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UFS Lecture 3:  Optical Pulses and Dispersion

Figure 2.1: Transverse electromagnetic wave (TEM) [2]

2.2  Classical Permittivity / Susceptibility (Review)

2.3 Optical Pulses  
2.4 Pulse Propagation  

2.4.1 Dispersion  
2.4.2 Loss andGain  

2.5 Sellmeier Equation and Kramers-Kroenig Relations
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Real and Imaginary Part of the Susceptibility

Figure 2.3: Real part (dashed line) and imaginary part 
(solid line) of the susceptibility of the classical oscillator 

model for the dielectric polarizability

Q=10
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Real and Imaginary Part of the Susceptibility
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Example:  EM-Wave polarized along x-axis and propagation along z-direction:

( )
0 0 0

( ) ( ) 1 ( ) ( ) ( ) ( ) ( )r i rk n n jn k j
c c c
w w ww w c w w w w a w= = + = + = -!! ! !

for: ( ) 1c w! "

In general: 

( )
0( , ) rj t k zz

xE z t E e e ewa -- ×=
! !

damping



4

2.1.5  Optical Pulses ( propagating along z-axis) 

: Wave amplitude and phase

: Wave number
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: Phase velocity of wave
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At z=0

Figure 2.4: Spectrum of an optical wave packet described in 
absolute and relative frequencies

For Example: 
Optical Communication; 10Gb/s
Pulse length: 20 ps 
Center wavelength : λ=1550 nm.
Spectral width: ~ 50 GHz, 
Center frequency: 200 THz, 

Carrier Frequency
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Carrier and Envelope

Carrier Frequency

Envelope:



Figure 2.5: Electric field and envelope of an optical pulse
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Pulse width: Full Width at Half Maximum of |A(t)|2

Spectral width : Full Width at Half Maximum of |A(w)|2~
_
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Pulse width and spectral width: FWHM

Often Used Pulses



Figure 2.6: Fourier transforms to pulse shapes listed in table 2.2 [16]
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Figure 2.7: Fourier 
transforms to pulse 
shapes listed in table 
2.2, continued [16]
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2.4 Pulse Propagation 

Envelope + Carrier Wave



Figure 2.8: Electric field and pulse envelope in time domain
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Figure 2.9: Taylor expansion of dispersion relation at the 
center frequency of the wave packet
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In the frequency domain:

2.4.1 Dispersion

Taylor expansion of dispersion relation:

Equation of motion in frequency domain:

Equation of motion in time domain:
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(2.63)



i) Keep only linear term:

Time domain:

Group velocity:

Compare with phase velocity:
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Retarded time:

Or start from (2.63)

Substitute:
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ii) Keep up to second order term:

Figure 2.10: Decomposition of a pulse into wave packets with different center 
frequency. In a medium with dispersion the wave packets move at different 
relative group velocity
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Gaussian Pulse:

Substitute:

Gaussian Integral:

Apply to (2.79)
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Pulse width



Propagation:

Initial pulse width:

Exponent Real and Imaginary Part:

FWHM Pulse width:

determines 
pulse width chirp

z-dependent
phase shift
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After propagation over a distance z=L:
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Initial pulse width:

For large distances: 

Figure 2.11:  Magnitude of the 
complex envelope of a Gaussian 
pulse, |A(z, t’ )|, in a dispersive 
medium



2.4.2 Loss and Gain

Refractive index + gain and/or loss

Complex Lorentzian close to resonance :  

Maximum absorption:

Half Width Half Maximum linewidth (HWHM):

2
pw

for: ( ) 1c W! "
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Real and imaginary parts:

Complex wave number in lossy medium:

Redefine group velocity: e.g. at line center:

Change in group velocity
can be positive or negative
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Absorption:

For a wavepacket (optical pulse) with carrier frequency 0 0w =W

Parabolic loss or gain approximation:

Gain:

HWHM – gain bandwidth 
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2.5  Sellmeier Equations and Kramers-Kroenig Relations

( ) 0, for 0t tc = <Causality of medium impulse response: 

Leads to relationship between real and imaginary part of susceptibility

Approximation for absorption spectrum in a medium:

( )rc W
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Example: Sellmeier Coefficients for Fused Quartz and Sapphire



Figure 2.14: Contribution of absorption lines to index changes
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Figure 2.15: Typical distribution of absorption lines in 
medium transparent in the visible.
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Figure 2.16: Transparency range of some materials 
according to Saleh and Teich, Photonics p. 175.
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Group Velocity and Group Delay Dispersion

Group Delay:
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Unrealistic Unrealistic

In vacuum

Most 
common 
case

Unrealistic

Possible

Adapted from Rick Trebino’s course slides

Group velocity Vs phase velocity
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determines 
pulse width

temporal 
quadratic phase

z-dependent phase 
shift, independent 

on time
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Instantaneous frequency and chirp
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Linearly chirped Gaussian pulse: positive chirp

Time t

For positive GVD, i.e., k”>0, lower frequency travels faster, and the 
instantaneous frequency linearly INCREASES with time.

In analogy to bird sounds, this 
pulse is called a chirped pulse, 
or positively chirped pulse.
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Linearly chirped Gaussian pulse: negative chirp

Time t

For negative GVD, i.e., k”<0, higher frequency travels faster. 
The instantaneous frequency linearly DECREASES with time.
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This pulse is called a negatively 
chirped pulse.
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Transform-limited pulse
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has a spectrum bandwidth of nD

has a pulse duration of tD

Both are measured 
at full-width at half-
maximum (FWHM).

Uncertainty principle: Kt ³DDn
Time Bandwidth Product (TBP) A number depending 

only on pulse shape

For a given optical spectrum, there exist a lower limit for the pulse duration. 
If the equality is reached, we say the pulse is a transform-limited pulse.

To get a shorter transform-limited pulse, one needs a broader optical 
spectrum. 
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Effect of absolute phase
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Effect of group delay



Effect of positive 2nd order dispersion



Effect of positive 3rd order dispersion
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Effect of negative 3rd order dispersion



Effect of positive 4th order dispersion
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Dispersion parameters for various materials



Effect of negative GVD

kmps /25 2
2 -=b Input pulse duration:10fsGVDCourtesy

Noah Chang



kmps /25 2
2 =b The output of last slide is taken as the input here.

Effect of positive GVD

GVDCourtesy
Noah Chang


