UFS Lecture 3: Optical Pulses and Dispersion

- 2.2 Classical Permittivity / Susceptibility (Review)
- 2.3 Optical Pulses
- 2.4 Pulse Propagation
 - 2.4.1 Dispersion
 - 2.4.2 Loss and Gain
- 2.5 Sellmeier Equation and Kramers-Kroenig Relations

Figure 2.1: Transverse electromagnetic wave (TEM) [2]

Real and Imaginary Part of the Susceptibility

Figure 2.3: Real part (dashed line) and imaginary part (solid line) of the susceptibility of the classical oscillator model for the dielectric polarizability

Real and Imaginary Part of the Susceptibility

$$\underline{\widetilde{\chi}}(\omega) = \widetilde{\chi}_r(\omega) + j\widetilde{\chi}_i(\omega)$$

Example: EM-Wave polarized along x-axis and propagation along z-direction:

$$\underline{\vec{E}}(z,t) = \underline{E}_0 e^{j(\omega t - kz)} \vec{e}_x$$

In general:

$$k(\omega) = \frac{\omega}{c_0} \tilde{n}(\omega) = \frac{\omega}{c_0} \sqrt{1 + \tilde{\chi}(\omega)} = \frac{\omega}{c_0} (\tilde{n}_r(\omega) + j\tilde{n}_i(\omega)) = k_r(\omega) - j\alpha(\omega)$$

$$\underline{\vec{E}}(z,t) = \underline{E}_0 e^{-\alpha \cdot z} e^{j(\omega t - k_r z)} \vec{e}_x$$

$$k(\omega) = \frac{\omega}{c_0} \sqrt{1 + \tilde{\chi}(\omega)}$$
damping
for: $\tilde{\chi}(\omega) \ll 1$

$$= \frac{\omega}{c_0} \left(1 + \frac{1}{2} \tilde{\chi}(\omega)\right) = \frac{\omega}{c_0} \left(1 + \frac{1}{2} \tilde{\chi}_r(\omega) + \frac{1}{2} j\tilde{\chi}_i(\omega)\right)$$
₃

2.1.5 Optical Pulses (propagating along z-axis)

$$\underline{\vec{E}}(\vec{r},t) = \int_0^\infty \frac{d\Omega}{2\pi} \underline{\widetilde{E}}(\Omega) e^{\mathbf{j}(\Omega t - K(\Omega)z)} \vec{e}_x$$
$$\underline{\vec{H}}(\vec{r},t) = \int_0^\infty \frac{d\Omega}{2\pi Z_F(\Omega)} \underline{\widetilde{E}}(\Omega) e^{\mathbf{j}(\Omega t - K(\Omega)z)}$$

 \vec{e}_y

$$\begin{split} \vec{E}(\vec{r},t) &= \frac{1}{2} \left(\underline{\vec{E}}(\vec{r},t) + \underline{\vec{E}}(\vec{r},t)^* \right) \\ \vec{H}(\vec{r},t) &= \frac{1}{2} \left(\underline{\vec{H}}(\vec{r},t) + \underline{\vec{H}}(\vec{r},t)^* \right) \end{split}$$

 $|\underline{\tilde{E}}(\Omega)|e^{\mathrm{j}\varphi(\Omega)}$: Wave amplitude and phase

$$K(\Omega) = \Omega/c(\Omega) = n(\Omega)\Omega/c_0$$
: Wave number
 $c(\Omega) = \frac{c_0}{n(\Omega)}$: Phase velocity of wave
 $\tilde{n}^2(\Omega) = 1 + \tilde{\chi}(\Omega)$

Figure 2.4: Spectrum of an optical wave packet described in absolute and relative frequencies

Carrier and Envelope

Envelope:

$$\underline{A}(t) = \frac{1}{2\pi} \int_{-\omega_0 \to -\infty}^{\infty} \underline{\tilde{A}}(\omega) e^{j\omega t} d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \underline{\tilde{A}}(\omega) e^{j\omega t} d\omega,$$

