UFS Lecture 2: Linear Pulse Propagation

2.1 Maxwell's Equations of Isotropic Media

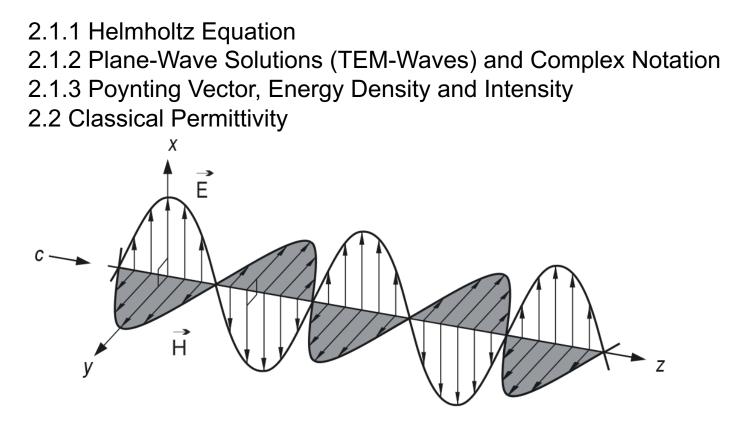


Figure 2.1: Transverse electromagnetic wave (TEM)

2.1 Maxwell's Equations of Isotropic Media

Maxwell's Equations: Differential Form

Ampere's Law
$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$$
,Current due to free chargesFaraday's Law $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$,(2.1a)Gauss's Law $\vec{\nabla} \cdot \vec{D} = \rho$,Free charge densityNo magnetic charge $\vec{\nabla} \cdot \vec{B} = 0$.(2.1d)

Material Equations: Bring Life into Maxwell's Equations

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$
, Polarization (2.2a)
 $\vec{B} = \mu_0 \vec{H} + \vec{M}$. Magnetization (2.2b)

Vector Identity:

$$\Delta \vec{E} - \mu_0 \frac{\partial}{\partial t} \left(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \frac{\partial \vec{P}}{\partial t} \right) = \frac{\partial}{\partial t} \nabla \times \vec{M} + \nabla \left(\nabla \cdot \vec{E} \right)$$
(2.3)

Vacuum speed of light:
$$c_0 = \sqrt{\frac{1}{\mu_0 \epsilon_0}}$$

$$\left(\Delta - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \mu_0 \left(\frac{\partial \vec{j}}{\partial t} + \frac{\partial^2}{\partial t^2} \vec{P}\right) + \frac{\partial}{\partial t} \vec{\nabla} \times \vec{M} + \vec{\nabla} \left(\vec{\nabla} \cdot \vec{E}\right).$$
(2.4)

No free charges, No currents from free charges, Non magnetization

$$\left(\Delta - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \mu_0 \left(\frac{\partial \vec{I}}{\partial t} + \frac{\partial^2}{\partial t^2} \vec{P}\right) + \frac{\partial}{\partial t} \nabla \times \vec{M} + \nabla \left(\nabla \cdot \vec{E}\right).$$
(2.4)

Every field can be written as the sum of tansverse and longitudinal fields:

$$\vec{\nabla} \times \vec{E}_L = 0$$
 and $\vec{\nabla} \cdot \vec{E}_T = 0$

Only free charges create a longitudinal electric field:

$$\vec{E} = \vec{E}_T$$
 Pure radiation field

Simplified wave equation:

$$\left(\Delta - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \mu_0 \frac{\partial^2}{\partial t^2} \vec{P}.$$
(2.7)

