UFS Lecture 14: Stochastic Process

- 1. Random Variables
- 2. Random Signals and Stationary Processes
- 3. Ergodic Processes and Wiener-Kintchin Theorem
- 4. Thermal Noise
- 5. Noise in linear systems
- 6. Ornstein Uhlenbeck Prozess: Amplitude Noise of Oscillators
- 7. Brownian Motion: Phase Noise of Oscillators

1. Random Variables

There are experiments that have a random outcome

Example I: Coin tossing. \rightarrow Results is Head or Tail

Introduce Random Variable X, which can have two values

 $\mathbf{X} = 0$ (for Tail) or $\mathbf{X} = 1$ (for Head)

There is a probability to find the value X = 0 called P(X = 0) and a probability to find the value X = 1 called P(X = 1).

These probabilities are usually found by making repeated experiments and by noting how often the outcome X = 0, i.e. N₁ times or X = 1 is found, i.e. N₂ times in relation to the total numer of tosses made N = N₁ + N₂.

Then $P(\mathbf{X} = 0) = \frac{N_1}{N}$ and $P(\mathbf{X} = 1) = \frac{N_2}{N}$; for a symmetric coin those probabilities are 0.5.

We define a probability distribution: $p(x) = \begin{cases} 0.5, for \ x = 0 \\ 0.5, for \ x = 1 \end{cases}$ if we consider x to be a discrete variable.

Or we define $p(x) = 0.5 \,\delta(x) + 0.5 \,\delta(x-1)$,

if we consider x to be a continuous variable.

Probability distributions are normalized:

for discrete variables: $\sum_{i} p(x_i) = 1$,

for continuous variables: $\int_{-\infty}^{+\infty} p(x) dx = 1$.

Example II: Voltage across and electronic resistor in thermal equilibrium:

$$V \qquad p(v) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{x^2}{2\sigma}}$$

We can perform experiments with a whole ensemble of equal resistors and compute expection values from the observations we make on all resistors.

Such an average is called ensemble average and denoted as:

$$\langle V \rangle = \int_{-\infty}^{+\infty} v \, p(v) dv = \int_{-\infty}^{+\infty} v \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma}} dv = 0$$

Second order moment:

$$\langle V^2 \rangle = \int_{-\infty}^{+\infty} v^2 p(v) dv = \sigma^2$$

n-th order moment:

$$\langle V^n \rangle = \int_{-\infty}^{+\infty} v^n \, p(v) dv$$

Variance and standard deviation

Variance: Var(V) =
$$\langle (V - \langle V \rangle)^2 \rangle$$
 = $\langle V^2 \rangle - \langle V \rangle^2$

Standard deviation: $sdev(V) = \sqrt{Var(V)}$

For centered Gaussian distribution:

$$Var(V) = \langle V^2 \rangle = \sigma^2$$

 $sdev(V) = \sigma$

Charateristic function of a random variable

$$C(s) = \mathcal{F}\{p(v)\} = \int_{-\infty}^{+\infty} p(v)e^{-jvs}dv,$$

is the generating function for all moments of a probability distribution

$$\frac{d^n}{ds^n}C(s) = \int_{-\infty}^{+\infty} (-jv)^n p(v)e^{-jvs}dv \quad \text{or}$$

$$j^n \left. \frac{d^n}{ds^n} C(s) \right|_{s=0} = \int_{-\infty}^{+\infty} v^n p(v) dv = \langle V^n \rangle, \text{ especially } C(s=0) = 1$$

For example: Exponential distribution p(x) =

.

$$p(x) = \begin{cases} \frac{1}{\sigma} e^{-\frac{x}{\sigma}}, & \text{for } x \ge 0\\ 0, & \text{for } x < 0 \end{cases}$$

$$C(s) = \int_{-\infty}^{+\infty} \frac{1}{\sigma} e^{-\frac{x}{\sigma} - jxs} dx = \frac{1}{\sigma(\frac{1}{\sigma} + js)} = \frac{1}{(1 + js\sigma)}; \qquad j^n \frac{d^n}{ds^n} C(s) = \frac{n! \sigma^n}{(1 + js\sigma)^{n+1}}$$

$$\langle V \rangle = \sigma; \quad \langle V^n \rangle = n! \ \sigma^n; \quad \langle V^2 \rangle = 2 \ \sigma^2; \quad sdev = \sigma$$

--> Fluctuations are as large as mean value.

2. Random Signals and Stationary Process

V(t)

Is a random signal, i.e. a random variable at each point in time.

