Ultrafast Sources (SoSe 2021)

Francesca Calegari & Franz Kärtner, Bldg. 99, Room O3.111 & O3.097 Email & phone: francesca.calegari@cfel.de, 040 8998 6365 franz.kaertner@cfel.de, 040 8998 6350

Office hour: Tuesday, 14.00 - 15.00

Lectures: Tue 12:00-13:30 and Th 15:00-16:30, Online using Zoom and Slack Recitations: Th 16:45-18:15

Start: 06.04.2019 with link

https://uni-hamburg.zoom.us/j/98925718145?pwd=d3hFOUZUVWZjTStXaFdSN2p4YjVMUT09 Meeting ID: 989 2571 8145

Passcode: 2021UFSo

Teaching Assistants:

Felix Rritzkowsky, Office 99.O3.129, phone 040 8998 - 6496,
E-mail: felix.ritzkowsky@desy.de → send email to for Slack access
Anne-Lise Viotti, Office 25B.129, phone 040 8998 - 5597,
E-mail: anne-lise.viotti@desy.de
Voumard Thibault, Office 99.O1.033, phone 040 8998 - 6387,
E-mail: thibault.voumard@desy.de
Vincent Wanie, Office 222.O1.110, phone 040 8998 - 3124,
E-mail: vincent.wanie@desy.de

Course Secretary: Uta Freydank O3.095, phone x-6351, E-mail: <u>uta.freydank@cfel.de</u>

Class website: https://ufox.cfel.de/teaching/summer_semester_2021

Prerequisites: Basic courses in Electrodynamics and Quantum Mechanics **Required Text:** Class notes can be downloaded.

Requirements: 7 Problem Sets, Term Paper, and Term paper presentation Collaboration on problem sets is encouraged.

Grade breakdown: Problem set (25%), Participation (25%), Oral Exam (40%)

Recommended Text: Ultrafast Optics, A. M. Weiner, Hoboken, NJ, Wiley 2009.

Additional References:

- Waves and Fields in Optoelectronics, H. A. Haus, Prentice Hall, NJ, 1984
- Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale, J.-C. Diels and W. Rudolph, Academic Press, 2006.
- Principles of Lasers, O. Svelto, Plenum Press, NY, 1998.
- Fundamentals of Attosecond Science, Z. Chang, CRC Press, (2011).
- Nonlinear Optics, R. Boyd, Elsevier, Academic Press, (2008).
- Prof. Rick Trebino's course slides on ultrafast optics:

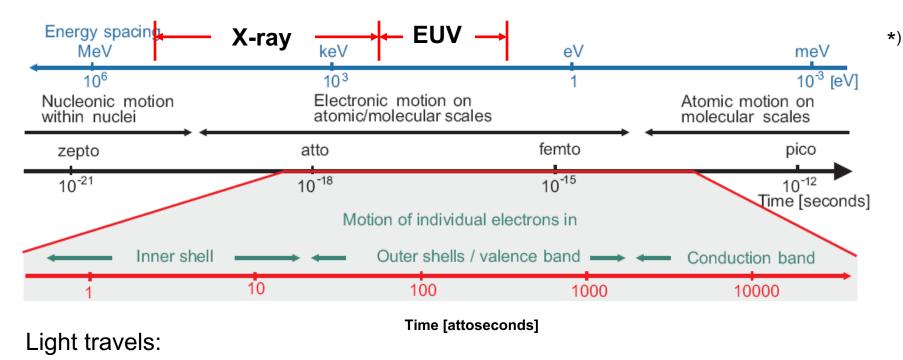
http://frog.gatech.edu/lectures.html

Tentative Schedule

1	6.4.2021	Introduction to Ultrafast Sources
FK	Tue	
2	8.4.2021	Linear Pulse Propagation
FK	Th	
3	13.4.2021	Optical Pulses and Dispersion
FK	Tue	Problem Set 1 Out
4	15.4.2021	Nonlinear Pulse Propagation
FK	Th	
5	20.4.2021	Self-Phase Modulation (SPM) and Solitons
FK	Tue	Problem Set 1 Due, Problem Set 2 Out
6	22.4.2021	Soliton Perturbation Theory: Dispersive Waves and
FK	Th	Kelly Sidebands
7	27.4.2021	Review of Quantum Mechanics
FK	Tue	Problem Set 2 Due, Problem Set 3 Out
8	29.4.2021	Maxwell-Bloch Equations and Gain
FK	Th	
9	4.5.2021	Laser Rate Equations, CW-Operation and Relaxation
FK	Tue	Oscillations, Problem Set 3 Due, Problem Set 4 Out

Tentative Schedule

10	6.5.2021	Q-Switching				
FK	Th					
11	11.5.2021	Master Equation and Active Mode-Locking				
FK	Tue	Problem Set 4 Due, Problem Set 5 Out				
12	13.5.2021	Passive Mode-Locking with Fast and Slow Saturable				
FK	Th	Absorbers				
13	18.5.2021	Artificial and Real Absorber Mode-Locking, APM,				
FK	Tue	KLM, SESAM, Problem Set 5 Due, Problem Set 6 Out				
14	20.5.2021	Stochastic Processes and Noise				
FK	Th					
15	25.5.2021	Noise in Mode-Locked Lasers				
FK	Tue	Problem Set 6 Due, Problem Set 7 Out				
16	27.5.2021	Ultrafast Quantum Optics				
FK	Th					
17	1/6/2021	Ultrafast Quantum Optics				
FK	Tue	Problem Set 7 Due, Problem Set 8 Out				
18	3/6/2021	Femtosecond Laser Frequency Combs				
CH	Th					
19	8/6/2021	Laser Amplifiers 4				
FC	Tue	Problem Set 8 Due				


