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UFS Lecture 14: Stochastic Process

1. Random Variables
2. Random Signals and Stationary Processes
3. Ergodic Processes and Wiener-Kintchin Theorem
4. Thermal Noise
5. Noise in linear systems
6. Ornstein Uhlenbeck Prozess: Amplitude Noise of Oscillators
7. Brownian Motion: Phase Noise of Oscillators
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1. Random Variables
There are experiments that have a random outcome

Example I: Coin tossing.  à Results is Head or Tail

Introduce Random Variable X, which can have two values

X = 0 (for Tail) or X = 1 (for Head) 

There is a probability to find the value X = 0 called P(X = 0) and
a probability to find the value X = 1 called P(X = 1).

These probabilities are usually found by making repeated experiments and by
noting how often the outcome X = 0, i.e. N1 times or X = 1 is found, i.e. N2
times in relation to the total numer of tosses made N = N1 + N2.

Then P(X = 0) = N1
N and P(X = 1) = N2

N ; for a symmetric coin those probabilities
are 0.5.

We define a probability distribution:   p(x) = !0.5, 𝑓𝑜𝑟 𝑥 = 0
0.5, 𝑓𝑜𝑟 𝑥 = 1 if we consider 𝑥 to

be a discrete variable.
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Or we define p(x) = 0.5 𝛿 𝑥 + 0.5 𝛿 𝑥 − 1 , 

if we consider 𝑥 to be a continuous variable.

Probability distributions are normalized: 

for discrete variables: ∑! 𝑝(𝑥!) = 1,

for continuous variables: ∫"#
$# 𝑝 𝑥 𝑑𝑥 = 1.

Example II: Voltage across and electronic resistor in thermal equilibrium:

V 𝑝 𝑣 =
1
2𝜋𝜎

𝑒"
%!

&'

We can perform experiments with a whole ensemble of equal resistors and
compute expection values from the observations we make on all resistors. 
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Such an average is called ensemble average and denoted as:

Second order moment:

n-th order moment:

Variance and standard deviation

Variance: Var(V) = (𝑉 − 𝑉 )2 = 𝑉2 − 𝑉 2

Standard deviation: sdev(V) = Var(V)

𝑉 = ;
"#

$#
𝑣 𝑝 𝑣 𝑑𝑣 = ;

"#

$#
𝑣

1
2𝜋𝜎

𝑒
" %!

&' 𝑑𝑣 = 0

𝑉2 = ;
"#

$#
𝑣2 𝑝 𝑣 𝑑𝑣 = 𝜎2

𝑉𝑛 = ;
"#

$#
𝑣𝑛 𝑝 𝑣 𝑑𝑣

For centered Gaussian distribution:

Var(V) = 𝑉2 = 𝜎2

sdev(V) = 𝜎
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Charateristic function of a random variable

𝐶 𝑠 = ℱ 𝑝(𝑣) = ∫"#
$# 𝑝(𝑣)𝑒"()*𝑑𝑣 ,

is the generating function for all moments of a probability distribution

𝑑+

𝑑𝑠+ 𝐶 𝑠 = ;
"#

$#
(−𝑗𝑣)+𝑝(𝑣)𝑒"()*𝑑𝑣 or

B. 𝑗+ ,"

,*"
𝐶 𝑠

*-.
= ∫"#

$# 𝑣+𝑝 𝑣 𝑑𝑣 = 𝑉𝑛 , especially 𝐶 𝑠 = 0 = 1

For example: Exponential distribution 𝑝 𝑥 = C
1
𝜎
𝑒"

%
' , 𝑓𝑜𝑟 𝑥 ≥ 0

0, 𝑓𝑜𝑟 𝑥 < 0

𝐶 𝑠 = ∫"#
$# /

'
𝑒"

#
$"(%*𝑑𝑥 = /

' %
$$(*

= /
/$(*'

;

𝑉 = 𝜎; 𝑉𝑛 = 𝑛! 𝜎+; 𝑉2 = 2 𝜎&; 𝑠𝑑𝑒𝑣 = 𝜎

𝑗+ ,"

,*"
𝐶 𝑠 = +! '"

/$(*' "&%

--> Fluctuations are as large as mean value. 
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2. Random Signals and Stationary Process

V(t)
Is a random signal, i.e. a random variable at each point in time.

We can watch it on an oscilloscope!

But now we can build: Ensemble averages, i.e. expectation values

𝑉 𝑡 𝑛 𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑉 𝑡 𝑉(𝑡 + 𝜏) .
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Stationary Processes:

𝑉 𝑡 𝑉(𝑡 + 𝜏) = 𝑉 0 𝑉(𝜏) = 𝐶𝑉𝑉(𝜏).

This average does not depend on the time we measure it!

Strictly speaking one can distinguish between n-th order stationary processes.

3. Ergotic Processes and Wiener-Kintchin Theorem

Instead of ensemble averages we can also build time averages!

Often (we assume always if nothing else is specified) it does not matter whether
one performs a time average of a certain random variable of the system or we build
an ensemble average over many identical systems, such systems are called
ergodic. Depending on the system you may need a rather long time average until
the system samples all of it‘s phase space.

