Ultrafast Optical Physics Il (SoSe 2020)
Lecture 3, May 15

Finish up Solitons of the NSE
Review of quantum mechanics

Laser dynamics: semi-classical laser theory

(1) Two-level system and Bloch equations
(2) Rabi oscillation: coherent light-matter interaction

(3) Steady-state solution of Bloch equations: linear
susceptibility

(4) Adiabatic solution of Bloch equations: laser rate
equation



Soliton solution of NLSE : fundamental soliton
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Interactions of two fundamental solitons
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From Gaussian pulse to fundamental soliton
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Gaussian pulse to 3-order soliton

Propagation length =0 L




Evolution of a super-Gaussian pulse to soliton
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Soliton perturbation theory: a very brief introduction
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Without perturbations
A (z,t) = Aysech(x(z,t))e /7D
1 — Four degrees of freedom:
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What happens to the soliton in the presence of perturbations? Will it fall apart?

Is it just kicked around? If yes, can we understand how it is kicked around?



Soliton perturbation theory: a very brief introduction
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Ansatz: Solution of perturbed equation is a soliton + a small component:
t t 1o
Az, 1) = { (L) = A4 )] ik with: a(=) = Agsech(=) Ko =504

Any deviation A4 can be decomposed into a contribution that leads to a soliton
with a shift in the four soliton parameters and a continuum contribution:
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Soliton instabilities by periodic perturbations

Long haul opt. communication link Modelocked fiber laser
Amplifier Amplifier
Fiber ‘ Fiber Fiber
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Rogue wave

Find more information from New York times:
http.//www.nytimes.com/2006/07/11/science/11wave.html
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One more Rogue wave




Quantum mechanics: wave motion of a particle

In 1923, de Broglie (1892-1987) suggested that massive particles
should have wave properties similar to electromagnetic radiation. The
matter wave should also be a solution to a wave equation.

The solution should look like: P(x,r) = Aexp[i(kx — ot — 0)]

Define the wave number & 7 27
and the angular frequency k= i and @ = —
w as usual: A
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Wave function and probability

The wave function W (7 t) determines the likelihood (or probability)
of finding a particle at a particular position in space at a given time:

Probability amplitude for finding particle in
) (.77. t) volume element dV at position r at time t.

Enables to compute outcome of every
possible experiment involving that system.

. 9 . Probability of finding particle in volume
|\Ij (7'1-, t) ‘ AV element dV at position r at time t.
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The Schrodinger wave equation

In classical mechanics, the particle state is determined by its
position and momentum. The state evolution is determined by
Newton’s law.

In quantum mechanics the particle state is completely described
by its wave function. The state evoluation is determined by the
Schrodinger equation.

The Schrédinger wave equation for the wave function W (7, 1)
for a particle in a potential Vis:

U (7. ¢ 72
] 7 < .(7 ) _ U (F.t) 4V (F) U (F1)
Ot I | |
where A:vvzv2:i+c)2 02

oxr? Oy? 022
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Time-independent (stationary) Schrodinger equation

oV (rt) I =
Jh— ——ﬂA‘P( t) +V (r) V(1)

Stationary states:

Probability density is time independent:

W (7, t)|° = [¢ (7)|* = const.

Eigen frequency

Total energy of the system: ' — f»

Time-independent (stationary) Schrodinger equation

AN @ VE v =B

2m
Eigen energy
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Example: 1-d Infinite box potential

A N\

==

One dimensional box potential with infinite barriers.

Vi) = { 0, for |z < a/2

o0, for |x| > a/2
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Example: 1-d Infinite box potential

Time-independent Schrodinger h2 d? (,L)
equation in the interval [-a/2, a/2] — ' — F Y (x
2 ]
2m dx

For |z| > a/2 the wave function must vanish

U (x==+a/2) =0

2 nrr .
U, (x) =1/ — cos for n=1.3,5....
a a
2 . nmxr o,
U, () =4/— sin for n=2,4,6....
a a
n*m2h?

