UFS Lecture 14: Stochastic Process

. Random Variables

. Random Signals and Stationary Processes

. Ergodic Processes and Wiener-Kintchin Theorem

. Thermal Noise

. Noise in linear systems

. Ornstein Uhlenbeck Prozess: Amplitude Noise of Oscillators
. Brownian Motion: Phase Noise of Oscillators
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1. Random Variables
There are experiments that have a random outcome
Example I: Coin tossing. - Results is Head or Talil
Introduce Random Variable X, which can have two values
X =0 (for Tail) or X = 1 (for Head)

There is a probability to find the value X = 0 called P(X = 0) and
a probability to find the value X = 1 called P(X = 1).

These probabilities are usually found by making repeated experiments and by
noting how often the outcome X =0, i.e. N;times or X = 1 is found, i.e. N5
times in relation to the total numer of tosses made N = N4 + N.

Then P(X=0) = % and P(X=1) = %; for a symmetric coin those probabilities
are 0.5.

0.5, forx =0

0.5, forx = 1 if we consider x to

We define a probability distribution: p(x) = {

be a discrete variable.



Or we define p(x) =0.568(x) + 0.58(x — 1),

if we consider x to be a continuous variable.
Probability distributions are normalized:

for discrete variables: );; p(x;) = 1,
for continuous variables: f:’;o p(x)dx = 1.

Example Il: Voltage across and electronic resistor in thermal equilibrium:
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We can perform experiments with a whole ensemble of equal resistors and
compute expection values from the observations we make on all resistors.



Such an average is called ensemble average and denoted as:

+00 1 x?

(V) :J Oov p(v)dv =f vme_ﬁdv =0

Second order moment:
+ 00
(V2) = f v2p(v)dv = o2
n-th order moment:
+ 00
(V) =J vt p(v)dv

Variance and standard deviation For centered Gaussian distribution:
Variance: Var(V) = (V. — (V))2)= (V2) — (V)2 Var(V) = (V2) = g2

Standard deviation: sdev(V) =,/ Var(V) sdev(V) = o



Charateristic function of a random variable

C(s) = Flpw)} = [, p(w)e/**dv,
is the generating function for all moments of a probability distribution

n

d too »
@C(s) = f_oo (—jv)"p(v)e /" *dv or

jm" %C(S)L:o = f:’;o v*'p(v)dv = (V"), especially C(s =0) =1

1 =
e - >
For example: Exponential distribution p(x) ={g° 7 forx 20
0,forx <0
_ (to1l _g—jxg . 1 _ 1 . d™ _ nlg™
CGs) = f—oo s © dx = U(%HS) ~ (+jso)’ J dS"C(S)_ (1+jso)™*1

(VY=0; (VWY=nlag"; (V2)=20?%  sdev=oc

--> Fluctuations are as large as mean value.



2. Random Signals and Stationary Process

O

Is a random signal, i.e. a random variable at each point in time.
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We can watch it on an oscilloscope!
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But now we can build: Ensemble averages, i.e. expectation values

(V(t)") or correlation functions (V(t)V(t + 1)).



Stationary Processes:
(V)V(+ 1)) =VO0)V (1)) = CVV (7). symmetric in T
This average does not depend on the time we measure it!

Strictly speaking one can distinguish between n-th order stationary processes.

3. Ergotic Processes and Wiener-Kintchin Theorem

Instead of ensemble averages we can also build time averages!

Often (we assume always if nothing else is specified) it does not matter whether
one performs a time average of a certain random variable of the system or we build
an ensemble average over many identical systems, such systems are called
ergodic. Depending on the system you may need a rather long time average until
the system samples all of it's phase space.

For ergotic systems we have for example for the auto correlation function of

variable V: Cry(D) = (VOV(t+ 1)) = 711_>r£10 V)V (t+ 1)




Wiener-Khintchin Theorem: (VOV{E+1) =IOV (@) =V (D).

We are interested in the power spectral density of stationary random signals s(¢):

and define time limited random signals and their Fourier Transforms

t), t| <T _ " —j2mft
st(t) = {S(O,)ffO:TH ST St(f) J_Oo sr(t) e /M tdt

and
+oco _
5@ = | Se(f)emta
Then the auto-correlation function can be computed by

1 [t
(@ = Jim 5 [ 5@ sr(e+ ) de =

“lim & [T [T 5 (F) el df [T 5 (F) el eI g g —

T—oo 2T “—00

= 1im L [ 50 (F) Sp(f [17 5(F + ) /2 d '
=lim 2 [ 576 Sp(HerMaf = [17 lim 2 < S (ASy(f) > el Tdf



Correlation Spectrum:

We define the autocorrelation spectrum or power spectral density of the signal s(t):

G0 =Jim 5o < S7(N)Sr(f) >

with
+00 . . . .
(1) = j (D) /2T F Wiener-Khintchin Theorem:
—o0 For ergodic processes the Fourier transform
and e of the autocorrelation function is the
Coo(f) = J c.(D)e 12 T dr autocorrelation spectrum which is equal to
~ the power spectral density of the signal.
$(t)
Example lll: White Noise £(t) bl an Wit *,l t

C::(f) = D; for all frequencies: total power of this signal is infinite

then

cee(t) = D §(7); not defined at 7 = 0;since ¢ (7t = 0) =< &(t)* > does not exist.