Wave in vacuum Source term

2.1.1 Helmholtz Equation

Linear medium:

$$\vec{P}(\vec{r},t) = \epsilon_0 \int dt' \,\chi\left(t-t'\right) \vec{E}\left(\vec{r},t'\right). \tag{2.8}$$

dielectric susceptibility

$$\widetilde{\vec{E}}(\vec{r},\omega) = \int_{-\infty}^{+\infty} \vec{E}(\vec{r},t) e^{-j\omega t} dt, \qquad (2.11)$$

$$\widetilde{\vec{P}}(\vec{r},\omega) = \epsilon_0 \widetilde{\chi}(\omega) \widetilde{\vec{E}}(\vec{r},\omega), \qquad (2.12)$$

$$\left(\Delta + \frac{\omega^2}{c_0^2}\right)\widetilde{\vec{E}}(\omega) = -\omega^2 \mu_0 \epsilon_0 \tilde{\chi}(\omega)\widetilde{\vec{E}}(\omega), \qquad (2.13)$$

$$\left(\Delta + \frac{\omega^2}{c_0^2} (1 + \tilde{\chi}(\omega)) \widetilde{\vec{E}}(\omega) = 0, \qquad (2.14)$$

Medium speed of light: $c(\omega) = c_0 / \tilde{n}(\omega)$ with $1 + \tilde{\chi}(\omega) = \tilde{n}(\omega)^2$ Can be complexRefractive Index

2.1.2 Plane-Wave Solutions (TEM-Waves) and Complex Notation

Real field:
$$\vec{E}_{\vec{k}}(\vec{r},t) = \frac{1}{2} \left[\underline{\vec{E}}_{\vec{k}}(\vec{r},t) + \underline{\vec{E}}_{\vec{k}}(\vec{r},t)^* \right] = \Re e \left\{ \underline{\vec{E}}_{\vec{k}}(\vec{r},t) \right\},$$

Artificial, complex $\underline{\vec{E}}_{\vec{k}}(\vec{r},t) = \underline{E}_{\vec{k}} e^{j(\omega t - \vec{k} \cdot \vec{r})} \vec{e}(\vec{k}).$

Into wave equation (2.14):

Dispersion relation:

$$|\vec{k}|^2 = \frac{\omega^2}{c(\omega)^2} = k(\omega)^2.$$

$$k = \left| \vec{k} \right| \qquad k(\omega) = \pm \frac{\omega}{c_0} n(\omega). \tag{2.21}$$

 $k = 2\pi/\lambda$, Wavelength (2.22)

$$\nabla \cdot \vec{E} = 0 \quad \longrightarrow \quad \vec{k} \perp \vec{e}.$$

What about the magnetic field?

$$\vec{H}_{\vec{k}}(\vec{r},t) = \frac{1}{2} \left[\underline{\vec{H}}_{\vec{k}}(\vec{r},t) + \underline{\vec{H}}_{\vec{k}}(\vec{r},t)^* \right]$$
(2.21)

$$\underline{\vec{H}}_{\vec{k}}(\vec{r},t) = \underline{H}_{\vec{k}} \ e^{\mathbf{j}(\omega t - \vec{k} \cdot \vec{r})} \ \vec{h}(\vec{k}).$$
(2.22)

Faraday's Law:

$$-\mathrm{j}\vec{k} \times \left(\underline{E}_{\vec{k}} \ e^{\mathrm{j}(\omega t - \vec{k} \cdot \vec{r})} \ \vec{e}(\vec{k})\right) = -\mathrm{j}\mu_{0}\omega \underline{\vec{H}}_{\vec{k}}(\vec{r}, t), \tag{2.23}$$

$$\underline{\vec{H}}_{\vec{k}}(\vec{r},t) = \frac{\underline{E}_{\vec{k}}}{\mu_0 \omega} e^{j(\omega t - \vec{k} \cdot \vec{r})} \vec{k} \times \vec{e} = \underline{H}_{\vec{k}} e^{j(\omega t - \vec{k} \cdot \vec{r})} \vec{h}$$
(2.24)

$$\overrightarrow{h}(\overrightarrow{k}) = \frac{\overrightarrow{k}}{|k|} \times \overrightarrow{e}(\overrightarrow{k})$$

$$\underbrace{H}_{\overrightarrow{k}} = \frac{|k|}{\mu_0 \omega} \underline{E}_{\overrightarrow{k}} = \frac{1}{Z_F} \underline{E}_{\overrightarrow{k}}.$$

Characteristic Impedance

$$Z_F = \mu_0 c = \sqrt{\frac{\mu_0}{\epsilon_0 \epsilon_r}} = \frac{1}{n} Z_{F_0}$$

Vacuum Impedance:

$$Z_{F_0} = \sqrt{\frac{\mu_0}{\epsilon_0}} \approx 377 \,\Omega.$$
 Stealth Airplane?