Tentative Schedule

20	10/6/2021	Pulse Characterization: Autocorrelation, FROG,	
FC	Th	SPIDER and 2DSI	
		Build your own short pulse fiber laser	
21	15/6/2021	Introduction to Nonlinear Optics	
FC	Tue		
22	17/6/2021	Parametric Interactions: OPA and OPO	
FC	Th	Build your own short pulse fiber laser	
23	22/6/2021	Broadband Parametric Amplification	
FC	Tue		
24	24/6/2021	Pulse Compression (Hollow-Core)	
FC	Th	Build your own short pulse fiber laser	
25	29/6/2021	Pulse Compression (Multi-pass Cavities)	
CH	Tue		
26	1/7/2021	Ultrafast electron sources and Electron Diffraction,	
FK	Th	Build your own short pulse fiber laser	
27	6/7/2021	Laser Induced Electron Diffraction	
AT	Tue		
28	8/7/2021	Lab Tours	
All	Th		5

The long and short of time

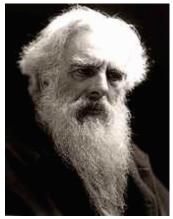
10 ¹	10 ⁻¹⁸ s 10 ⁻¹⁸ s 10 ⁻²¹ s 10 ⁻⁴³ s	10 ⁻⁹ s
N	otable time scales, in seconds	Length by other measures
$\begin{array}{c} 5\times10^{17}~{\rm s}\\ 2\times10^9~{\rm s}\\ 1~{\rm s}\\ 0.3\times10^{-9}~{\rm s}\\ 10^{-12}~{\rm s}\\ 3\times10^{-15}~{\rm s}\\ 1.5\times10^{-16}~{\rm s}\\ 10^{-18}~{\rm s}\\ 10^{-21}~{\rm s}\\ 10^{-43}~{\rm s} \end{array}$	Estimated age of universe Average human lifetime Length of a heartbeat Current computer clock frequency Length of a typical THz pulse Cycle length of laser Electron circles proton in Hydrogen atom Next horizon for controllable laser pulses? Strong nuclear reactions Birth flash of the Big Bang	 14 billion years 70 years 1 second 0.3 nanosecond 1 picosecond 3 femtoseconds 0.15 femtosecond 1 attosecond 1 zeptosecond Planck time

Physics on femto- attosecond time scales?

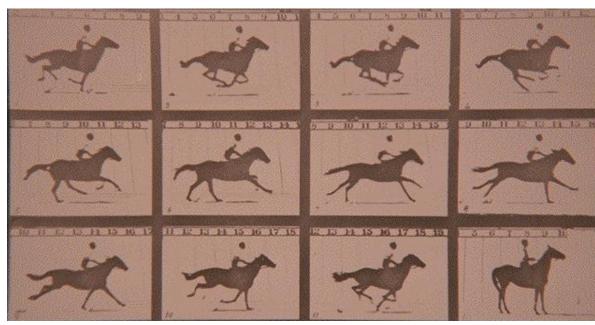
A second: from the moon to the earth

A picosecond: a fraction of a millimeter, through a blade of a knife

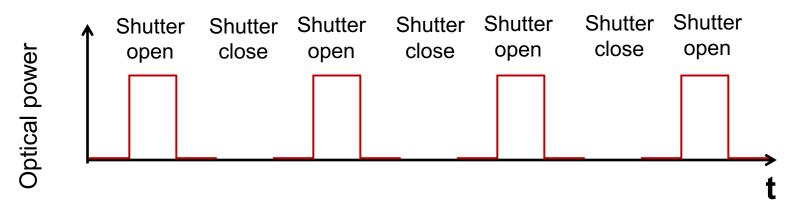
A femtosecond: the period of an optical wave, a wavelength


An attosecond: the period of X-rays, a unit cell in a solid

*F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)


Birth of ultrafast technology

\$25,000 bet: Do all four hooves of a running horse ever simultaneously leave the ground? (1872)



Leland Stanford Eadweard Muybridge

What do we need to probe a fast event?

 The light signal received by the camera film is a train of optical pulse.

- We need a FASTER event to freeze the motion. Here the FASTER event is shutter opening and closing.
- If we have an optical pulse source, we can record images of a running horse in a dark room.

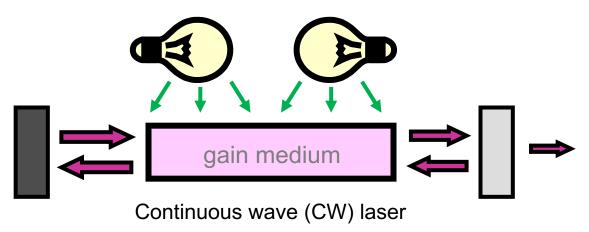
Early history of lasers

- 1917: on the quantum theory of radiation Einstein's paper
- 1954: MASER by Charles Townes (1915—2015) *et al*.
- 1958: Charles Townes (Nobel Prize in 1964) and Schawlow (Nobel Prize in 1981) conceived basic ideas for a laser.