Figure 2.5: Electric field and envelope of an optical pulse

Pulse width: Full Width at Half Maximum of $|A(t)|^2$

Spectral width : Full Width at Half Maximum of $|\tilde{A}(\omega)|^2$

Often Used Pulses

Pulse Shape	Fourier Transform	Pulse Width	Time-Band- width Product	
$\underline{A}(t)$	$\underline{\ddot{A}}(\omega) = \int_{-\infty}^{\infty} a(t) e^{-j\omega t} dt$	Δt	$\Delta t \cdot \Delta f$	
Gaussian: $e^{-\frac{t^2}{2\tau^2}}$	$\sqrt{2\pi}\tau e^{-\frac{1}{2}\tau^2\omega^2}$	$2\sqrt{\ln 2\tau}$	0.441	
Hyperbolic Secant: $\operatorname{sech}(\frac{t}{\tau})$	$\frac{\tau}{2}\operatorname{sech}\!\left(\frac{\pi}{2}\tau\omega\right)$	1.7627 τ	0.315	
Rect-function: $\begin{cases} 1, t \le \tau/2 \\ 0, t > \tau/2 \end{cases}$	$\tau \frac{\sin(\tau \omega/2)}{\tau \omega/2}$	τ	0.886	
Lorentzian: $\frac{1}{1+(t/\tau)^2}$	$2\pi\tau e^{- \tau\omega }$	1.287 τ	0.142	
Double-Exp.: $e^{-\left \frac{t}{\tau}\right }$	$\frac{\tau}{1+(\omega\tau)^2}$	ln2 τ	0.142	

Table 2.2: Pulse shapes, corresponding spectra and time bandwidth products.

Pulse width and spectral width: FWHM

Figure 2.6: Fourier transforms to pulse shapes listed in table 2.2 [16]

Figure 2.7: Fourier transforms to pulse shapes listed in table 2.2, continued [16]

2.4 Pulse Propagation

$$\underline{E}(z,t) = \frac{1}{2\pi} \int_0^\infty \underline{\tilde{E}}(\Omega) e^{\mathbf{j}(\Omega t - K(\Omega)z)} d\Omega$$

$$\underline{E}(z,t) = \underline{A}(z,t)e^{\mathbf{j}(\omega_0 t - K(\omega_0)z)}$$

Envelope + Carrier Wave

$$\omega = \Omega - \omega_0,$$

$$k(\omega) = K(\omega_0 + \omega) - K(\omega_0),$$

$$\underline{\tilde{A}}(\omega) = \underline{\tilde{E}}(\Omega = \omega_0 + \omega).$$

Figure 2.8: Electric field and pulse envelope in time domain

Figure 2.9: Taylor expansion of dispersion relation at the center frequency of the wave packet

2.4.1 Dispersion

In the frequency domain:

$$\underline{\tilde{A}}(z,\omega)=\underline{\tilde{A}}(z=0,\omega)e^{-\mathbf{j}k(\omega)z}$$

Taylor expansion of dispersion relation:

$$k(\omega) = k'\omega + \frac{k''}{2}\omega^2 + \frac{k^{(3)}}{6}\omega^3 + O(\omega^4)$$

Equation of motion in frequency domain:

$$\frac{\partial \underline{\tilde{A}}(z,\omega)}{\partial z} = -\mathbf{j}k(\omega)\underline{\tilde{A}}(z,\omega)$$

Equation of motion in time domain:

$$\frac{\partial \underline{A}(z,t)}{\partial z} = -j \sum_{n=1}^{\infty} \frac{k^{(n)}}{n!} \left(-j \frac{\partial}{\partial t} \right)^n \underline{A}(z,t)$$
(2.63)

i) Keep only linear term:

$$\begin{split} k(\omega) &= k'\omega + \frac{k''}{2}\omega^2 + \frac{k^{(3)}}{6}\omega^3 + O(\omega^4) \\ \\ \underline{\tilde{A}}(z,\omega) &= \underline{\tilde{A}}(z=0,\omega)e^{-\mathbf{j}k'\omega z} \end{split}$$

Time domain:

$$\underline{A}(z,t) = \underline{A}(0,t-z/\upsilon_{g0})$$

Group velocity:

$$\upsilon_{g0} = 1/k' = \left(\left. \frac{dk(\omega)}{d\omega} \right|_{\omega=0} \right)^{-1} = \left(\left. \frac{dK(\Omega)}{d\Omega} \right|_{\Omega=\omega_0} \right)^{-1}$$