 \vec{e} , \vec{h} and \vec{k} form an orthogonal trihedral

$$\vec{e} \perp \vec{h}, \quad \vec{k} \perp \vec{e}, \quad \vec{k} \perp \vec{h}.$$

Example: EM-Wave polarized along x-axis and propagation along z-direction:

$$\vec{e}(\vec{k}) = \vec{e}_x.$$

$$\vec{k}(\vec{r},t) = E_0 \cos(\omega t - kz) \vec{e}_x.$$

$$\vec{k}(\vec{r},t) = \vec{e}_0 \cos(\omega t - kz) \vec{e}_y.$$

$$\vec{k}(\vec{r},t) = \frac{E_0}{Z_{F_0}} \cos(\omega t - kz) \vec{e}_y.$$

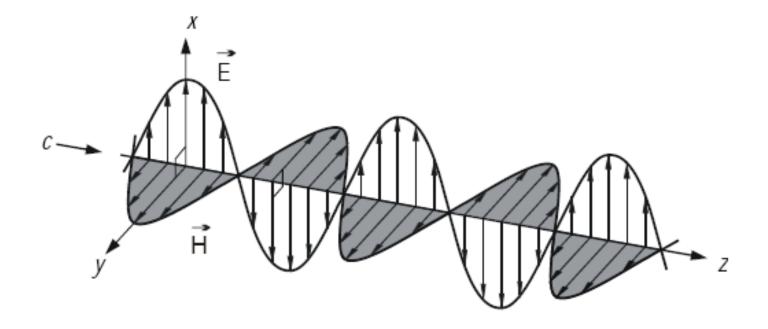


Figure 2.1: Transverse electromagnetic wave (TEM) [6]

Backwards Traveling Wave

Backwards $\vec{\underline{E}}(\vec{r},t) = \underline{E} \ e^{j\omega t + j\vec{k}\cdot\vec{r}} \ \vec{e_x},$ $\vec{\underline{H}}(\vec{r},t) = \underline{H} \ e^{j(\omega t + \vec{k}\vec{r})} \ \vec{e_y},$ $\underline{H} = -\frac{|k|}{\mu_0 \omega} \underline{E},$