Enerqgy eigenvalues: =
W En 2ma?
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Example: 1-d Infinite box potential

Stationary states are orthogonal to each other

o
/ U (@) Uy, () d2 = Oy
o
Form complete set:
00
F@) =3 ents, (@)
n=~0

With coefficient:
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Quantum mechanics: wave mechanics

Physically measurable quantities = Observables

Observables are represented by Hermitian operators
[ 0 @) (ot 2)) die = [ (Hopto, (0 0, (2) d

Examples for one dimensional systems:

xr . position operator
h O
p = —— : momentum operator
j Ox
n 0* . o
H(p,x) = ———=+V(z): Hamiltonian operator
2m da?

The wave function /(x,¢) allows us to compute the statistics of

measurements of observables executed on the system in an ideal way, (the
best you can do), without necessarily specifying the apparatus that does it.
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Statistics for position, momentum, and energy

Position: x *00
(z) = / U* (z,t) x ¥ (x,t) dx
Momentum: p o) — /oo T* (2. 1) h o T (2.t) da
P Y e
Energy: H
(H(z,p)) = / U* (z,t) H(xz,p) ¥ (x,t) dx

If the system is in an energy eigenstate, i.e.,

U (x,t) =, (v) et H(z,p) ¢, (x) = E, ¥, ()

(H(z,p)) = /f)C U (x,t) B, V(z,t) de = E,

J — OO
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Example: Hydrogen atom

Schrodinger eqn for H-atom:

27720
A (r) + (£ =V (r) v(r)=0
with o2 my - Mme
V() = — 0 and Mg = ~ Mg
Ameg |7 My, 1 M
™ 1836 x m,

Laplace operator in spherical coordinates:

sind oV

ap_ PU 200 A1 9 (L ouN 1
¥ or2 r Ir  r? sin o sin?d 0 2

Stationary Schrodinger eqn for H-atom:

1 0 oV 1 %] 2mg e |
— V— ‘ E v =0
sinvy OV (sm C70> ST 9 QQI 72 ( N dreor)

or?2 r Or

Y 2 o 1
2
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Hydrogen atom at ground state

(& (r‘. v, &9) = Uy (7“)
leads to

7 2 0 2 2
3t | e+ R (B ) i) =0

Or2 or

Ground state wave function:

Uy (r) =

Bohr radius
ry = —Weg’io ~ 0.529 - 107
Ground state energy: EA
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Hydrogen atom at excited states

Solve the Schrodinger egn by separating variables:

V(r,0,0)=R(r) - Y (v, p)

1o [(,0 2mor? e B _l 1 i L O_Y 1 O’y
{EQT (r 8_rR> T (E +47T£’07°>} Y |sind 9 Sml?'c?z? i sin?v 9 p?

The left side of this equation is only a function of the radius ., and the right
side of the angles v and ¢. Therefore, this equation can only be fulfilled if
each side 1s equal to a constant number C', that 1s

1o (5,0 2mqgr? e
—— (=R E =
{R or (7 or ) i h? ( i 47 egr

1 1 0 Y 1 %Y
—— [ (Sinl?—>] - =

sind OV o sin?d 0 ©?
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Hydrogen atom at excited states

Spherical Harmonics:

. m (2[ + 1) (l — |772 | )' _ jm
Y" (W)= (—1)" P/ (cosv)e
1 ( ) 5‘“) ( ) \/ A ([ 4+ |772|)' 1 (COS ) €

Associated
izati Legendre
[ =0.1,2....positive whole number Normalization Factor Pogllynomials
m = 0,41, £2..... £l C=1ll+1)

Radial wave functions:

R 2 dR (27’72.0E moes L(l+ 1)) R
— —_— — 2 p—

dr? r dr h? 2meoh?r r
A o [ 111
F=E= g Rl = ¢ BT LE o 12 () e
850/ 12 n? n [(n+1)!] Laguerre
2 Polynomials

n=12.andn>01+1 P = un
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Hydrogen atom at excited states

Surfaces of constant probability density for the first three excited
states (n=2) of the hydrogen atom.
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Wave functions and quantum numbers

wnlm (7"-. l) “/9) — R‘nl (T‘) Yzm (7‘) “ID)
n: energy:

Hwnlm (17) = Eanlm (F)
I: angular momentum:
EQ 'Z"'f/’nl?n (7", l) \,9) — [([ T l)hQ wn[m (7", l) 5‘9)

m: z-component of angular momentum:

L L’nlm ( y ?‘9’ Y) — 7nh l*/nhn ( ’f ?-9 S‘Q)

s: spin of the electron: . .
Spin is an internal angular momentum

g — :h/g of the elec_tror_1 that carries a magnetic
moment with it.

n, I, m, s: complete set of quantum numbers to determine state uniquely!
26



Superposition states and radiative transitions

For energy eigen state:
e Average dipole moment vanishes.
f> 7 |q; ) |2 7 = 0 Therefore the atom does not radjate in
a stationary state as postulated in the
Bohr model.