Compare with phase velocity:

$$\upsilon_{p0} = \omega_0 / K(\omega_0) = \left(\frac{K(\omega_0)}{\omega_0}\right)^{-1}$$

Retarded time: $t' = t - z/v_{g0}$ $\underline{A}(z,t) = \underline{A}(0,t')$

Or start from (2.63)

$$\frac{\partial \underline{A}(z,t)}{\partial z} + \frac{1}{\upsilon_{g0}} \frac{\partial \underline{A}(z,t)}{\partial t} = 0$$

Substitute:

$$\begin{array}{rcl} z' &=& z, \\ t' &=& t - z/\upsilon_{g0}, \end{array} & & \begin{array}{rcl} \frac{\partial}{\partial z} &=& \frac{\partial}{\partial z'} - \frac{1}{\upsilon_{g0}} \frac{\partial}{\partial t'} \\ \frac{\partial}{\partial t} &=& \frac{\partial}{\partial t'} \end{array}$$

$$\frac{\partial \underline{A}(z',t')}{\partial z'}=0$$

ii) Keep up to second order term:

Figure 2.10: Decomposition of a pulse into wave packets with different center frequency. In a medium with dispersion the wave packets move at different relative group velocity

Gaussian Pulse:

$$\begin{split} \underline{E}(z &= 0, t) = \underline{A}(z = 0, t)e^{\mathrm{j}\omega_0 t} \\ \underline{A}(z &= 0, t = t') = \underline{A}_0 \exp\left[-\frac{1}{2}\frac{t'^2}{\tau^2}\right] \\ \frac{\partial \underline{\tilde{A}}(z, \omega)}{\partial z} &= -\mathrm{j}\frac{k''\omega^2}{2}\underline{\tilde{A}}(z, \omega) \end{split}$$
 Pulse width

Substitute:

$$\underline{\tilde{A}}(z,\omega) = \underline{\tilde{A}}(z=0,\omega) \exp\left[-j\frac{k''\omega^2}{2}z\right]$$

Gaussian Integral:

$$\frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma}} e^{-jx\varsigma} dx = e^{-\frac{\sigma}{2}\varsigma^2} \text{ for } \operatorname{Re}\left\{\sigma\right\} \ge 0$$

Apply to (2.79)

$$\underline{\tilde{A}}(z=0,\omega) = A_0 \sqrt{2\pi\tau} \exp\left[-\frac{1}{2}\tau^2 \omega^2\right]$$

Propagation:

$$\underline{\tilde{A}}(z,\omega) = A_0 \sqrt{2\pi\tau} \exp\left[-\frac{1}{2} \left(\tau^2 + jk''z\right)\omega^2\right]$$
$$\underline{A}(z,t') = A_0 \left(\frac{\tau^2}{(\tau^2 + jk''z)}\right)^{1/2} \exp\left[-\frac{1}{2}\frac{t'^2}{(\tau^2 + jk''z)}\right]$$

Exponent Real and Imaginary Part:

$$\underline{A}(z,t') = A_0 \left(\frac{\tau^2}{(\tau^2 + jk''z)}\right)^{1/2} \exp\left[-\frac{1}{2}\frac{\tau^2 t'^2}{(\tau^4 + (k''z)^2)} + j\frac{1}{2}k''z\frac{t'^2}{(\tau^4 + (k''z)^2)}\right]$$

z-dependent phase shift determines pulse width

chirp

FWHM Pulse width:

$$\exp\left[-\frac{\tau^2(\tau'_{FWHM}/2)^2}{\left(\tau^4 + (k''z)^2\right)}\right] = 0.5$$