2.1.3 Poynting Vector, Energy Density and Intensity

1

relative permittivity:
$$\varepsilon_r = 1 + \chi$$

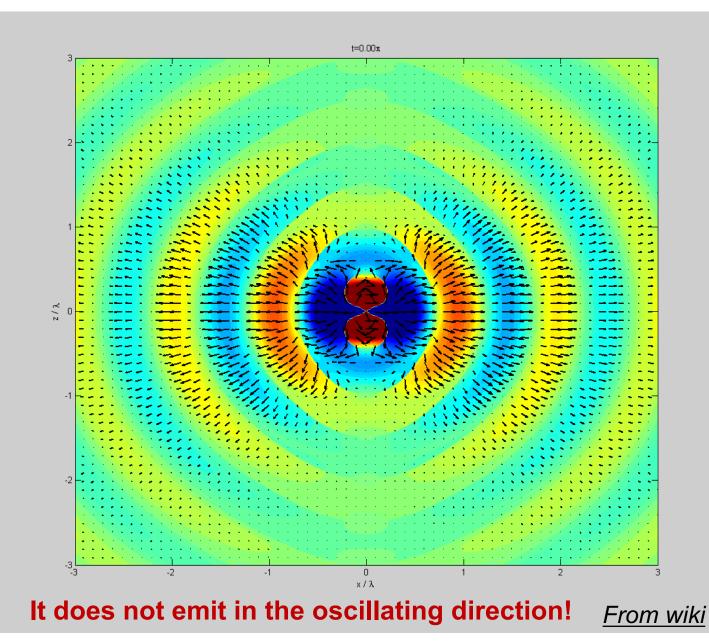
Quantity	Real fields	Complex fields
Electric and magnetic energy density	$w_e = \frac{1}{2}\vec{E} \cdot \vec{D} = \frac{1}{2}\epsilon_0 \epsilon_r \vec{E}^2$ $w_m = \frac{1}{2}\vec{H} \cdot \vec{B} = \frac{1}{2}\mu_0 \mu_r \vec{H}^2$ $w = w_e + w_m$	$ \begin{array}{l} \langle w_e \rangle = \frac{1}{4} \epsilon_0 \epsilon_r \left \underline{\vec{E}} \right ^2 \\ \langle w_m \rangle = \frac{1}{4} \mu_0 \mu_r \left \underline{\vec{H}} \right ^2 \\ \langle w \rangle = \langle w_e \rangle + \langle w_m \rangle \end{array} $
Poynting vector	$\vec{S} = \vec{E} \times \vec{H}$	$\underline{\vec{T}} = \frac{1}{2}\underline{\vec{E}} \times \underline{\vec{H}}^*$
Poynting theorem	$\operatorname{div} \vec{S} + \vec{E} \cdot \vec{j} + \frac{\partial w}{\partial t} = 0$	
Intensity	$I = \left \vec{S} \right = cw$	$I = \operatorname{Re}\{\underline{\vec{T}}\} = c \langle w \rangle$

Table 2.1: Poynting vector and energy density in EM-fields

Example: Plane Wave:
$$\langle w \rangle = \frac{1}{2} \epsilon_r \epsilon_0 |\underline{E}|^2$$
,
 $\underline{\vec{E}}(\vec{r},t) = \underline{E} e^{j(\omega t - kz)} \vec{e}_{x}$
 $\underline{\vec{T}} = \frac{1}{2Z_F} |\underline{E}|^2 \vec{e}_{z}$,

$$I = \frac{1}{2Z_F} |\underline{E}|^2 = \frac{1}{2} Z_F |\underline{H}|^2.$$

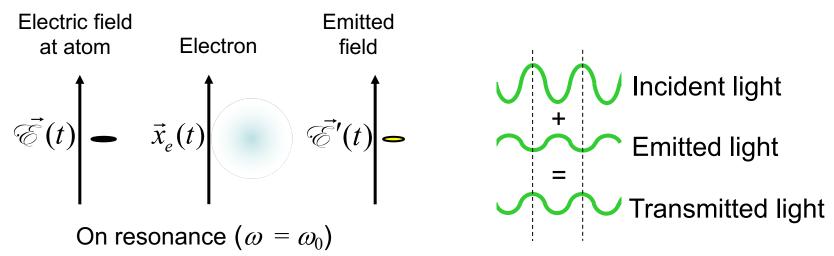
Oscillating dipole moment emits new EM wave at the oscillating frequency



12

Lorentz model of light-atom interaction

When light of frequency ω excites an atom with resonant frequency ω_0 :