= —e 7 — O
For superposition state: 1s + 2p (m=0)

L ‘ - e~ "/T1gdEit/h |~ L Do/ cos e ]Eof/f)

1
—= (U100(72 1) + Ua1p(7 1)) = ——=—= | €
\/5( 100( ) ‘ ‘210( )) \/% 713 ( 4\/?71

In the probability density (i.e. the magnitude square of the wave function), the
contributions between the ground state and excited state interfer positively or
two wave functions, which

negatively depending on the .
r
depends on the phase angle ** : |

relative phase between the
AFEt/h, with AE = Ey — Fj. t==0 p= } h/AE

-‘&)} Zé-
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Oscillating dipole moment emits new EM wave at

the oscillating frequency
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Superposition states and radiative transitions

For superposition state: 1s + 2p (m=1)

Instead of an oscillating charge distribution, the atom shows now a rotating
dipole, which emits a circular polarized electromagnetic wave.

1 | ) L -
5 (V1(7.0) + Vs (1)) = — W7o 1) + (7))
— 1 6_71’/7,1 e—jElt/ﬁ -+ lie_r//er Si]:l .-Oej'pe_jEQt/ﬁ
V2T 81y

Z 2 : Z

s
i i I T L\
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—|<
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Ultrafast Optical Physics Il (SoSe 2017)
Lecture 5, May 8

Laser dynamics: semi-classical laser theory

(1) Two-level system and Bloch equations
(2) Rabi oscillation: coherent light-matter interaction

(3) Steady-state solution of Bloch equations: linear
susceptibility

(4) Adiabatic solution of Bloch equations: laser rate
equation
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Laser basics: three key elements

O C»

/48N / _

=C—1=[]-

Continuous wave (CW) laser

= Gain medium
- Enable stimulated emission to produce identical copies of photons
- Determine the light wavelength
= Pump
- Inject power into the gain medium
- Achieve population inversion

= Resonator cavity
- provides feedback to efficiently extract energy stored in the gain
medium
- Improve directionality and color purity of the light 31




Possible laser cavity configurations

Output
] ) beam
N e T o] 77>~ Gain -—->——/®

Gain N ,
e e I et >——- High " _~~ Qutput
] ] reflector T\ 7 coupler
High reflector Output coupler 1]
(r,~100%) (r2) High reflector

Feedback
- The laser (oscillator)
concept explained using
Amplifier a circuit model.

supply
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Three phenomena related to light-matter interaction in laser

° 2 dN N
E‘ \ —) /\/\/> 2 _ —AN, = __2
. — | —— dt T21
E, A | f
\. 21
W ,J\J\J Spontaneous emission
21 N
N e 20—
2 =3 AVAV
T — o 1 —
" : B dN;
Ny ny n, W - —BN11
N4 (N>) is number of atoms in the lower i
(higher) energy level. Absorption
—— 2 — /\/\/* An incident photon triggers an excited
/\/\/’ — atom to transit to a lower state by
- 1-o— /\/\/‘ generating a second photon, which is a
dN, “clone” of the incident one—same freq.,
o = BNl polarization, and traveling direction etc.

Stimulated emission (Laser: Light Amplification by Stimulated Emission of Radiation)




Population inversion for amplification

Amplification requirement: N, > N,
N; is the number
E, 1 g _(E, —E,)) density (also known as
2 — 22 exp{ 2 1 ) the population density)
N, g, KT of molecules in state i
)

(i.e., the number of
molecules per cm3).

l T is the temperature,

? and k is Boltzmann’s
constant = 1.3806503
X 10-23 J/°K

Under thermal equilibrium conditions, the lower energy levels are
populated first, and are always more populated than the higher levels.

