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UFS Lecture 6: Soliton Perturbation Theory

3 Nonlinear Pulse Propagation continued  

•3.4 Universality of the NSE  
•3.5 Soliton Perturbation Theory  
•3.6 Soliton Instabilities by Periodic Perturbations



3.4 Universality of NSE

2nd order dispersion:
Lowest order non-trivial
linear effect in wave propagation

SPM: lowest order 
nonlinear effect in a 
homogeneous medium

NSE describes many phenomena related to nonlinear wave propagation:
Self-focusing
Langmuir waves in Plasma Physics
Waves on Protein Molecules, ….
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3.5 Soliton Perturbation Theory

Perfect World Reality: Perturbations

What happens to the soliton in the presence of perturbations?
Will it fall apart?
Is it just kicked around? If yes, can we understand how it is kicked around?

Ansatz: Solution of perturbed equation is a soliton + a small component:

with:
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Soliton perturbation theory: a very brief introduction

Perfect World Reality: Perturbations

What happens to the soliton in the presence of perturbations? Will it fall apart?

Is it just kicked around? If yes, can we understand how it is kicked around?
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Soliton perturbation theory: a very brief introduction

Ansatz: Solution of perturbed equation is a soliton + a small component:

with:
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Any deviation       can be decomposed into a contribution that leads to a soliton 
with a shift in the four soliton parameters and a continuum contribution:
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3.5 Soliton Perturbation Theory

Decompose into two coupled equations for real and imaginary part or use 

Pauli matrices:

6



3.5 Soliton Perturbation Theory

Right sided eigen solutions or main solutions:

l=L f f n
j l=L f f

Discrete solutions:
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Figure 3.9: Perturbations in soliton amplitude (a), phase (b),
frequency (c), and timing (d)
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Continuum of solutions:

and:

Define inner product: (Norm: Signal Energy)

Then, the adjoint operator is: Note: L is not self-adjoint, because 
the linearized NSE does not 
conserve energy
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L+ has its own set of eigen solutions           and eigen values 

Completeness Relation:

( )+f ( )l +

Any perturbation can be written as:

Soliton, perturbed in amplitude, phase, center frequency and timing + Continuum
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Substitution into (3.20)

Projecting out with the eigensolutions of the adjoint operator:

( )
j dx

++ò f !
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Gordon’s associated function:

Only dispersion:

One can show that:
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3.6 Soliton Instabilities by Periodic Perturbations

Long haul opt. communication link Modelocked fiber laser

Fiber Fiber Fiber

AmplifierAmplifier

zA
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use partial Integration
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3.6 Soliton Instabilities by Periodic Perturbations

Resonance catastrophy:
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Figure 3.10: Phase matching of soliton and continuum

Avoid resonance catastrophy for:

Kelly Sidebands
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Figure 3.11: Layout of a multiple pass (MPC) cavity laser.

18



Figure 3.12: Measured modelocked spectrum with Kelly sidebands
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Dispersive Wave (Third Order Dispersion)
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Modulation Instability
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Modulation Instability
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Agrawal Nonlinear Fiber Optics Page 107



Rogue wave

Find more information from New York times: 
http://www.nytimes.com/2006/07/11/science/11wave.html 23



One more Rogue wave
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