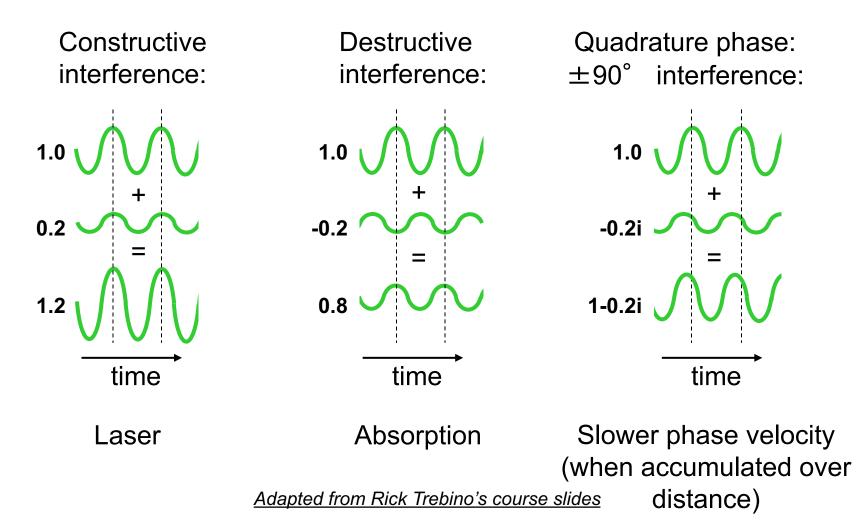


Incident Light excites electron oscillation \rightarrow electron oscillation emits new light at the same frequency \rightarrow incident light interferes with the new light leading to the transmitted light.

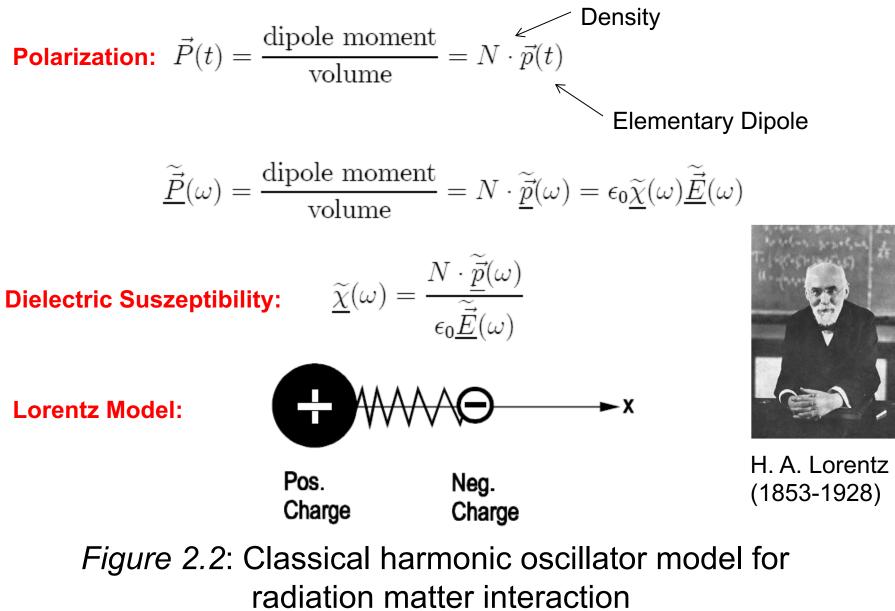
The crucial issue is the **relative phase** of the incident light and this emitted light. For example, if these two waves are $\sim 180^{\circ}$ out of phase, the beam will be attenuated. We call this absorption.

Interference depends on relative phase

When two waves add together with the same complex exponentials, we add the complex amplitudes, $E_0 + E_0'$.



2.2 Classical (dielectric) Permittivity



Response to a Monochromatic Field

$$\vec{E}(\vec{r},t) = \vec{E}(\vec{r}_A,t) = E(t)\vec{e}_x$$

 $\underline{E}(t) = \underline{\tilde{E}}e^{\mathbf{j}\omega t} \longrightarrow \underline{x}(t) = \underline{\tilde{x}}e^{\mathbf{j}\omega t} \longrightarrow \underline{p}(t) = e_{\mathbf{0}}\underline{x}(t) = \underline{\tilde{p}}e^{\mathbf{j}\omega t}$

 $m\frac{d^2x}{dt^2} + 2\frac{\Omega_0}{Q}m\frac{dx}{dt} + m\Omega_0^2 x = e_0 E(t) \longleftarrow \text{force}$ mass frequency of undamped oscillator quality factor $\underline{\tilde{p}} = \frac{\overline{m}}{(\Omega_0^2 - \omega^2) + 2j\frac{\Omega_0}{O}\omega}\underline{\tilde{E}}.$ $\underline{\chi}(\omega) = \frac{N\frac{e_{\bar{0}}}{m}\frac{1}{\epsilon_{0}}}{(\Omega_{0}^{2} - \omega^{2}) + 2j\omega\frac{\Omega_{0}}{\omega}}$