If you're a nobel prize winner, and 100 years old, you can

Charles Townes <u>comment other winners using harsh words:</u>

University of California, Berkeley, and 1964 Nobel Prize in Physics recipient


Jim Gordon was a fine person and a great scientist. He was also brave in doing research. When he worked for me as a graduate student trying to build the first maser, the chairman of the physics department and the previous chairman both told him it would not work and that he should stop, because the project was wasting the department's money. Both of them had Nobel Prizes, so presumably weren't stupid physicists. But Jim proceeded with his work and, about four months after they told him it wouldn't work, it did. From the maser also came the laser.

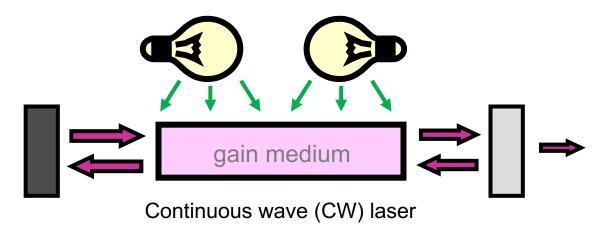
Jim didn't get the Nobel Prize with me, presumably because he was a student <u>Optics & Photonics News, 2014</u> when the maser first worked, but I think he deserved it. He went on to do other important work. We should all celebrate him and his contributions.

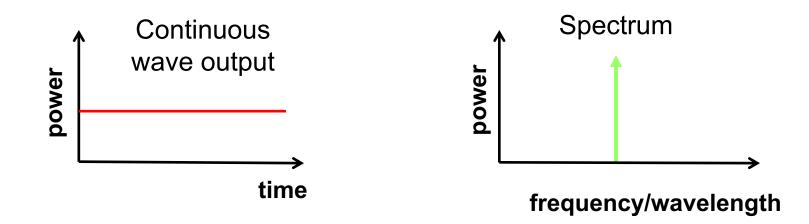
MASER: <u>M</u>icrowave <u>A</u>mplification by <u>S</u>timulated <u>E</u>mission of <u>R</u>adiation 10 (<u>M</u>eans of <u>A</u>cquiring <u>S</u>upport for <u>E</u>xpensive <u>R</u>esearch)

Laser basics: three key elements

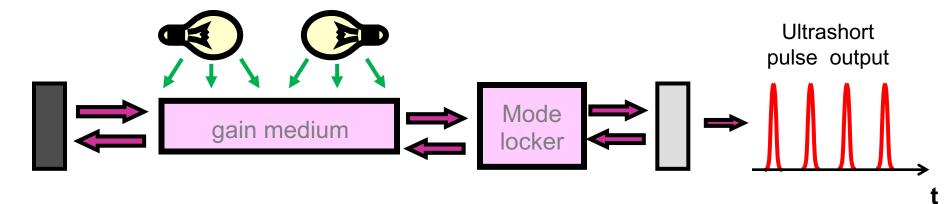
Gain medium

- Enable stimulated emission to produce identical copies of photons
- Determine the light wavelength

