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Problem 2.1: The Nonlinear Schrödinger Equation (NSE) and optical soliton (15 points in 
total) 

The Nonlinear Schrödinger Equation is written as follows, (here we assume 𝐷! < 0) 

𝜕𝐴(𝑧, 𝑡)
𝜕𝑧

= 𝑗𝐷!
𝜕!𝐴(𝑧, 𝑡)
𝜕𝑡!

− 𝑗𝛿|𝐴(𝑧, 𝑡)|!𝐴(𝑧, 𝑡) 

(a) Show by using the following transform 

𝜉 =
𝑧
𝐿"
, 𝜏 =

𝑡
𝜏#
, 

𝐿" =
𝜏#!

|𝐷!|
, 𝑢 = 2

𝛿
|𝐷!|

	𝜏#𝐴 

 the NSE can be rewritten in to the normalized form 

$%(',))
$'

= −𝑗 $
"%(',))
$)"

− 𝑗|𝑢(𝜉, 𝜏)|!𝑢(𝜉, 𝜏). (5 points) 

(b) Prove that  𝑢(𝜉, 𝜏) = sech	( +
√!
) ∙ exp	(−j '

!
) is the solution to the normalized NSE. 

(5 points) 
Hint: See section 3.9, especially 	 !

!"
𝑠𝑒𝑐ℎ(x) = −𝑡𝑎𝑛ℎ(x)	𝑠𝑒𝑐ℎ(x)	𝑎𝑛𝑑	 !

!"
𝑡𝑎𝑛ℎ(𝑥) = 𝑠𝑒𝑐ℎ#(x) 

 
(c) Ultrafast optical solitons have been generated in optical fiber SMF-28 at λ = 1.55	µm. 

Using pulses from mode-locked lasers, hyperbolic-secant pulses with τ# = 4	ps were 
obtained after 700 m propagation in the optical fiber. The nonlinear index coefficient of 
the fiber is n! = 3 × 10$!#m!/W. Calculate the corresponding peak intensity and the 
corresponding peak power of the soliton. (5 points) 



Hint: the relationship between fiber dispersion 𝐷(𝜆) characterized by fiber communication 
community and group velocity dispersion 𝛽!	𝑜𝑟	𝐷! can be found at RP-Photonics website, 
http://www.rp-photonics.com/group_velocity_dispersion.html . 
 

Problem 2.2: The Split-Step Fourier method (15 points in total) 

The normalized Nonlinear Schrödinger Equation (NSE) can be numerically solved using the 
Split-Step Fourier transform. Firstly the NSE can be understood in the following way 

𝜕𝑢(𝜉, 𝜏)
𝜕𝜉

= <𝐷= + 𝑁=@𝑢(𝜉, 𝜏) 

as the simultaneous action of a dispersion operator 𝐷; = −𝑗 %
!&((,*)
%*!

 (assume the dispersion is 
negative), and a nonlinear operator 𝑁; = −𝑗|𝑢(𝜉, 𝜏)|!. If the linear and nonlinear changes for the 
pulse evolution are small within a short distance of propagation Δ𝜉, the solution of the NSE can 
be symbolically written as 

𝑢(Δ𝜉, 𝜏) = 𝑒(":;	<:)='𝑢(0, 𝜏) 

and approximated by 

𝑢(Δ𝜉, 𝜏) = 𝑒
-
"":='𝑒<:='𝑒

-
"":='𝑢(0, 𝜏). 

One can show that iterative application of this propagation step only leads to an error of order 
∆𝜉.. Since the linear operator can be easily applied in the Fourier domain and the nonlinear 
operator (self-phase modulation only) in the time domain, one can simulate the NSE over one 
propagation step ∆𝜉 by the following algorithm 

𝑢(ξ + Δ𝜉, 𝜏) = 𝐹>?[𝑒
-
"@A

"='𝐹[𝑒>@|%(',))|"='𝐹>?[𝑒
-
"@A

"='𝐹[𝑢(𝜉, 𝜏)]]]]. 

where Ω = 𝜔 −𝜔# is the difference between the real frequency and the carrier frequency. 

(a) Dispersion effect on pulse evolution. The electric field of an unchirped Gaussian pulse is 
written as 𝐸(0, 𝑡) = A# ∙ exp(−𝑡!/2𝜏#!) ∙ exp	(𝑖𝜔#𝑡), where 𝜏# = 100	𝑓𝑠 and the center 
wavelength of such pulse locates at 1550 nm. We let the pulse propagate inside optical 
fiber SMF-28 and we do NOT consider the nonlinear effect. Moreover, we ONLY 
consider second order dispersion effect. What is the characteristic dispersion length 𝐿/ 
(based on the definition in Problem 2.1)? Plot the intensity distribution of such pulse at 0, 
1𝐿/, 2𝐿/,	3𝐿/ and 4𝐿/ (You can use normalized scale. Indicate proper axis label, i.e. 
𝑡/𝜏#). Is the pulse positively chirped or negatively chirped after propagation? (5 points) 
 

(b) Nonlinear effect on the evolution of the pulse spectrum. Ignore the dispersion effect, the 
nonlinear pulse evolution can be written as 𝑢(Δ𝜉, 𝜏) = 𝑒012(𝑢(0, 𝜏), where 𝑁; = −𝑗|𝑢(𝜉, 𝜏)|! 
and we have changed the NSE to its normalized form. Plot the spectrum 𝑆(Ω) = |𝑢U(Ω)|! 



as the pulse accumulates different nonlinear phase 𝜙03 = |𝑢(𝜉, 0)|! = 0, 4
!
, 𝜋, .

!
𝜋 and 2𝜋 

assuming 𝑢(0, 𝜏) = exp(−𝜏!). (5 points) 
 

(c) Write a program and simulate the normalized NSE for the following initial pulse 

𝑢(0, 𝜏) = 𝑁 ∙ sech	(𝜏/√2) 

for N = 1,2 and 3. Make use of the Fast Fourier Transform (FFT) and use at least 1024 
points. Plot the pulse shape (in the time domain) and corresponding amplitude spectra 
(in the frequency domain) as a function of propagation distance. (5 points) 

 