Real and Imaginary Part of the Susceptibility

$$\underline{\widetilde{\chi}}(\omega) = \widetilde{\chi}_r(\omega) + j\widetilde{\chi}_i(\omega)$$

$$\tilde{\chi}_r(\omega) = \omega_p^2 \cdot \frac{\left(\Omega_0^2 - \omega^2\right)}{\left(\Omega_0^2 - \omega^2\right)^2 + \left(2\omega\frac{\Omega_0}{Q}\right)^2}$$

$$\tilde{\chi}_{i}(\omega) = -\omega_{p}^{2} \cdot \frac{2\omega \frac{\Omega_{0}}{Q}}{\left(\Omega_{0}^{2} - \omega^{2}\right)^{2} + \left(2\omega \frac{\Omega_{0}}{Q}\right)^{2}}$$

Real and Imaginary Part of the Susceptibility

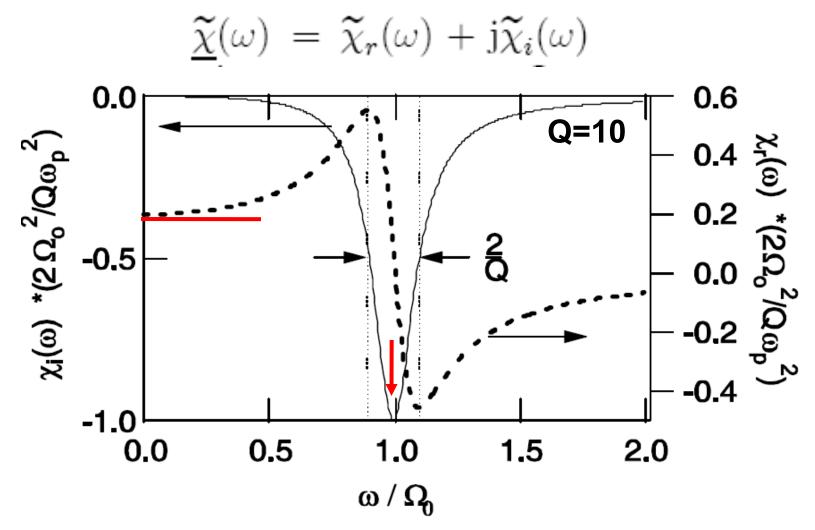


Figure 2.3: Real part (dashed line) and imaginary part (solid line) of the susceptibility of the classical oscillator model for the dielectric polarizability

Real and Imaginary Part of the Susceptibility

$$\underline{\widetilde{\chi}}(\omega) = \widetilde{\chi}_r(\omega) + j\widetilde{\chi}_i(\omega)$$

Example: EM-Wave polarized along x-axis and propagation along z-direction:

$$\underline{\vec{E}}(z,t) = \underline{E}_0 e^{j(\omega t - kz)} \vec{e}_x$$

In general:

$$k(\omega) = \frac{\omega}{c_0} \tilde{n}(\omega) = \frac{\omega}{c_0} \sqrt{1 + \tilde{\chi}(\omega)} = \frac{\omega}{c_0} \left(\tilde{n}_r(\omega) + j\tilde{n}_i(\omega) \right) = k_r(\omega) - j\alpha(\omega)$$

$$\frac{\vec{E}(z,t) = \underline{E}_0 e^{-\alpha \cdot z} e^{j(\omega t - k_r z)} \vec{e}_x$$

$$k(\omega) = \frac{\omega}{c_0} \sqrt{1 + \tilde{\chi}(\omega)}$$

$$damping$$
for: $\tilde{\chi}(\omega) \ll 1$

$$= \frac{\omega}{c_0} \left(1 + \frac{1}{2} \tilde{\chi}(\omega) \right) = \frac{\omega}{c_0} \left(1 + \frac{1}{2} \tilde{\chi}_r(\omega) + \frac{1}{2} j\tilde{\chi}_i(\omega) \right)$$
19