Initial pulse width:

$$\tau_{FWHM} = 2\sqrt{\ln 2} \ \tau$$

Initial pulse width: $au_{FWHM} = 2\sqrt{\ln 2} \ au$

After propagation over a distance z=L:

$$\tau'_{FWHM} = 2\sqrt{\ln 2} \tau \sqrt{1 + \left(\frac{k''L}{\tau^2}\right)^2} = \tau_{FWHM} \sqrt{1 + \left(\frac{k''L}{\tau^2}\right)^2}$$
For large distances: $\tau'_{FWHM} = 2\sqrt{\ln 2} \left|\frac{k''L}{\tau}\right|$ for $\left|\frac{k''L}{\tau^2}\right| \gg 1$

$$\int_{0.6}^{0.6} \frac{1}{1000} \int_{0.5}^{0.6} \frac{1}{100$$

20

2.4.2 Loss and Gain

$$\underline{\tilde{n}}(\Omega) = n_r(\Omega) + \mathrm{j} n_i(\Omega)$$

 $\Delta \Omega = \frac{\Omega_0}{Q}$

Refractive index + gain and/or loss

$$\begin{split} & \underline{\tilde{n}}(\Omega) = \sqrt{1 + \underline{\tilde{\chi}}(\Omega)} \\ \text{for: } & \underline{\tilde{\chi}}(\Omega) \ll 1 \\ & \underline{\tilde{n}}(\Omega) \approx 1 + \frac{\underline{\tilde{\chi}}(\Omega)}{2} \\ \text{Complex Lorentzian close to resonance : } & \Omega \approx \Omega_0 \\ & \underline{\chi}(\omega) = \frac{\omega_p^2}{(\Omega_0^2 - \omega^2) + 2j\omega\frac{\Omega_0}{Q}} \longrightarrow & \underline{\tilde{\chi}}(\Omega) = \frac{-j\chi_0}{1 + jQ\frac{\Omega - \Omega_0}{\Omega_0}} \\ & \text{Maximum absorption: } & \chi_0 = Q\frac{\omega_p^2}{2\Omega_0^2} \end{split}$$

Half Width Half Maximum linewidth (HWHM):

Real and imaginary parts:

$$\begin{split} \widetilde{\chi}_{r}(\Omega) &= \frac{-\chi_{0} \frac{(\Omega - \Omega_{0})}{\Delta \Omega}}{1 + \left(\frac{\Omega - \Omega_{0}}{\Delta \Omega}\right)^{2}}, \\ \widetilde{\chi}_{i}(\Omega) &= \frac{-\chi_{0}}{1 + \left(\frac{\Omega - \Omega_{0}}{\Delta \Omega}\right)^{2}}, \end{split}$$

 $\langle \alpha \rangle$

Complex wave number in lossy medium:

$$\underline{\tilde{K}}(\Omega) = \frac{\Omega}{c_0} \left(1 + \frac{1}{2} \left(\widetilde{\chi}_r(\Omega) + \mathbf{j} \widetilde{\chi}_i(\Omega) \right) \right)$$

Redefine group velocity: e.g. at line center:

$$v_g^{-1} = \left. \frac{\partial K_r(\Omega)}{\partial \Omega} \right|_{\Omega_0} = \frac{1}{c_0} \left(1 - \frac{\chi_0}{2} \frac{\Omega_0}{\Delta \Omega} \right)$$

Change in group velocity can be positive or negative **Absorption:**

$$K = \frac{\Omega}{c_0}$$
 $\alpha(\Omega) = -\frac{K}{2}\tilde{\chi}_i(\Omega)$

For a wavepacket (optical pulse) with carrier frequency $\omega_0 = \Omega_0$ $K_0 = \frac{\Omega_0}{c_0}$

$$\frac{\partial \underline{\tilde{A}}(z,\omega)}{\partial z}\bigg|_{(loss)} = -\alpha(\Omega_0 + \omega)\tilde{A}(z,\omega) = \frac{-\chi_0 K_0/2}{1 + \left(\frac{\omega}{\Delta\Omega}\right)^2}\underline{\tilde{A}}(z,\omega)$$

Parabolic loss or gain approximation:

$$\frac{\partial \underline{A}(z,t')}{\partial z}\bigg|_{(loss)} = -\frac{\chi_0 K_0}{2} \left(1 + \frac{1}{\Delta \Omega^2} \frac{\partial^2}{\partial t^2}\right) \underline{A}(z,t')$$

Gain: $g = -\frac{\chi_0 K_0}{2}$

$$\frac{\partial \underline{A}(z,t')}{\partial z} \Big|_{(gain)} = g \left(1 + \frac{1}{\Omega_g^2} \frac{\partial^2}{\partial t^2} \right) \underline{A}(z,t')$$
 HWHM – gain bandwidth