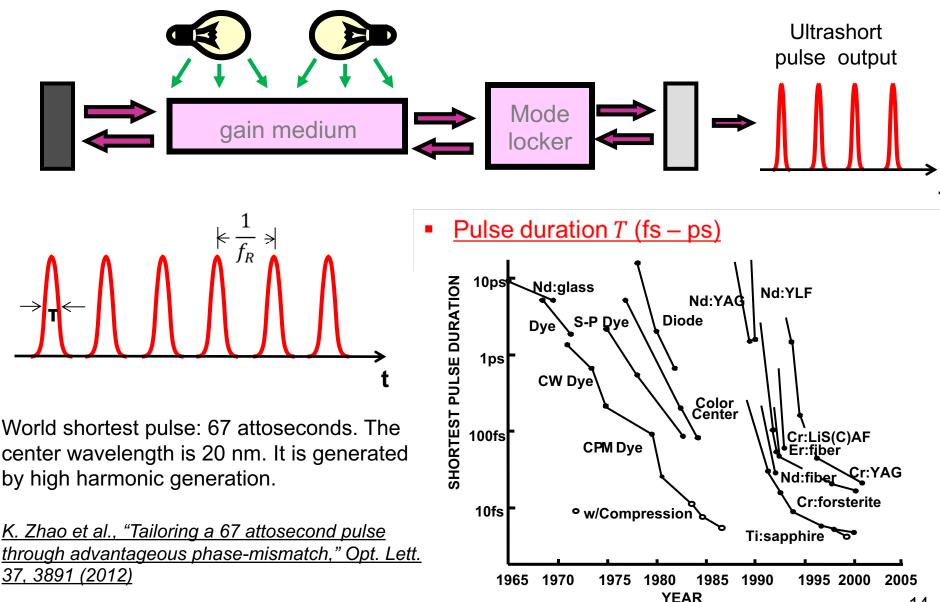

Pump

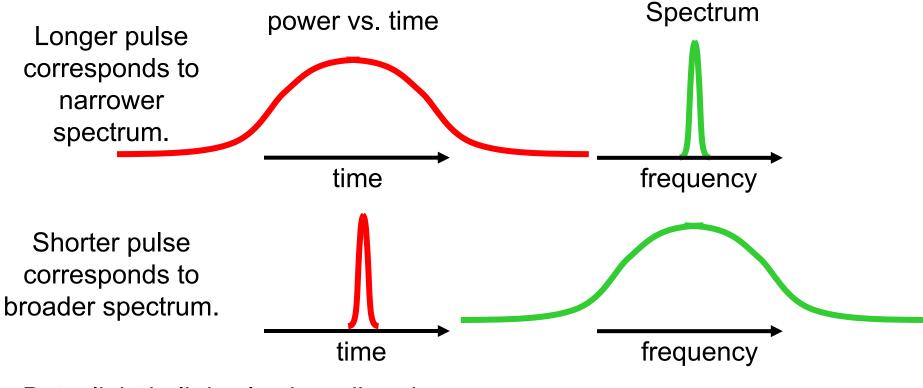

- Inject power into the gain medium
- Achieve population inversion

Resonator cavity


- make light wave oscillating to efficiently extract energy stored in the gain medium
- Improve directionality and color purity of the light

Laser basics: three key elements

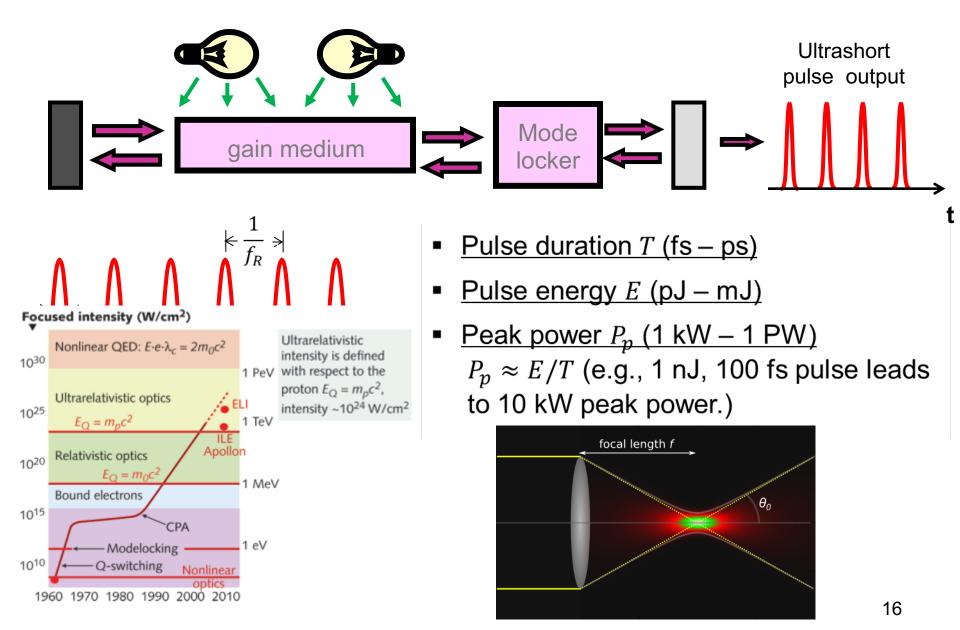



Ultrafast laser: the 4th element—mode locker

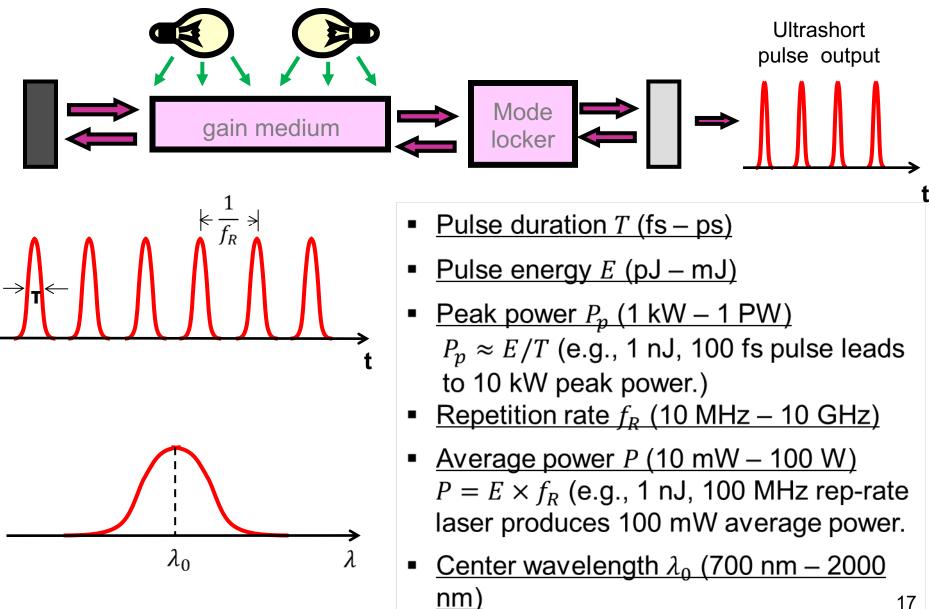
Ultrafast laser: the 4th element—mode locker

Long vs. short pulses of light

But a light bulb is also broadband.