We can watch it on an oscilloscope!

But now we can build: Ensemble averages, i.e. expectation values

 $\langle V(t)^n \rangle$ or correlation functions $\langle V(t)V(t+\tau) \rangle$.

Stationary Processes:

 $\langle V(t)V(t+\tau)\rangle = \langle V(0)V(\tau)\rangle = CVV(\tau).$ symmetric in τ

This average does not depend on the time we measure it!

Strictly speaking one can distinguish between n-th order stationary processes.

3. Ergotic Processes and Wiener-Kintchin Theorem

Instead of ensemble averages we can also build time averages!

Often (we assume always if nothing else is specified) it does not matter whether one performs a time average of a certain random variable of the system or we build an ensemble average over many identical systems, such systems are called ergodic. Depending on the system you may need a rather long time average until the system samples all of it's phase space.

For ergotic systems we have for example for the auto correlation function of variable V: $C_{VV}(\tau) = \langle V(t)V(t+\tau) \rangle = \lim_{T \to \infty} \overline{V(t)V(t+\tau)}$

7

Wiener-Khintchin Theorem:

$$\langle V(t)V(t+\tau)\rangle = \langle V(0)V(\tau)\rangle = CVV(\tau).$$

We are interested in the power spectral density of stationary random signals s(t): and define time limited random signals and their Fourier Transforms

$$s_T(t) = \begin{cases} s(t), for |t| \le T \\ 0, for |t| > T \end{cases}, \qquad S_T(f) = \int_{-\infty}^{+\infty} s_T(t) e^{-j2\pi f t} dt$$

and

$$s_T(t) = \int_{-\infty}^{+\infty} S_T(f) \, e^{j2\pi ft} df$$

Then the auto-correlation function can be computed by

$$c_{ss}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{+\infty} s_T(t) s_T(t+\tau) dt =$$

= $\lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} S_T(f) e^{j2\pi ft} df \int_{-\infty}^{+\infty} S_T(f') e^{j2\pi f'(t+\tau)} df' dt =$
= $\lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{+\infty} S_T(f) S_T(f') df \int_{-\infty}^{+\infty} \delta(f+f') e^{j2\pi f'\tau} df' =$
= $\lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{+\infty} S_T^*(f) S_T(f) e^{j2\pi f\tau} df = \int_{-\infty}^{+\infty} \lim_{T \to \infty} \frac{1}{2T} < S_T^*(f) S_T(f) > e^{j2\pi f\tau} df$

Correlation Spectrum:

We define the autocorrelation spectrum or power spectral density of the signal s(t):

$$C_{ss}(f) = \lim_{T \to \infty} \frac{1}{2T} < S_T^*(f)S_T(f) >$$

with

$$c_{ss}(\tau) = \int_{-\infty}^{+\infty} C_{ss}(f) \ e^{j2\pi f\tau} df$$
and

$$C_{ss}(f) = \int_{-\infty}^{+\infty} c_{ss}(\tau) e^{-j2\pi f\tau} d\tau$$

Wiener-Khintchin Theorem:

For ergodic processes the Fourier transform of the autocorrelation function is the autocorrelation spectrum which is equal to the power spectral density of the signal.

Example III: White Noise
$$\xi(t)$$
 t

 $C_{\xi\xi}(f) = D$; for all frequencies: total power of this signal is infinite

then

.

$$c_{\xi\xi}(\tau) = D \,\delta(\tau)$$
; not defined at $\tau = 0$; $\sin ce c_{\xi\xi}(\tau = 0) = \langle \xi(t)^2 \rangle$ does not exist.

4 Thermal Noise:

Model of an ideal resistor: the infinite transmission line

Thermal energy stored on transmission line in frequency interval $df: dw = kT\frac{2L}{c}df$.

If we connect to the transmission line the resistor *R*, then the thermal power $dp = \frac{c}{2L}dw = kT df$ will flow into the resistor *R* in the frequency intervall *df*

The resistor would be heated up by this thermal energy if it would not emit by itself In thermal equilibrium and equal amount of thermal power into the transmission line:

$$dp = \frac{1}{2R} C_{VnVn}(f) df = kT df. \Rightarrow C_{VnVn}(f) = 2R kT$$
 Two sided autocorrelation
spectrum of voltage fluctuations
at resistor R.

Thermal noise at resistor is white noise!