In a Metal

Free electrons between background ions

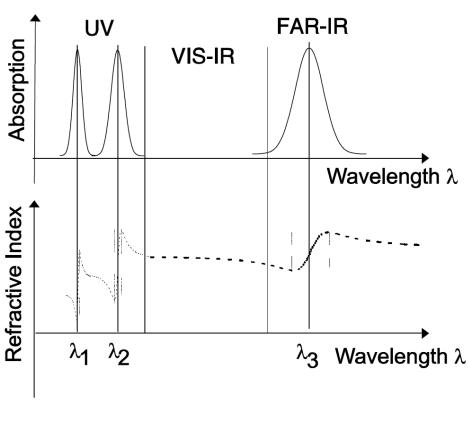
$$m\frac{d^2x}{dt^2} + 2\frac{\Omega_0}{Q}m\frac{dx}{dt} + m\Omega_0^2 x = e_0 E(t), \qquad (2.41)$$

In general: $\tilde{\chi}_{r}(\omega) = \omega_{p}^{2} \cdot \frac{\left(\Omega_{0}^{2} - \omega^{2}\right)}{\left(\Omega_{0}^{2} - \omega^{2}\right)^{2} + \left(2\omega\frac{\Omega_{0}}{Q}\right)^{2}} \rightarrow -\frac{\omega_{p}^{2}}{\omega^{2}}$ $\tilde{\chi}_{i}(\omega) = 0$

$$k(\omega) = \frac{\omega}{c_0} \tilde{n}(\omega) = \frac{\omega}{c_0} \sqrt{1 + \tilde{\chi}(\omega)} = \frac{\omega}{c_0} \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

 $\omega < \omega_p$: Metal reflects and for $\omega > \omega_p$: "transparent"

Absorption and refractive index Vs. wavelength $k_r(\omega) = \frac{\omega}{c_0} n_r(\omega)$



Classical Optics $\begin{cases} \frac{dn}{d\lambda} < 0 : \text{normal dispersion (blue refracts more than red)} \\ \frac{dn}{d\lambda} > 0 : \text{anomalous dispersion} \end{cases}$

 $\label{eq:Ultrafast} \text{Ultrafast Optics} \ \left\{ \begin{array}{ll} \frac{d^2n}{d\lambda^2} > 0: \text{normal dispersion} \\ \text{short wavelengths slower than long wavelengths} \\ \frac{d^2n}{d\lambda^2} < 0: \text{anomalous dispersion} \\ \text{short wavelengths faster than long wavelengths} \end{array} \right.$

Sellmeier equations to model refractive index

If the frequency is far away from the absorption resonance $|\Omega_0^2 - \omega^2| >> 2\omega \frac{\Omega_0}{Q}$ $\tilde{\chi}_r(\omega) = \omega_p^2 \cdot \frac{\left(\Omega_0^2 - \omega^2\right)}{\left(\Omega_0^2 - \omega^2\right)^2 + \left(2\omega \frac{\Omega_0}{Q}\right)^2} \implies \tilde{\chi}_r(\omega) = \frac{\omega_p^2}{\Omega_0^2 - \omega^2}$

Normally there are multiple resonant frequencies for the electronic oscillators. It means in general the refractive index will have the form

$$n^{2}(\omega) = 1 + \sum_{i} A_{i} \frac{\omega_{p}^{2}}{\Omega_{i}^{2} - \omega^{2}} = 1 + \sum_{i} a_{i} \frac{\lambda^{2}}{\lambda^{2} - \lambda_{i}^{2}}$$

	Fused Quartz	Sapphire
a_1	0.6961663	1.023798
a_2	0.4079426	1.058364
a_3	0.8974794	5.280792
λ_1^2	$4.679148 \cdot 10^{-3}$	$3.77588 \cdot 10^{-3}$
λ_2^2	$1.3512063 \cdot 10^{-2}$	$1.22544 \cdot 10^{-2}$
$\lambda_3^{\overline{2}}$	$0.9793400 \cdot 10^2$	$3.213616 \cdot 10^2$

Linear propagation of a pulse