What exactly is required to make an ultrashort pulse?

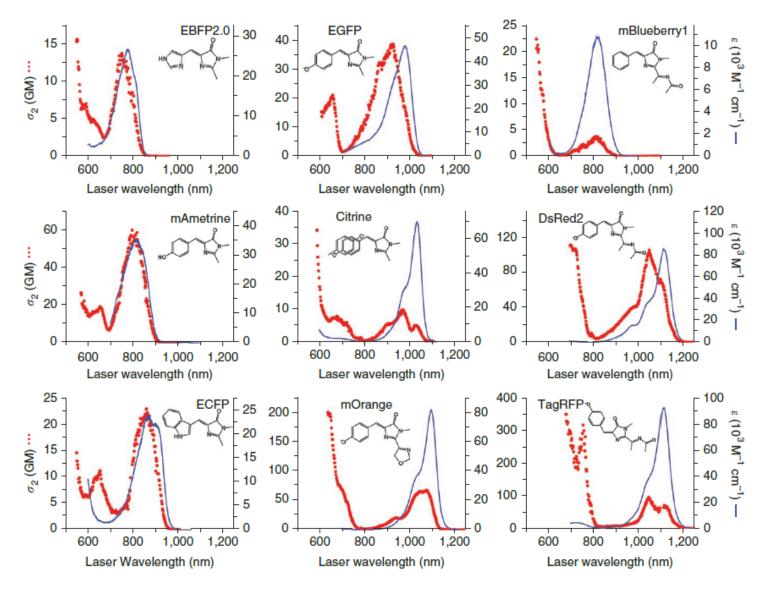
Answer: A broadband coherent spectrum, e.g. from a mode-locked laser



Adapted from Rick Trebino's course slides

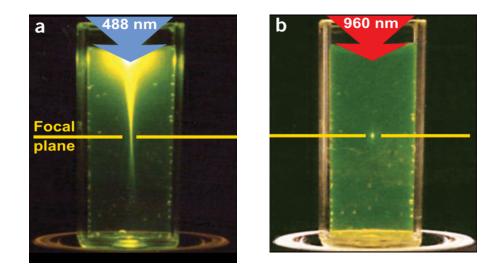
Ultrafast laser: the 4th element—mode locker

Ultrafast laser: the 4th element—mode locker



Examples of ultrafast solid-state laser media

Solid-state laser media have broad bandwidths and are convenient.


Laser	Absorption	Average	Band	Pulse
Materials	Wavelength	Emission λ	Width	Width
Nd:YAG	808 nm	1064 nm	0.45 nm	$\sim 6~{ m ps}$
Nd:YLF	797 nm	1047 nm	1.3 nm	$\sim 3~{ m ps}$
Nd:LSB	808 nm	1062 nm	4 nm	$\sim 1.6~{ m ps}$
Nd:YVO ₄	808 nm	1064 nm	2 nm	$\sim 4.6~\mathrm{ps}$
Nd:fiber	804 nm	1053 nm	22-28 nm	$\sim 33~{ m fs}$
Nd:glass	804 nm	1053 nm	22-28 nm	$\sim 60~{ m fs}$
Yb:YAG	940, 968 nm	1030 nm	6 nm	$\sim 300~{ m fs}$
Yb:glass	975 nm	1030 nm	30 nm	$\sim 90~{ m fs}$
$Ti:Al_2O_3$	480-540 nm	796 nm	200 nm	$\sim 5~{ m fs}$
$Cr^{4+}:Mg_2SiO_4:$	900-1100 nm	1260 nm	200 nm	$\sim 14~{ m fs}$
Cr ⁴⁺ :YAG	900-1100 nm	1430 nm	180 nm	$\sim 19~{ m fs}$

Two-photon absorption properties of fluorescent proteins

M. Drobizhev et al., "Two-photon absorption properties of fluorescent proteins" Nat. Methods 8, 393 (2011).

Nonlinear optical microscopy

- Intrinsic sectioning ability, making 3D imaging possible.
- Longer excitation wavelength, which reduces tissue scattering and allows larger penetration depth.
- New contrast mechanisms: N-photon excitation fluorescence, Harmonic generation, Coherent Raman scattering, etc.
- Ultrashort pulses as the excitation source many ultrafast optics technologies can be employed.

