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In the previous problem set we discussed the rate equations for a 4-level system and how that 

influences the output power of our laser cavity. Now we will continue to look at more applied 

properties of such a laser cavity. Specifically, we will look at how the output power reacts to 

fluctuations in the pump power and how you can achieve pulsed operation of the cavity via 

passive Q-switching. 

Problem 5.1: Relaxation Oscillations (10 points) 

We consider a continuously operating Ti:sapphire laser at a wavelength of 𝜆0 = 0.8𝜇𝑚, 100 

MHz repetition rate, pumped with 5 W power. The laser threshold is 0.5 W. The upper state 

lifetime of Ti:sapphire is 2.5 𝜇𝑠 and a 10% output coupler is used. 

 
a) Is the relaxation oscillation in this laser over- or underdamped? (2 Points) 

b) What is the relaxation oscillation frequency and the damping rate of the relaxation 
oscillation as a function of the pump parameter 𝑟 ? (3 Points) 

 

c) Plot the root locus of the complex relaxation oscillation frequency as a function of the 
pump parameter. What is the result for the pumping conditions described above? (3 
Points) 

 

d) How much pump power is required to suppress relaxation oscillations? (2 Points) 

 
 
 
 
 
 
 
 
 
 
 
 

 



Problem 5.2: Passive Q-Switching (20 points) 

We consider a microchip laser with the following laser cavity parameters: 
 
 

Parameter Value 

2𝑔0 0.7 

2𝑙 0.14 

𝑇_𝑅 2.7 𝑝𝑠 

𝜏𝐿 0.87 𝜇𝑠 

𝐸𝐿 0.2 𝜇𝐽 

 
 
To achieve a pulsed output from the laser we use passive Q-Switching. For passive Q-
Switching we need a passive modulation of our losses inside our laser cavity, therefore we will 
try  two different saturable absorbers. (1) A fast saturable absorber with an absorption depth 

of 2𝑞0 = 0.03, a saturation energy of 𝐸𝐴
𝐹𝑆𝐴 = 0.77 𝑝𝐽, and an absorber recovery time of 𝜏𝐴

𝐹𝑆𝐴 =
1 𝑝𝑠; and (2) a slow saturable absorber with an absorption depth of 2𝑞0 = 0.03, a saturation 

energy of 𝐸𝐴
𝑆𝑆𝐴 = 77 𝑝𝐽, and an absorber recovery time of 𝜏𝐴

𝑆𝑆𝐴 = 100 𝑝𝑠. 
Hint: The fast saturable absorber is so fast that we can assume that it reacts instantaneously 
to changes of power. See lecture 11 page 4 for more. 
 

a) Is the laser with the fast saturable absorber Q-switching? (2 Points) 
 

b) Formulate the rate equations for case (i) and (ii). (3 Points) 
 

c) Write a short MATLAB routine that numerically solves these rate equations using the 
routine ode45 (of course, also any other numerical ode-solver can be used), , see 
example attached. It helps to add spontaneous emission for numerical stability: for 

example, add a term 10−8𝑔 in your power rate equation. (10 Points) 
 

d) Integrate the rate equations over many cavity round-trip times, and plot the 
corresponding solutions versus time (similar to Fig. 4.28 in the lecture note L11) and 
in a phase space (similar to Fig. 4.27 in the lecture note 11). Normalize the 
corresponding quantities properly. (3 Points) 
 

e) For the slow saturable absorber case, extract the characteristic pulse properties of 
the Q-switched pulse trains (pulse energy, pulse width and repetition rate) from the 
numerical simulations. (2 Points) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Example code: 
 
clear all; 
close all; 

  
[t,y]=ode45(@rateEq, [0 20], [0 1]); 
% "@yp_pr6": Defining the differential equation system with that function 
% "[0,20]" start and end condition in time 
% "[o 1]" initial conditions 

  
figure; 
yyaxis left 
plot(t,y(:,1)) 
ylabel('state 1 amplitude') 
xlabel('time (arb. u.)') 
yyaxis right 
plot(t,y(:,2)) 

  
ylabel('state 2 amplitude') 

  

  

  
function dy = rateEq(t, y) 
% y(1) : state 1 
% y(2) : state 2 

  
tau1= 0.5; % Time constant 
%tau2=1; 
% system of equations defining our linear differential equation system 
dy = zeros(2,1); 
dy(1) = -tau1*y(1)+y(2);  
dy(2) = -tau1*y(1); 
end 

 

 