For ergotic systems we have for example for the auto correlation function of
variable V: 

𝐶𝑉𝑉 𝜏 = 𝑉 𝑡 𝑉(𝑡 + 𝜏) = lim
1→#

𝑉 𝑡 𝑉(𝑡 + 𝜏)

symmetric in 𝜏
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Wiener-Khintchin Theorem:

𝑠1 𝑡 = !𝑠(𝑡), 𝑓𝑜𝑟 𝑡 ≤ 𝑇
0, 𝑓𝑜𝑟 𝑡 > 𝑇

We are interested in the power spectral density of stationary random signals s(t):

and define time limited random signals and their Fourier Transforms

𝑉 𝑡 𝑉(𝑡 + 𝜏) = 𝑉 0 𝑉(𝜏) = 𝐶𝑉𝑉(𝜏).

𝑆1 𝑓 = -
"#

$#
𝑠1 𝑡 𝑒"(&345𝑑𝑡

and

,

𝑠1 𝑡 = -
"#

$#
𝑆1 𝑓 𝑒(&345𝑑𝑓

Then the auto-correlation function can be computed by

𝑐𝑠𝑠 𝜏 = lim
1→#

1
2𝑇-"#

$#
𝑠1 𝑡 𝑠1 𝑡 + 𝜏 𝑑𝑡 =

= lim
1→#

/
&1 ∫"#

$#∫"#
$# 𝑆1 𝑓 𝑒(&345𝑑𝑓 ∫"#

$# 𝑆1 𝑓′ 𝑒(&346 5$7 𝑑𝑓′ 𝑑𝑡 =

= lim
1→#

/
&1 ∫"#

$# 𝑆1 𝑓 𝑆1 𝑓′ 𝑑𝑓 ∫"#
$# 𝛿 𝑓 + 𝑓′ 𝑒(&3467𝑑𝑓′=

= lim
1→#

/
&1 ∫"#

$# 𝑆1∗ 𝑓 𝑆1 𝑓 𝑒(&347𝑑𝑓 = ∫"#
$# lim

1→#
/
&1
< 𝑆1∗ 𝑓 𝑆1 𝑓 > 𝑒(&347𝑑𝑓
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Correlation Spectrum:
We define the autocorrelation spectrum or power spectral density of the signal s(t):

Css(f)	= lim1→#
/
&1
< 𝑆1∗ 𝑓 𝑆1 𝑓 >

with

c𝑠𝑠 𝜏 = -
"#

$#
Css(f) 𝑒(&347𝑑𝑓

and

C𝑠𝑠 𝑓 = -
"#

$#
css 𝜏 𝑒"(&347𝑑𝜏

For ergodic processes the Fourier transform
of the autocorrelation function is the
autocorrelation spectrum which is equal to
the power spectral density of the signal.

Wiener-Khintchin Theorem:

Example III: White Noise 𝜉(𝑡)

C𝜉𝜉 𝑓 = 𝐷; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠: 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒

then

c𝜉𝜉 𝜏 = 𝐷 𝛿 𝜏 ;  not defined at 𝜏 = 0;since c𝜉𝜉 𝜏 = 0 =< 𝜉(𝑡)& > does not exist. 

𝜉(𝑡)

𝑡
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4 Thermal Noise:
Model of an ideal resistor: the infinite transmission line

Characteristic
impedance of
transmission line: Zw=	R All longitudinal modes on this line are in 

thermal equilibrium: excitation energy kT

Start from finite length L		transmission line: modes at each frequencyfn =
+9
&:

Density of modes: dn =		&:
9
𝑑𝑓.

Thermal energy stored on transmission line in frequency interval 𝑑𝑓: 𝑑𝑤 =	kT	&:
9
𝑑𝑓.

R Vn(t)

If we connect to the transmission line the resistor 𝑅, then the thermal power 
𝑑𝑝 = 9

&:
𝑑𝑤 =	𝑘𝑇 𝑑𝑓 𝑅will flow into the resistor in the frequency intervall df
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The resistor would be heated up by this thermal energy if it would not emit by itself
In thermal equilibrium and equal amount of thermal power into the transmission line:

𝑑𝑝 = /
&;
𝐶𝑉𝑛𝑉𝑛 𝑓 𝑑𝑓 =	𝑘𝑇 𝑑𝑓.	à 𝐶𝑉𝑛𝑉𝑛 𝑓 =	2R	𝑘𝑇

Voltage fluctuations in frequency range Δ𝑓:

Two sided autocorrelation
spectrum of voltage fluctuations
at resistor R.

Thermal noise at resistor is white noise!