2.5 Sellmeier Equations and Kramers-Kroenig Relations

Causality of medium impulse response: $\chi(t) = 0$, for t < 0

Leads to relationship between real and imaginary part of susceptibility

$$\chi_r(\Omega) = \frac{2}{\pi} \int_0^\infty \frac{\omega \chi_i(\omega)}{\omega^2 - \Omega^2} d\omega = n_r^2(\Omega) - 1$$
$$\chi_i(\Omega) = -\frac{2}{\pi} \int_0^\infty \frac{\Omega \chi_r(\omega)}{\omega^2 - \Omega^2} d\omega.$$

Approximation for absorption spectrum in a medium:

$$\chi_i(\Omega) = \sum A_i \delta \left(\omega - \omega_i\right)$$
$$n^2(\Omega) = 1 + \sum_i A_i \frac{\omega_i}{\omega_i^2 - \Omega^2} = 1 + \sum_i a_i \frac{\lambda}{\lambda^2 - \lambda_i^2}$$
$$\chi_r(\Omega)$$

Example: Sellmeier Coefficients for Fused Quartz and Sapphire

	Fused Quartz	Sapphire
a_1	0.6961663	1.023798
a_2	0.4079426	1.058364
a_3	0.8974794	5.280792
λ_1^2	$4.679148 \cdot 10^{-3}$	$3.77588 \cdot 10^{-3}$
λ_2^2	$1.3512063 \cdot 10^{-2}$	$1.22544 \cdot 10^{-2}$
$\lambda_3^{\overline{2}}$	$0.9793400 \cdot 10^2$	$3.213616 \cdot 10^2$

Table 2.3: Table with Sellmeier coefficients for fused quartz and sapphire.

Figure 2.14: Contribution of absorption lines to index changes

Figure 2.15: Typical distribution of absorption lines in medium transparent in the visible.

 $\frac{dn}{d\lambda} < 0$: normal dispersion (blue refracts more than red) $\frac{dn}{d\lambda} > 0$: abnormal dispersion

Figure 2.16: Transparency range of some materials according to Saleh and Teich, Photonics p. 175.

Group Velocity and Group Delay Dispersion

$$GVD = \frac{d^2k(\omega)}{d\omega^2}\Big|_{\omega=0} = \frac{d}{d\omega} \frac{1}{\upsilon_g(\omega)}\Big|_{\omega=0}$$
$$GDD = \frac{d^2k(\omega)}{d\omega^2}\Big|_{\omega=0} L = \frac{d}{d\omega} \frac{L}{\upsilon_g(\omega)}\Big|_{\omega=0} = \frac{d}{d\omega} T_g(\omega)|_{\omega=0}$$

Group Delay: $T_g(\omega) = L/\upsilon_g(\omega)$

Dispersion Characteristic	Definition	Comp. from $n(\lambda)$
medium wavelength: λ_n	$\frac{\lambda}{n}$	$\frac{\lambda}{n(\lambda)}$
wavenumber: k	$\frac{2\pi}{\lambda_n}$	$\frac{2\pi}{\lambda}n(\lambda)$
phase velocity: v_p	$\frac{\omega}{k}$	$\frac{c_0}{n(\lambda)}$
group velocity: v_g	$\frac{d\omega}{dk}; d\lambda = \frac{-\lambda^2}{2\pi c_0} d\omega$	$\frac{c_0}{n} \left(1 - \frac{\lambda}{n} \frac{dn}{d\lambda}\right)^{-1}$
group velocity dispersion: GVD	$rac{d^2k}{d\omega^2}$	$\frac{\lambda^3}{2\pi c_0^2} \frac{d^2 n}{d\lambda^2}$
group delay: $T_g = \frac{L}{v_g} = \frac{d\phi}{d\omega}$	$\frac{d\phi}{d\omega} = \frac{d(kL)}{d\omega}$	$\frac{n}{c_0} \left(1 - \frac{\lambda}{n} \frac{dn}{d\lambda} \right) L$
group delay dispersion: GDD	$\frac{dT_g}{d\omega} = \frac{d^2(kL)}{d\omega^2}$	$\frac{\lambda^3}{2\pi c_0^2} \frac{d^2 n}{d\lambda^2} L$

Table 2.4: Table with important dispersion characteristics and how to compute them from the wavelength dependent refractive index $n(\lambda)$.