34



Four-level system with optical pumping

Typical lifetime of energy level 2:
3 Nd:YAG  ~230 ps

\—\_\ Nd:-YLF  ~520 ps
= 2

1064 nm
Nd:YAG
laser

808 nm
pump
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Light-matter interaction: classical harmonic
oscillator model

1) Light is modeled by Maxwell egns. \/V\/W\/VV\
2) Matter is modeled as harmonic oscillator.
3) Two sets of equations: Maxwell equations + eAVAVAVAVA@—

refractive index (i.e. dipole equation).

4) Explains linear optics (dispersion, Pos. Neg.
absorption) Charge Charge
- w,
X(Q) = o
Q-0 +2jQ0
o
JA(z,t) 1 H? , _ |
= = + — A(z,t') +d
0= (gain) ’ < Qg atz) _( ) Sperson

HWHM - gain bandwidth 36



Light-matter interaction: semi-classical model

1) Light is treated as a non-quantized,
classical electromagnetic field (

modeled by Maxwell equations).

B V)
2) Mater is quantized (resulting v
energy levels) by a non-relativistic ] g _
guantum-mechanical approach. — E,
0
3) Three sets of Eqns (Maxwell-Bloch Eqns): | v X
It - e Eg
E: Maxwell equations (pulse duration T)

w: population inversion (decay with time constant T,)

d: dipole moment (decay with time constant T, dephasing time)

4) Explains stimulated emission, absorption, Rabi oscillation etc.
37



Superposition states and radiative transitions

For energy eigen state:
e Average dipole moment vanishes.
f> 7 |q; ) |2 7 = 0 Therefore the atom does not radjate in
a stationary state as postulated in the
Bohr model.

= —e 7 — O
For superposition state: 1s + 2p (m=0)

L ‘ - e~ "/T1gdEit/h |~ L Do/ cos e ]Eof/f)

1
—= (U100(72 1) + Ua1p(7 1)) = ——=—= | €
\/5( 100( ) ‘ ‘210( )) \/% 713 ( 4\/?71

In the probability density (i.e. the magnitude square of the wave function), the
contributions between the ground state and excited state interfer positively or
two wave functions, which

negatively depending on the .
r
depends on the phase angle ** : |

relative phase between the
AFEt/h, with AE = Ey — Fj. t==0 p= } h/AE

-‘&)} Zé-
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Oscillating dipole moment emits new EM wave at

the oscillating frequency
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The two-level model for light-matter interaction

4

A

E, V(x)
Ve
S~ e
\ e
\_/ 5
-d/2 = d/2 X
// m\ i

1D-model for a two-level atom.

40



The two-level model for light-matter interaction
Hamiltonian of the atom: H,
Hfl Ue(F) — Ee 'we (F)
H, ‘@’g(‘r) = by wg(f)

General state of this two dimensional quantum mechanical system

is:
(7, 1) = cy(t) ¥y (F) + celt) ol
\cg\Q . propability to find the atom in the ground state
|ce\2 . propability to find the atom in the excited state

The time dependence of these coefficients follows from the Schrodinger

Equation: j h%\lf (7:*? t) H,V (77, t)

in (ég (t) Ug(f’) + Ceo(2) Ue(m)



The two-level model for light-matter interaction

By multiplication of this equation from the left with the complex conjugate
ground state or the excited state and integration over space using the
orthogonality relations for the energy eigenstates, we obtain two separate
equations for the time dependence of the coefficients:

Co —jweCe, with w, = E, /L
¢, —jwgcy, With w, = E, /I

The solution is the general time dependent solution of the two level
system

—

(7, t) = c,(0)e " U, () + ce(0)e 1< ) (7)

How does the atomic dynamics change in the presence of an
external electro-magnetic field and environmental perturbations?
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Light-matter interaction in dipole approximation

. Dipole energy in H,; = —d - E(7 .t)

Dipole moment: 7 -
P d = —eqr.  E-field: |

: ; . Position of electron
Dipole approximation:

The spatial extension of the electron cloud in an atom is a few Angstrom,
while the light wavelength typically a few hundred nanometers.