W. R. Zipfel et al., Nat. Biotechnol. 21,1369(2003). N. G. Norton et al, Nat. Photonics 7, 205 (2013).

20

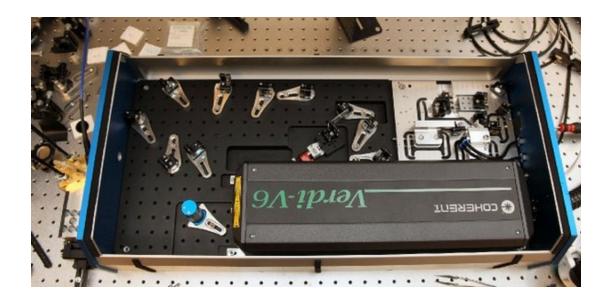
0

200

400

600

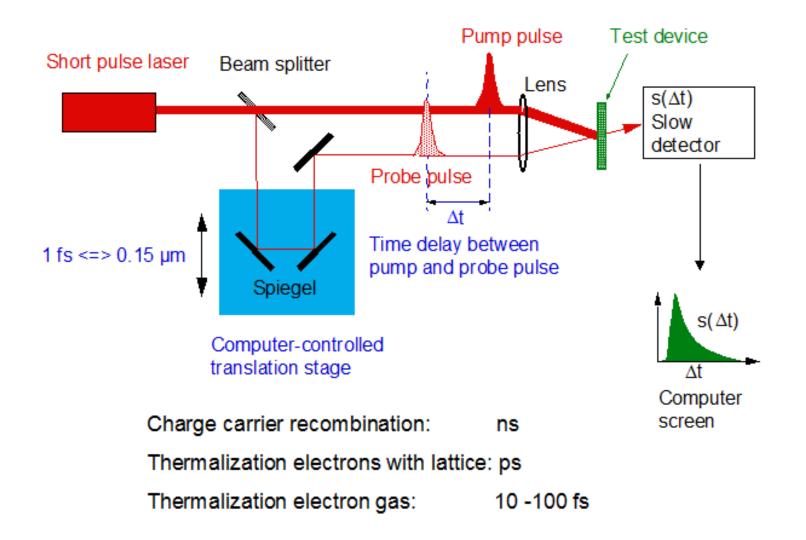
800

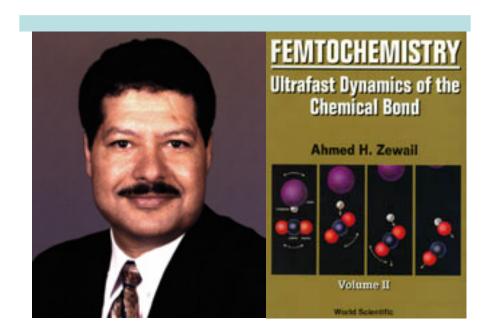

1,000

1.200

1400

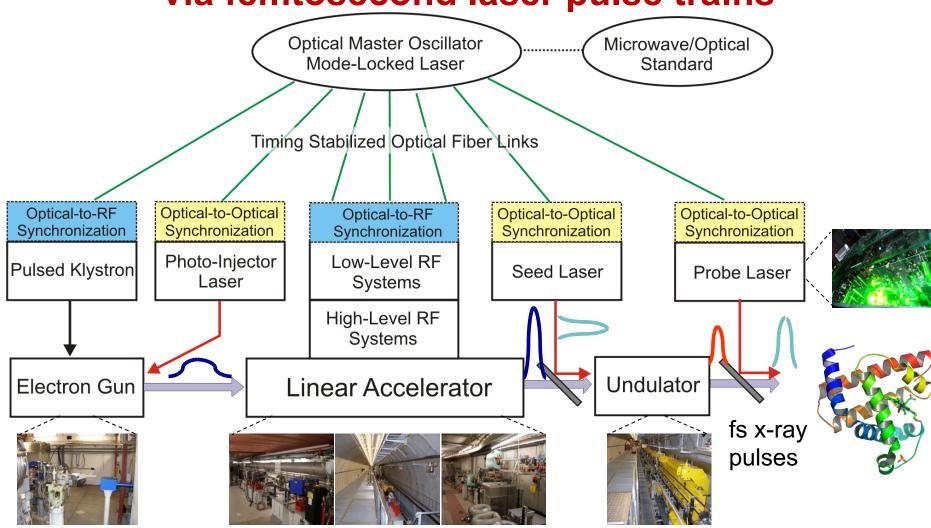
Depth (µm)


Main workhorse: Ti:sapphire oscillator

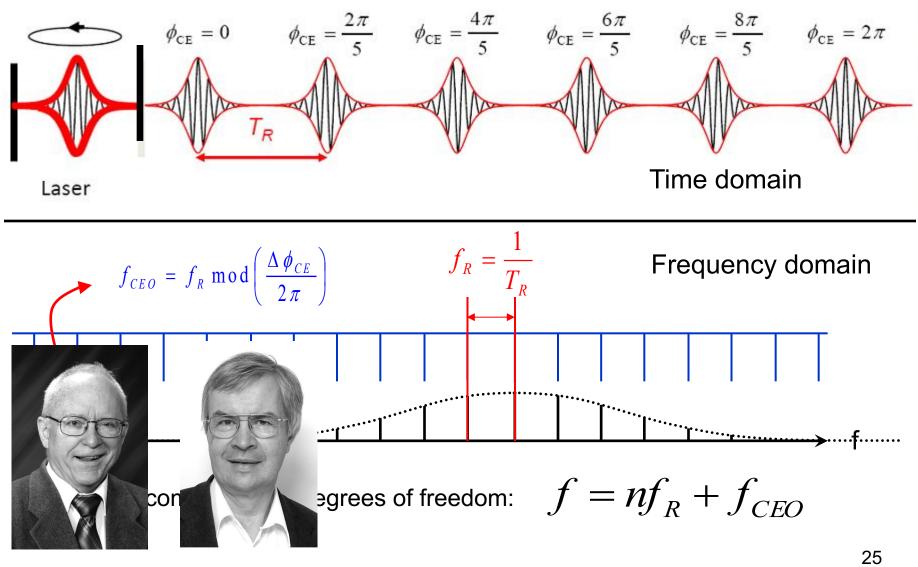

Typical parameters of a commercial product

- Pulse duration: ~100 fs
- Pulse energy: 1-10 nJ
- Pulse rep-rate: 50-100 MHz
- Average power: 300-1000 mW
- Center wavelength: tunable in 700-1000 nm. 21