Group velocity Vs phase velocity

Adapted from Rick Trebino's course slides

Group-velocity dispersion (GVD)

 $k^{(2)} = \frac{d}{d\omega} \left(\frac{1}{v_g}\right) = -\frac{1}{v_g^2(\omega_0)} \frac{dv_g}{d\omega} = \left(\frac{\lambda}{2\pi c}\right) \frac{\lambda^2}{c} \frac{d^2 n}{d\lambda^2}$ Negative GVD or anomalous dispersion Positive GVD or normal dispersion $k^{(2)} < 0$ $k^{(2)} > 0$ $\frac{dv_g}{d\omega} > 0$ $\frac{dv_g}{d\omega} < 0$ High frequency travels faster Low frequency travels faster

Instantaneous frequency and chirp

$$\underline{A}(z,t') = A_0 \left(\frac{\tau^2}{(\tau^2 + jk''z)}\right)^{1/2} \exp\left[-\frac{1}{2}\frac{\tau^2 t'^2}{(\tau^4 + (k''z)^2)} + j\frac{1}{2}k''z\frac{t'^2}{(\tau^4 + (k''z)^2)}\right]$$
z-dependent phase determines temporal

z-dependent phase shift, independent on time determines pulse width

temporal quadratic phase

After propagation of L distance: $\omega(z = L, t') = \frac{\partial}{\partial t'} \phi(L, t') = \frac{k''L}{\left(\tau^4 + (k''L)^2\right)} t'$

$$E(L,t') = \underline{A}(L,t') \exp(j\omega_0 t') \propto \exp[j\omega_0 t' + j\phi(L,t')]$$

$$\phi(z=L,t') = -\frac{1}{2} \arctan\left[\frac{k''L}{\tau^2}\right] + \frac{1}{2}k''L\frac{t'^2}{(\tau^4 + (k''L)^2)}$$

Instantaneous Frequency:

$$\omega_{inst}(t) \equiv \frac{\partial [\omega_0 t' + \phi(L, t')]}{\partial t'} = \omega_0 + \frac{\partial \phi(L, t')}{\partial t'}$$
$$= \omega_0 + \frac{k'' L}{\left(\tau^4 + \left(k'' L\right)^2\right)} t'$$

Linearly chirped Gaussian pulse: positive chirp

$$\omega_{ins}(t') = \omega_0 + \frac{k''L}{(\tau^4 + (k''L)^2)}t'$$

For positive GVD, i.e., k">0, lower frequency travels faster, and the instantaneous frequency linearly **INCREASES** with time.

Linearly chirped Gaussian pulse: negative chirp

$$\omega_{ins}(t') = \omega_0 + \frac{k''L}{\left(\tau^4 + (k''L)^2\right)}t'$$

For negative GVD, i.e., k"<0, higher frequency travels faster. The instantaneous frequency linearly **DECREASES** with time.

Transform-limited pulse

$$\widetilde{E}(\omega) = \int_{-\infty}^{\infty} E(t) \exp(-j\omega t) dt \qquad E(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{E}(\omega) \exp(j\omega t) d\omega$$
$$\left|\widetilde{E}(\omega)\right|^{2} \text{ has a spectrum bandwidth of } \Delta \nu \qquad \text{Both are measured at full-width at half-maximum (FWHM).}$$
$$\text{Uncertainty principle:} \qquad \Delta \nu \Delta t \geq K$$
$$\text{Time Bandwidth Product (TBP)} \checkmark \Delta t \qquad \text{A number depending only on pulse shape}$$

For a given optical spectrum, there exist a lower limit for the pulse duration. If the equality is reached, we say the pulse is a transform-limited pulse.

To get a shorter transform-limited pulse, one needs a broader optical spectrum.