—

Hy=—d- E(f: )= —- E(ﬂ. t) ={— d- E(t>|_) Spatiglly.uniform
\l' ‘l' electric field

Position of electron Position of atom
Hamiltonian for Atom in E-field: H pr = H4 — d - E(l‘)

The time-dependent solution of the two level system under a EM field
can be written as

W(r,t) = cg(t) ¥o(7) + ce(t) Ye(r)

43



Expected value of the dipole moment

>

<3>= [ (r0d ¥(r.od r| W) = c(t) 0y (7) + elt) v()

<d> = |ce|2;\7€e = |cg|2ﬂ 9g T CoCy \[eg + CyCe \[

Matrix elements of the dipole moment:

ﬂ_]ee — dU 7?)d7°——€0/b’ (F)

M, = / Vi) d Wy (F) dif = —eq / Ue(r) 7 y(7) d

v (7) =0

symmetry

&
‘31

) d 0. (7) dif = M,

— ‘ ' r )/ - B
V() d () dif = —eg /UZ(??) 7 0y(7) =0 symmetry

<(1> = c:cg;\7eg+c.c.
44




Equations of motion for the probability amplitudes

Hamiltonian for Atom in E-field: Hir = H 4 — d- E(t)

The time-dependent solution of the two level system under a EM field
can be written as

, J _ . .
U(r, 1) = cg(t) ¥y (r) + ce(t) Ve(r) ihm W (rt) = Hap¥ (1)
New equations of motion for the probability amplitudes:

. . 1 ' IR
Co = —iWeCe +']C~‘7—ﬁ (/ -(7) d W, (r) dr ) - E(t),

1 . .
by = gy +icer < / V() d v, (7) dF) CE(t).

E-field as amplitude = .
and polarization: E(t) — E(t) €, l

Ce

|
5
™
R
m
_+_
<
Q




Monochromatic field: E(t) = ; (Eoe™" + Ege ")

Expect strong interaction between atom and E-field if: Weg = We — Wg ~ Q)
. wWe+twg+w y . w‘e+wg—.~'
Introduce new amplitudes: (', = eJ(—gg—t) Cy, = ¢ eJ( )
Leads to:  _ . _ 7 s
. w w w wetwgtw 1 - (Letwgtw
Ce = ] . Z — JWe CGGJ( 2 t) —|—.]Cg = E(t) eJ( 2 t)
_ 2 _ n
=y _. We + Wy — W . ] L Wetwg—w . J_[)* . 5 — [ Wetwg—w

Frequency detuning between atomic
transition and electric field frequency: \[* >
W > o
A_T Qr T(E0+E* 1% t)

C?upled mode eq”at'gfs: If Rabi frequency is small:

Lo = A v —C, Q| << wey 2 w

Rabi Frequency:

ilit 5 Rotating wave approximation (RWA)
: Y28 lies: z

ZC = 4AC, +ie app \[ *

dt 9 iR 2 Q, ~ E0 = const.

fl 46



Zero detuning:

d
—C, =
dt

el C’
dt

dt

g
S
]

1
.

Rabi Oscillation

— W

2
Q*
—jAC, + ]77’0
Q,

‘|‘]AC + ]7(Y

A=Z2_ =

_’C'
175

().
1—C'

If the atom is at time t = 0 in the
ground-state

Cy(0) =1 and Ce(0) = 0

Oscillation solution:

)y
C,(t) = cos <‘ 5 lt)
(2,
C.(t) = —jsin ('—2‘1‘)

Probabilities for finding the atom in the
ground or excited state are:

, e
= ot (S

sin’ ( | t)
2

|Ce(t)|2 =
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Rabi Oscillation

Expectation value of dipole moment:

<cz> = ﬂ?egcec;nLc.c. = —ﬂ_]egsin(|Qr|t) SIn (Wegt)

The coherent external field drives the population of the atomic system
between the two available states with a period: 7 _ o /Q
, .

Dipole moment oscillates with %1‘*
frequencies (), — Weg T O, \/\

O 1 —>
Atoms do not radiate at the same R4 m on Qrt
frequency as the incoming light. The 1

emitted light rather shows sidebands
offset by the Rabi-frequency called
Mollow-sidebands. This is a nonlinear
process.

Where is our first order linear
susceptibility x(w)?

If this coherence is destroyed fast enough, Rabi-oscillation cannot happen

and it is then impossible to generate inversion in a two-level system by
interaction with light.



Equ. of motion for dipole moment and population inversion

=  Additional interactions with the environment cause the loss of coherence in the
atomic system.

» These energy non-preserving processes cannot be easily included in the
Schrodinger Equation.