Ultrafast: pump-probe spectroscopy



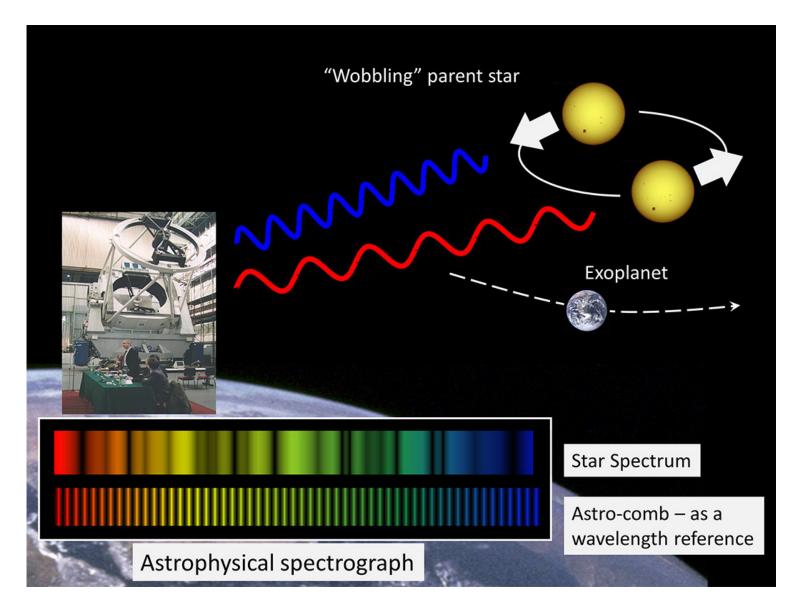
Applications of ultrafast lasers: femtosecond chemistry


Prof. Ahmed Zewail from Cal Tech used ultrafast-laser techniques to study how atoms in a molecule move during chemical reactions (1999 Nobel Prize in Chemistry).

Ultra-high precision: Timing and aynchronization via femtosecond laser pulse trains

Jungwon Kim et al., Nature photonics 2, 733 (2008)

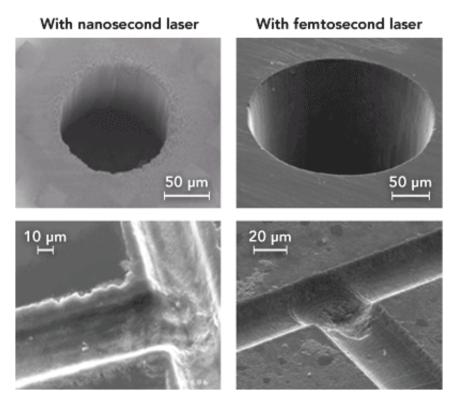
Ultra-high precision: Optical frequency measurements via femtosecond laser frequency combs



J. L. Hall

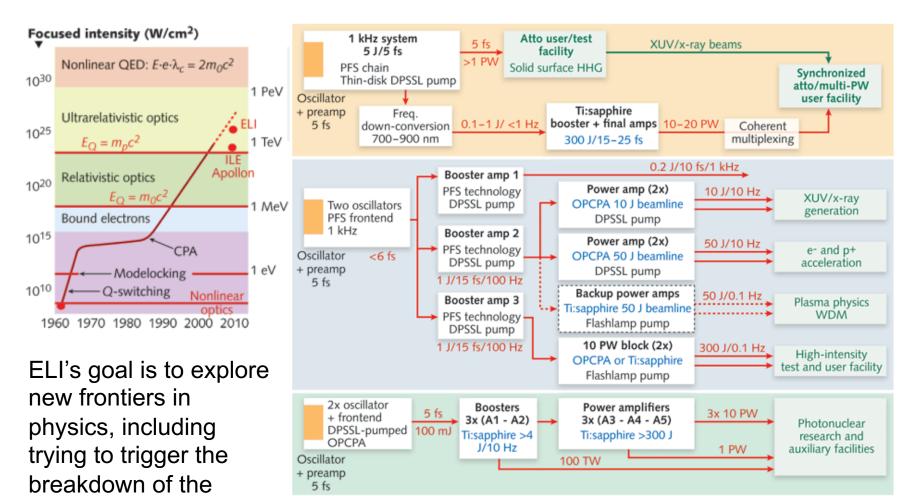
T. W. Hänsch

2005 Physics Nobel Prize for Hall and Hänsch


Ultra-high precision: fs laser frequency comb

<u>C.-H. Li et al., Nature 452, 610 (2008).</u>

Ultra-intense: Femtosecond laser micro-machining


- Sub-micron material processing: Material milling, hole drilling, grid cutting
- Surface structuring: Photolithographic mask repair, surface removal or smoothing without imparting any thermal influence into the underneath sub-layers or the substrate
- Photonics devices: Machining of optical waveguides in bulk glasses or silica, and inscription of grating structure in fibers
- Biomedical devices: Use of femtosecond lasers for stent manufacture or eye surgery
- Microfluidics: Microfluidic channels and devices
- Displays and solar: Thin-film ablation, solar cell edge isolation

Laser processing examples on glass with a 266 nm (UV) ns-laser (left side) and with a 780 nm 100fs laser (right side).

