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10.4 Noise in Mode-Locked Lasers

10.4.1 The Optical Spectrum

10.4.2 The Microwave Spectrum

10.4.3 Example: Er-fiber laser

UFS Lecture 16: Noise in Mode-Locked lasers



Pulse train from a mode-locked laser

Figure 10.1: Pulse train from a mode-locked laser.
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Optical spectrum of a mode-locked laser

Figure 10.2: Optical mode comb of a mode-locked laser output.
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Perturbation theory

The dynamics of the pulse parameters due to the perturbed NLSE can be 
projected out from the perturbation using the adjoint basis using the orthogonality 
relation
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Perturbation theory

Physics behind:
(10.15)à a change of soliton energy causes a cumulative change of phase since 
the contribution from the Kerr effect has changed.

(10.17)à a change of carrier frequency causes a cumulative change of 
displacement due to a change in group velocity.

(10.14) & (10.16)à due to gain saturation, gain filtering, and saturable absorber 
action, the pulse energy and center frequency fluctuations are damped with 
decay constants
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Noise as a perturbation
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Many noise sources: Fluctuations of the pump power
Mirror vibrations
Air currents, air pressure fluctuations
Temperature fluctuations

Here, we consider only fundamental noise sources:
Spontaneous emission noise from amplifier

Modeled as Gaussian white noise sources with autocorrelation function:

Power spectral density 
of noise source

Noise energy added to intracavity field within one roundtrip:
Excess noise factor of amplifier
(non ideal amplifier)

Photon lifetime

*



Perturbations in amplitude, phase, carrier frequency and timing
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With:

Noise source 
that generates 

amplitude fluctuations



Correlation functions of reduced noise sources
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Noise sources are white and independent!  

Define power spectra of amplitude, phase, frequency and timing fluctuations: 
e.g. amplitude fluctuations:



Power spectral densities
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Finite energy and center frequency fluctuations:



Phase noise and timing jitter
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Undergo a diffusive motion with variances:

Causes fundamental linewidth of optical lines and the microwave 
photo current spectrum



Phase Noise
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Phase difference:    

with probability density:

Expectation value of phasor:  exp(jj)

Gaussian random variable!

variance

10.4.1 The Optical Spectrum
(Neglecting amplitude and frequency noise)
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with

Fourier transform of pulse

m=0!
c
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Noise close to line center is determined by correlation function for large T:

with:
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Lorentzian lines at mode comb positions:

with HWHM

negligible at 
line center
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Typical numbers:

For cw-laser: Shawlow – Townes linewidth:

@1µm = 2.5x1011 fR = 100 MHz

2 l = 0.1 Q= 2

à Dff = 8 µHz X

à Dff ~ 1 mHz  - 1 Hz

Expected optical linewidth:
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10.4.2 The Microwave Spectrum

10-fs laser: M=106
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10.4.3 Example: Er-fiber laser

Figure 10.8: Schematic of soliton fiber laser mode-locked with a 
semiconductor  saturable Bragg reflector (SBR)
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Timing Jitter of Femtosecond Lasers

J. Kim and F. X. Kärtner, Laser & Phot. Rev., 1–25 (2009).

H. A. Haus and A. Mecozzi, IEEE JQE 29, 983 (1993). 
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Single-crystal balanced cross-correlator

Reflect fundamental
Transmit SHGTransmit fundamental

Reflect SHG

Type-II phase-matched PPKTP crystal

J. Kim et al., Opt. Lett. 32, 1044 (2007)

T. Schibli et al, OL 28, 947 (2003)
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Reflect fundamental
Transmit SHGTransmit fundamental

Reflect SHG

Type-II phase-matched
PPKTP crystal

J. Kim et al., Opt. Lett. 32, 1044 (2007)

Single-crystal balanced cross-correlator
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J. Kim et al., Opt. Lett. 32, 1044 (2007)

Single-crystal balanced cross-correlator

Reflect fundamental
Transmit SHGTransmit fundamental

Reflect SHG

Type-II phase-matched
PPKTP crystal
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Single-crystal balanced cross-correlator

In comparison:
Typical microwave mixer
Slope ~1 µV/fs @ 10 GHz
Greatly reduced thermal drifts!

80 pJ, 200 fs 
1550nm input pulses
at 200 MHz rep. rate
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Timing jitter of lasers

Modelocked
Laser 1

Modelocked
Laser 2
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J. Kim, et al. , Opt. Lett. 32, 3519 (2007).

Phase detector method à Timing Detector method
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Timing jitter of OneFive:Origami Laser
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K. Safak et al., Int. J. Structural Dynamics 2:(4) 041715 (2015).
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Application: Timing of XFELs

Long-term sub-10 fs synchronization over entire facility desired.
300 m  - 3 km

Upcoming Attosecond FELs à sub-fs synchronization

fs x-ray 
pulses

Seeded X-Ray FELs
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Timing Distribution and Synchronization

J. Kim et al, FEL 2004.

fs x-ray 
pulses
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