= \We can treat these processes phenomenologically in the equations of motion for
the expectation values of the dipole moment and the population inversion.

Population inversion is defined as

Complex slowly varying dipole moment is defined as

<(f> = cZC'g.\7eg+c.c.

—» d=c.c4e

w=F,— P, =

('US(‘QF‘ZL> n

2

L (|er>

jsin | ——1
2

d is complex and
slowly varying
—> compared with the
external EM wave’s

/[?_,

<< Weg 2

oscillation.

2 2
[ce|” — |cg]
—Jw't (1*(1
T [ WetwgTtw
C’e — C. € ( 2 t)
. = ej(w‘ +;(_Wt)

<(® — ﬂ_]eg(l et + c.c.
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Motion eqns for dipole moment and population inversion

d ) d ()
. = SjACHi=C, Lo = 4AC, +i2tc,

Applying the product rule we find

d d d
—d = (=C|Cy+CE | =C
dt™ (dt ) 9 e (dt 9)

= JACIC, — j5CyCy +ACICy + j5CIC,

Q,
= j2Ad + = u

And for inversion:

d d . (d N\ .
Lo~ (Se) e (L6) e

— (—IAC CT + |%”C C; —JAC,C — '%rCeC;‘) + c.c.

= +jQ.d+c.c
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Decay of population inversion

d o C s : N
—w =4+jYd+cc T W= 1K d— ) d
dt
Three incoherent processes reduce or increase the upper-level population:
= Spontaneous emission The three processes are described by
» Interaction with the host material the following equation: Steady-state
. . . . . ’ : _ -
(collisions, lattice V|brat.|ons) iy — w —> bopulation
. Increa}se of the population by @ Energy relaxation
pumpIng time

Steady-state population:
negative at thermal equilibrium without pumping
positive with pumping

Include both external EM field and energy decay:

w—w , : .
o= — -+ d—iQ, d
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Decay of polarization (dipole moment)

/.1

A g~ W
9
d Q, . Q.
—d = 2Ad+—7l? — : Weg — W L{—'—](— w
—d=J20d+ = u d=] (Weg — W) 5

An external EM field induces dipoles, which generate the macroscopic
polarization. If the field is switched off, the polarization will disappear.

» Energy decay of the two-level system

= Collisions with the host material disorients the direction of dipoles, causing
dephasing. The resulting polarization becomes zero, although the single
dipole still exists.

» Dephasing can happen much faster than energy relaxation and is
characterized by a time constant To.

Include both external EM field and polarization decay:
; L Q,
g = —@— J(weg —w))d +j5- w

—> dephasing time

52




Bloch equations

w— w
W o= — - +iQr d—iQ, &

1 Q,
(7~ i (eg — )+ i w

|2
]

M, - €

Q, =
h

(EO+E* _JQWt)

= Bloch equations describe the dynamics of a statistical ensemble of
two-level atoms interacting with a classical electric field.

= Polarization of the medium is related to the expectation value of
the dipole moment of the atomic ensemble feeds into Maxwell
equations, resulting in the Maxwell-Bloch Equations.



Steady-state solution

For moderate field strength Eg, no
dephasing and no energy relaxation,
the magnitude of the Rabi-frequency

If the optical pulse duration is longer
than energy relaxation time constant
T4, implying that the temporal variation

is much smaller than the optical of the EM field is slow than the energy

frequency, |Q;] << w, inversion and

dipole moment do not change much . : .
inversion and dipole moment are

decay, we can assume that population

within an optical cycle of the field. always at the steady-state though the

R4 steady state value adjust following the
1\/—\ amplitude variation of the EM field.
3 n 2n Ort d = o0 W =0
- (\[* _’) W
o * ' on ort d = 2 E
T —_—S _ ¢ - ,
= 201/ Ty + j(w — weg) ™"

wo

10 g | .
VW\/\J \”U\/Vﬂr‘ R

77 [ Eol?
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Inversion saturation

We introduce the normalized lineshape function, which is in this
case a Lorentzian:

N (1/T)°
M) = TR+ g~ o

Intensity: QZF |E0 |2

Unsaturated inversion

: : / Stationary inversion
Steady state inversion: (W= - 7 depends on the intensity
1+ +L(w)

of the incident light

Saturated inversion

Saturation intensity: 1

XN 7r
I, = é
h? o el
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Dielectric Susceptibility

Expectation value of the dipole moment - o
g <d‘> = M, ,d et + c.c.