GVD changes the pulse duration and introduces chirp

$$k_2 = \frac{d}{d\omega} \left(\frac{1}{v_g}\right) = -\frac{1}{v_g^2(\omega_0)} \frac{dv_g}{d\omega} = \left(\frac{\lambda}{2\pi c}\right) \frac{\lambda^2}{c} \frac{d^2 n}{d\lambda^2}$$

Positive GVD or normal dispersion

 $k_2 > 0 \qquad \frac{dv_g}{d\omega} < 0$

Red faster, positive chirp

Negative GVD or anomalous dispersion

 $k_{2} < 0$

$$\frac{dv_g}{d\omega} > 0$$

Blue faster, negative chirp

Effect of positive 3rd order dispersion $\lambda = 1 \ \mu m, t_0 = 5 \ fs.$

Effect of negative 3rd order dispersion $\lambda = 1 \ \mu m, t_0 = 5 \ fs.$

Effect of positive 4th order dispersion $\lambda = 1 \ \mu m, t_0 = 5 \ fs.$

1 E field (a.u.) 0 AAAZ $\phi_4 = 600 \text{ fs}^4$ -1 -80 -60 -20 20 60 80 -40 0 40 **1**F E field (a.u.) N ΛΛΛΛΛΛ $\phi_4 = 900 \text{ fs}^4$ -1 -80 -60 -20 20 -40 0 40 60 80 **1** F E field (a.u.) $\phi_4 = 1800 \text{ fs}^4$ -1 -80 -20 20 60 80 -60 -40 40 0 Time (fs)

Dispersion parameters for various materials

material	λ [nm]	$n(\lambda)$	$\frac{dn}{d\lambda} \cdot 10^{-2} \left[\frac{1}{\mu m} \right]$	$\frac{d^2n}{d\lambda^2} \cdot 10^{-1} \left[\frac{1}{\mu m^2}\right]$	$\frac{dn^3}{d\lambda^3} \left[\frac{1}{\mu m^3} \right]$	$T_g\left[\frac{fs}{mm}\right]$	$GDD\left[\frac{fs^2}{mm}\right]$	$TOD\left[\frac{fs^3}{mm}\right]$
BK7	400	1,5308	-13,17	10,66	-12,21	5282	120,79	40,57
	500	1,5214	-6,58	3,92	-3,46	5185	86,87	32,34
	600	1,5163	-3,91	1,77	-1,29	5136	67,52	29,70
	800	1,5108	-1,97	0,48	-0,29	5092	43,96	31,90
	1000	1,5075	-1,40	0,15	-0,09	5075	26,93	42,88
	1200	1,5049	-1,23	0,03	-0,04	5069	10,43	66,12
					-			-
SF10	400	1,7783	-52,02	59,44	-101,56	6626	673,68	548,50
	500	1,7432	-20,89	15,55	-16,81	6163	344,19	219,81
	600	1,7267	-11,00	6,12	-4,98	5980	233,91	140,82
	800	1,7112	-4,55	1,58	-0,91	5830	143,38	97,26
	1000	1,7038	-2,62	0,56	-0,27	5771	99,42	92,79
	1200	1,6992	-1,88	0,22	-0,10	5743	68,59	107,51
					-			-
Sapphire	400	1,7866	-17,20	13,55	-15,05	6189	153,62	47,03
	500	1,7743	-8,72	5,10	-4,42	6064	112,98	39,98
	600	1,7676	-5,23	2,32	-1,68	6001	88,65	37,97
	800	1,7602	-2,68	0,64	-0,38	5943	58,00	42,19
	1000	1,7557	-1,92	0,20	-0,12	5921	35,33	57,22
	1200	1,7522	-1,70	0,04	-0,05	5913	13,40	87,30
		-						
Quartz	300	1,4878	-30,04	34,31	-54,66	5263	164,06	46,49
	400	1,4701	-11,70	9,20	-10,17	5060	104,31	31,49
	500	1,4623	-5,93	3,48	-3,00	4977	77,04	26,88
	600	1,4580	-3,55	1,59	-1,14	4934	60,66	25,59
	800	1,4533	-1,80	0,44	-0,26	4896	40,00	28,43
	1000	1,4504	-1,27	0,14	-0,08	4880	24,71	38,73
	1200	1,4481	-1,12	0,03	-0,03	4875	9,76	60,05

Effect of negative GVD

Courtesy Noah Chang Input pulse duration:10fs

Effect of positive GVD

Courtesy Noah Chang **GVD** $\beta_2 = 25 ps^2 / km$ The out

The output of last slide is taken as the input here.