L. Lucas and J. Zhang, "Femtosecond laser micromachining: A back-to-basics primer," Industrial Laser Solutions (2012)

Ultra-intense: Extreme light infrastructure (ELI)

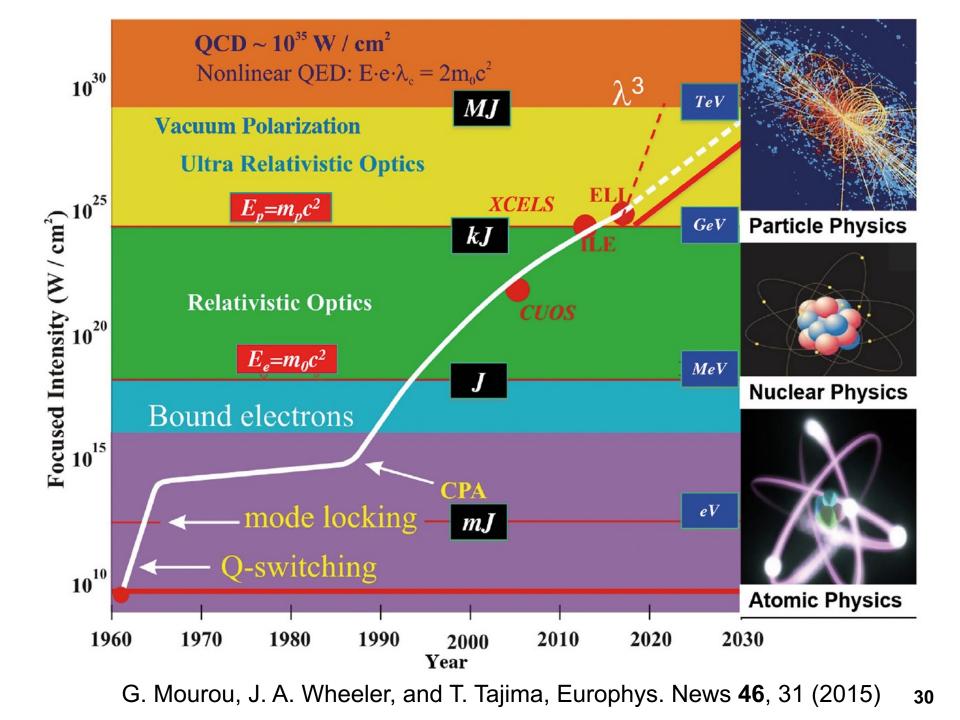
Designs of the three pillars are shown. Top: Hungarian attosecond pillar. Middle: Czech beam-line pillar. Bottom: Romanian photonuclear pillar.

J. Hecht, "Photonic frontiers: the extreme light infrastructure: the ELI aims to break down the vacuum," Laser Focus World (2011)

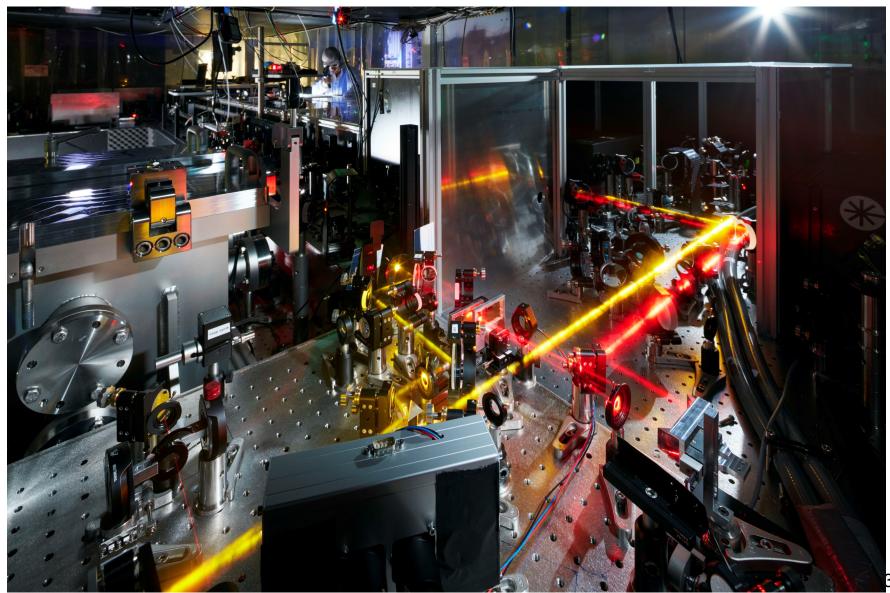
vacuum—the fabric of

space-time itself.

Nobel Prize in Physics 2018


Arthur Ashkin

Gérard Mourou


Donna Strickland

"for the optical tweezers and their application to biological systems"

"for their method of generating highintensity, ultra-short optical pulses" chirped-pulse amplification (CPA)

Parametric Waveform Synthesizer: A look into an optics lab.