Multiplication with the number of atoms per unit volume, N, relates the
dipole moment of the atom to the macroscopic polarization P

1 — . — . 7 300
P(t) = 5 (BOeJ'“’t +£Oe‘J'“’t) — NDM,,d, et + c.c.

!

EO — 2*\1\_]€>gd5

Definition of the complex susceptibility P, = GOX(w)gEO
Linear susceptibility of the medium

oo T ] N W
W) = :\ e :\1 -
X( ) gteg fieo 1/T2 + ] (w - ’w’eg)
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Linear susceptibility of the medium is a 2"9-rank tensor

L AIN_ w,
/ '\/./U’ _ J_':I\ e _j‘\[e - .
X (W) T heg 1/Ts + j(w — Weg)

Assume that the direction of the atom is random, i.e. the alignment of the atomic
dipole moment, and the electric field is random. We have to average over the

angle enclosed between the electric field of the wave and the atomic dipole
moment, which results in

* * * Ewo N
\[eglj[iﬂ \[eﬂJ[igy \[egrj[*: M2, ()2 0 .
\fegy*\[ig,c \fegyJ[igy \[e‘,y‘\[* | = 0 Mg, ()9 2| Meg
Meg: Mgy Meg:Mcg,  Meg: M. 0 0 Mg,

For homogeneous and isotropic media the susceptibility tensor shrinks to a
scalar

l 5 ]IV Wy
“J hGO l/T) (w —weJ)

X(w) =

Y



Linear susceptibility

. o I
If the incident EM field is weak —L(w) < 11— ws == wy

S
Linear susceptibility derived using semi-classical model

1 - ]*\* wo
Va ) - - i?\_[e 2.
@) = 3l e T il — o)

Linear susceptibility derived using classical harmonic oscillator model

AT 1 () o~ _iN& L/ (f
P L+ (0P St w7 )
W) = 5 _

< ;42 1/ yQ () — O;O
(Qo—w )+2_]-w5° ](w QO )—I— 0
As the EM field has a frequency close to the oscillator’s intrinsic frequency
and define () = Tgweg , the shape of the susceptibility computed quantum

mechanically agrees well with the classical susceptibility derived from the
harmonic oscillator model.
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Linear susceptibility
Real and imaginary part of the susceptibility )\*( ) = X ( ) +JX ( )

20— w
S~ (“‘“eg )L(w) Positive imaginary susceptibility

X'(w) = -
) 3heg indicates exponential growth of
" _ . an EM wave traveling in the
Xw) = ——7 (w). medium.
DILE(Q
For an inverted '\\ L 04
_ system v To0,,=10 -
_F wo > 0 — 02 =
X | ] ~—
= |-
E R ek ~ — .02 &
— -0.4
0.0 L .06
0.0 0.5 1.0 1.5 2.0
® /o



Linear susceptibility: semi-classical versus classical

The phase relaxation rate 1/T, of the dipole moment determines the
width of the absorption line or the bandwidth of the ampilifier.

The amplification can not occur forever, because the amplifier
saturates when the intensity reaches the saturation intensity. This is a
strong deviation from the linear susceptibility derived from the
classical oscillator model.

= Light can not extract more energy from the atoms than the energy
stored in them, i.e., energy conservation holds.

* Induced dipole moment in a two-level atom is limited by the
maximum value of the matrix element.

» In contrast, the induced dipole moment in a classical oscillator
growth proportionally to the applied field without limits.
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Gain saturation is critical in laser operation

Initially, unstable feedback loop.
Oscillation builds up until amplifier
saturates such that there is zero net
roundtrip gain.

Feedback

I~

Armplifier

Power
supply
The Laser (Oscillator) Concept
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Self-consistent in steady state

Radiation field E
classical field, no photons, Maxwell’s equations, mainly in the SVE-approximation

of the wave equation

Optical resonator/amplifier

The field interacts with the electronic system (atoms or molecules) inside an optical
resonator or amplifier.

A 4

Atoms/ molecules
are approximated by a two-level system, interacting with the field in the dipole
approximation. Schrédinger’'s equation delivers a macroscopic polarization P.

