{array}$	•	•
3	$\begin{array}{c} \chi^{(3)} \\ = 3. \end{array}$		

Table 1.2: Linear and nonlinear optical susceptibilities from a simple atom model. We used $n_0(\text{KDP})=2.3$, $d_a = \alpha^{(i)} = 10^{-10}$ m, $e = e_0 = 1.6 \cdot 10^{-19}$ C, $\epsilon_0 = 8.854 \cdot 10^{-12}$ F/m, $E_a = \frac{e_0}{4\pi\epsilon_0 d_a^2} = 1.4 \cdot 10^{11}$ V/m, $N = 6 \cdot 10^{23} \cdot 10^6$ m⁻³. 23

Estimate for (nonlinear) susceptibilities

Refractive index:

$$n^2 = \left(1 + \chi^{(1)}\right). \tag{1.4}$$

As table (1.2) shows, the model predicts

$$\chi^{(1)} = \frac{Ne_0 d_a}{E_a \varepsilon_0} \tag{1.5}$$

refractive index
$$n = 2.9$$

About right!