𝑉+(𝑡)

𝑡

𝐶<"<" 𝑓

𝑓
2R	𝑘𝑇

Δ𝑓 Δ𝑓

< 𝑉+&(𝑡)>	=	4	R	kT Δ𝑓

RCircuit diagram
of resistor with
noise:

Vn(t) G
in(t)

𝐶!"!" 𝑓 =	2G	𝑘𝑇
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5 Noise in Linear Systems:

h(t)	
𝐻(𝑗2𝜋𝑓)𝑆!+ 1 𝑓

𝑠!+ 1 𝑡

𝑆=>5 1 𝑓

𝑠=>5 1 𝑡

𝐶?'()?'() 𝑓 = 𝐻(𝑗2𝜋𝑓) & 𝐶?*"?*" 𝑓

Example IV: Low pass filter

G
in(t)

𝐶!"!" 𝑓 =	2G	𝑘𝑇

𝑉(𝑡)

(𝐺 + 𝑗𝜔𝐶) 𝑉 𝑗𝜔 = 𝐼 𝑗𝜔

𝐶

𝑉 𝑗𝜔 = /
(A$(BC)

𝐼 𝑗𝜔

= ;
(/$(B;C)

𝐼 𝑗𝜔 𝐶<< 𝑓 = &;E1
/$(B;C)!

𝐻(𝑗𝜔) = ;
(/$(B;C)

𝐶<"<" 𝑓

𝑓

2R	𝑘𝑇

𝜏:F =
1
2𝜋 𝑅𝐶 1/𝜏:F−1/𝜏:F

20dB/decade



13

6 Ornstein - Uhlenbeck Process

𝑑
𝑑𝑡 𝑥 𝑡 = −𝛾 𝑥 𝑡 + 𝜉(𝑡) 𝜉 𝑡 : white noise with power spectral density 𝐷.

𝑥 𝑡 = -
"#

5
𝑒"G 5"5+ 𝜉(𝑡′) 𝑑𝑡′

Heavily damped motion driven by white noise!

Compute autocorrelation function:

< 𝑥 𝑡 𝑥 𝑡 + 𝜏 >=< ∫"#
5 𝑒"G 5"5+ 𝜉(𝑡′) 𝑑𝑡6 ∫"#

5$7 𝑒"G 5$7"5++ 𝜉(𝑡′′) 𝑑𝑡′‘>

= 𝐷 ∫"#
5 𝑒"&G 5"5+ 𝑑𝑡6 𝑒"G7 = H

&G
𝑒"G 7

< 𝜉 𝑡6 𝜉 𝑡66 >= 𝐷 𝛿 𝑡6 − 𝑡6′

𝐶%% 𝑓 = ℱ H
&G
𝑒"G 7 = H

G!
/

/$(B/G)!
filtered white noise, 
like in a low pass.
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7 Brownian Motion

𝑑
𝑑𝑡 𝑥 𝑡 = −𝛾 𝑥 𝑡 + 𝜉(𝑡) 𝜉 𝑡 : white noise with power spectral density 𝐷.

𝑥 𝑡 = -
"#

5
𝜉(𝑡′) 𝑑𝑡′

But damping goes to zero: 𝛾 → 0

Compute autocorrelation function:

< 𝑥 𝑡 𝑥 𝑡 + 𝜏 >= lim
G→.

𝐷
2𝛾 𝑒

"G 7 ;

< 𝜉 𝑡6 𝜉 𝑡66 >= 𝐷 𝛿 𝑡6 − 𝑡6′

𝐶%% 𝑓 = H
B!

𝑑
𝑑𝑡 𝑥 𝑡 = 𝜉(𝑡)

But:

20dB/decade
10 log 𝐶%% 𝑓

log 𝑓

Not so easy?
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Phase Noise of Oscillators
𝜉 𝑡 : white noise with power spectral density 𝐷.

𝜑 𝑡

Oscillation: 

Second order moment:

𝑑
𝑑𝑡 𝜑 𝑡 = 𝜉(𝑡) 𝜑 𝑡 = -

.

5
𝜉(𝑡′) 𝑑𝑡′

<𝜑 𝑡6 𝜑 𝑡66 >= 𝐷 r 𝑚𝑖𝑛 𝑡6. 𝑡′′

<𝜑 𝑡 & >= 𝐷 r 𝑡

A(t) = A0. 𝑒(J 5

Autocorrelation function: <A(t)∗A(t+𝜏) >= A0 & <𝑒((J 5+7 "J 5 ) >

Statistics of phase: p(𝜑)= /
&3'

𝑒"
,!

!$ <A(t)∗A(t+𝜏) >= -
"#

$#
p(𝜑)𝑒(JK d𝜑

<A(t)∗A(t+𝜏) >: Characteristic function of phase at. 𝜁=1 

cAA(𝜏) = <A(t)∗A(t+𝜏) > = A0 & 𝑒"
%
!' = A0 & 𝑒"

%
!H 7
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Phase Noise Spectrum of Oscillators

Autocorrelation spectrum or power spectral density of oscillator:

cAA(𝜏) = <A(t)∗A(t+𝜏) > = A0 &𝑒"
%
!' = A0 & 𝑒"

%
!H 7

CAA(f) =
A0 !

/$(BH/&)!
=

A0 !
/$(34H)!

Single-Sideband Phase Noise of oscillator

Lf) =10 𝐿𝑜𝑔
1

1 + (𝜋𝑓𝐷)&
L
f

in
 d

Bc
/H

z

𝑓
1/𝜋𝐷

20dB/decade