4 Thermal Noise:

Model of an ideal resistor: the infinite transmission line

r—m——m“"=-"=—==-
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Characteristic O
impedance of
transmission line: Z, = R

All longitudinal modes on this line are in
thermal equilibrium: excitation energy &7

Start from finite length L transmission line: modes at each frequency/, :%

Density of modes: dn = %df.

Thermal energy stored on transmission line in frequency interval df: dw :kTZ—CL df .
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If we connect to the transmission line the resistor R, then the thermal power

dp = idw =kT df will flow into the resistor R in the frequency intervall df 0



The resistor would be heated up by this thermal energy if it would not emit by itself
In thermal equilibrium and equal amount of thermal power into the transmission line:

1 Two sided autocorrelation
dp = —=Cyun(f) df =kT df. 2|Cywn(f) = 2RKkT ,
P =ar=vw () df / nvn(f) spectrum of voltage fluctuations

at resistor R.

Thermal noise at resistor is white noise!
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Voltage fluctuations in frequency range Af:

<VZ(t)>=4RKTAf

Circuit diagram V. (1
of resistor with R A7)
noise:
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Cinin(f) =2GkT
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5 Noise in Linear Systems:

SinT (t) ]7(0 Sout T (t)
SinT(f) H(jZTL’f) Sout T(f)

Cspuesone () = 1HG2R)I* Csy5, (F)

Example IV: Low pass filter

G+ jwC)V(jw) =1 ) = B

Cinin(f) =2GkT ( /@ ) (]a)) (]a)) H(](l)) - (1+jwRC)
s V(o) = Grjae 1 G0)

ln(t) _(G+]I§)C) | Cor(F) = S RKT

6S () o e T [0
X Gl T pkr
YOdB/decade
- Lre &
tp = 2T / —1/TLP 1/TLP \
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6 Ornstein - Uhlenbeck Process

d
ax(t) =—yx(t)+&() &(t): white noise with power spectral density D.

Heavily damped motion driven by white noise!

t
x(t) = j e (=g dt’

Compute autocorrelation function: <é&(t")é(t") >=D 6(t' —t'")
<x@x(t+1) >=< [*_e =gy de! [T e vt gy de'>

=D ff, e g v = Doyl

_o[D —ylr]l _D 1 filtered white noise,
Cex (f) T{Zye } v? 1+(w/v)? |  like in a low pass.
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7 Brownian Motion

d
ax(t) =—yx(t)+&() &(t): white noise with power spectral density D.

But damping goes to zero: y = 0

d t
x(0) = €0 x(t) = j RGL:

Compute autocorrelation function: <é&(t")é(t") >=D 6(t' —t'")

D
<x()x(t + 1) >= lim—e7I"l; Not so easy?
y—02y
But:
10 log Cor () }
Cex(f) = — 20dB/decade
w

NN logf




Phase Noise of Oscillators

N ¢(t): white noise with power spectral density D.
d L g
Sow=(m) — 0 ®= [ s

0

@(t) <p(tNet") >=D -min{t'.t'"}

\ 4

Second order moment: <@(t)? >=D -t

Oscillation: A@) =4, el*®

Autocorrelation function: <Aty A(t+1) >= |A,|? <e/@ETD-0®) >

2

+00
Statistics of phase: —_1 e"f <A) A(t+1) >= p(p)el?S do
P(P)=F= .

<A(t)'A(t+t)>: Characteristic function of phase at. {=1

1 1
Caa(t) = <A) A(t+7) > = |A)|? e72° = |4, e 2P
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Phase Noise Spectrum of Oscillators

1 1
Caa(t) = <A A(t+7) > = |Ag|?e 2% = |4,)? 2"

Autocorrelation spectrum or power spectral density of oscillator:

Co =14 _ 1AL
A4 T 14 (wD/2)2 T 1+(mnfD)?

Single-Sideband Phase Noise of oscillator

1 N
— 20dB/decade
L) =10 Log (1 T (nfD)Z) S
5
= | ~
=) f
= 1/nD
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