5 Noise in Linear Systems:

$$S_{in T}(t) \qquad h(t) \qquad S_{out T}(t)$$

$$S_{in T}(f) \qquad H(j2\pi f) \qquad S_{out T}(f)$$

$$C_{S_{out}S_{out}}(f) = |H(j2\pi f)|^2 C_{S_{in}S_{in}}(f)$$

Example IV: Low pass filter

6 Ornstein - Uhlenbeck Process

 $\frac{d}{dt}x(t) = -\gamma x(t) + \xi(t) \qquad \xi(t): \text{ white noise with power spectral density } D.$

Heavily damped motion driven by white noise!

$$x(t) = \int_{-\infty}^{t} e^{-\gamma(t-t')} \xi(t') \, dt'$$

Compute autocorrelation function: $\langle \xi(t')\xi(t'') \rangle = D \, \delta(t' - t'')$

$$< x(t)x(t+\tau) > = < \int_{-\infty}^{t} e^{-\gamma(t-t')} \xi(t') dt' \int_{-\infty}^{t+\tau} e^{-\gamma(t+\tau-t'')} \xi(t'') dt'' >$$

$$= D \int_{-\infty}^{t} e^{-2\gamma(t-t')} dt' e^{-\gamma\tau} = \frac{D}{2\gamma} e^{-\gamma|\tau|}$$

$$C_{xx}(f) = \mathcal{F}\left\{\frac{D}{2\gamma}e^{-\gamma|\tau|}\right\} = \frac{D}{\gamma^2}\frac{1}{1+(\omega/\gamma)^2}$$

filtered white noise, like in a low pass.

7 Brownian Motion

 $\frac{d}{dt}x(t) = -\gamma x(t) + \xi(t) \qquad \xi(t): \text{ white noise with power spectral density } D.$

But damping goes to zero: $\gamma \rightarrow 0$

$$\frac{d}{dt}x(t) = \xi(t) \qquad \qquad x(t) = \int_{-\infty}^{t} \xi(t') dt'$$

Compute autocorrelation function: $\langle \xi(t')\xi(t'') \rangle = D \,\delta(t'-t'')$

$$(t')\xi(t'') \ge D \,\delta(t'-t'')$$

$$\langle x(t)x(t+\tau) \rangle = \lim_{\gamma \to 0} \frac{D}{2\gamma} e^{-\gamma|\tau|};$$

 $C_{xx}(f) = \frac{D}{\omega^2}$

Not so easy?

But:

$$10 \log C_{xx}(f) = \frac{20 dB}{decade}$$

$$\log f$$

Phase Noise of Oscillators

 $\xi(t): \text{ white noise with power spectral density } D.$ $\frac{d}{dt}\varphi(t) = \xi(t) \implies \varphi(t) = \int_0^t \xi(t') \, dt'$ $<\varphi(t')\varphi(t'') >= D \cdot \min\{t'.t''\}$ Second order moment: $<\varphi(t)^2 >= D \cdot t$

Oscillation: $A(t) = A_0 e^{j\varphi(t)}$

Autocorrelation function:

$$\langle A(t)^* A(t+\tau) \rangle = |A_0|^2 \langle e^{j(\varphi(t+\tau) - \varphi(t))} \rangle$$

Statistics of phase:

$$p(\varphi) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\varphi^2}{2\sigma}} \qquad \langle A(t)^* A(t+\tau) \rangle = \int_{-\infty}^{+\infty} p(\varphi) e^{j\varphi\zeta} \, \mathrm{d}\varphi$$

 $\langle A(t)^*A(t+\tau) \rangle$: Characteristic function of phase at. ζ =1

$$c_{AA}(\tau) = \langle A(t)^* A(t+\tau) \rangle = |A_0|^2 \ e^{-\frac{1}{2}\sigma} = |A_0|^2 \ e^{-\frac{1}{2}D|\tau|}$$

Phase Noise Spectrum of Oscillators

$$c_{AA}(\tau) = \langle A(t)^* A(t+\tau) \rangle = |A_0|^2 e^{-\frac{1}{2}\sigma} = |A_0|^2 e^{-\frac{1}{2}D|\tau|}$$

Autocorrelation spectrum or power spectral density of oscillator:

$$C_{AA}(f) = \frac{|A_0|^2}{1 + (\omega D/2)^2} = \frac{|A_0|^2}{1 + (\pi f D)^2}$$

Single-Sideband Phase Noise of oscillator

$$Lf) = 10 \ Log \ \left(\frac{1}{1 + (\pi fD)^2}\right)$$

L(f) in dBc/Hz