Polarization P
is the source of a new coherent electromagnetic field.

g

Spontaneous emission
is introduced phenomenologically and produces a stochastic field which is added to
the coherent field.

V.A. Lopota and H. Weber, “fundamentals of the semiclassical laser theory”

self-consistent in steady state
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Three regimes of solving Bloch equations

w — w ,
= ——— O d — jQ, -
T, N, - o
. 1 Q Q = —— (Eo+ Ege ™)
d — _(,_ — ] (weg — W‘))Q«’"—](_r w
15 2

Coherent equations:
Rabi oscillation

Steady state equations:
Optical pulse duration >> T
T

Adiabatic equations:
T, << T4, polarization is in equilibrium
with the applied field. No transient
oscillations of the electronic system.

b= d i &

e.g. semiconductors: T,~50 fs



Adiabatic equations: induced transitions

. (LL, - ,LL,O . * . *k

W= + Q0 d—iQ, d Adiabatic equations: T,<<T,
. 1 9 -

d = — — 1 (Wey — w))d + j— w — Ilb

d = ~(p-ilwg-wd+igw |d = o Al

W = w(tzr_ o ;i(;> L(w)](t) Light intensity:
= L 1(t) = |Eo(t)[? /(2Zr)

energy relaxation (e.g., Induced transitions (absorption,
spontaneous emission)  stimulated emission)

Resonant interaction between atom and EM field: W — Weg L(w) =1
w
u"induced — T I. I = —O'ZL’[ph .
L Interaction cross
section
Photon flux density ]ph - [/fweg

64



Laser rate equations

Interaction cross section: [Unit: cm?]
Tl_ls h 4 eg v’
w
wl. = I = —cwl,
|mduced ‘Tl ].s ph

= [nteraction cross section is the probability
that an interaction will occur between EM

field and the atomic system.

» Interaction cross section only depends
on the dipole matrix element and the

linewidth of the transition

o 2 ——
- N\~
— 1 —@—
dN; Nz Spontaneous
dt 7?7 1, emission
— 2 -@—
AT
-— 11—
N BN
dt !
Absorption
-~ _
/\/\/> —)
— T e
d& = —BN,] Stimulated
dt emission
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How to achieve population inversion?

3 A relaxation N 3
2 ’}/32 N :glzxation
N2

(>—> relaxation

Induced transitions

Pumping R
t AVAVAVe =
e _ P '}’21 _, relaxation
Pumping by > rate
absorption '
1 — N,
relaxation
relaxation
O 'Y'] 0 — rate
- No

Four-level gain medium
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Laser rate equations for three-level laser medium

2 2
2 7 1 N2
lW R Vo1
P
1 1 N 4
[
10 10
0 Ng O N
For (a):
d AT AT T AT
E‘\Q — —"‘/’211 9 — 091 (;\"2 — ;\"1) ]ph ‘l_ Rp
d AT AT T T T
— N = 710N v No F 091 (N = N T,
dt
d i Many atoms are available in the ground
T No = 7v0N1 — R, state such that optical pumping can
at

never deplete Ny. That is why we can
assume a constant pump rate R.

0,1 is the cross section for stimulated emission between the levels 2

and 1. I, is the photon flux.




Laser rate equations for three-level laser medium

If the relaxation rate 7o is much 27
faster than?5; and the number of
possible stimulated emission events R
that can occur 021 (\ o — N ) [ph \

we can set N, = 0 and obtain only a N+
rate equation for the upper laser level:

Y
y 10
0 Ng

d R
T " AT P AT

121

This equation is identical to the equation for the inversion of the
two-level system:
w(t) — wo

w = — —owl
T, ph
upper level lifetime
Rp equilibrium upper Yo1 = 1 dﬁz to radiative and
—— —> state population w/o 21 T non-radiative
Y21 photons present ' processes
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Spectroscopic parameters of selected laser materials

Wave- Cross Upper-St. Linewidth Refr.
Laser Medium length Section Lifetime AfrwaM Typ | Index

Ao(nm) o (cm?) 7L (us) = (THz) n
Nd**:YAG 1.064 4.1-1071 | 1,200 0.210 H 1.82
Nd*+:LSB 1,062 1.3-107% | 87 1.2 H 1.47
Nd*T:YLF 1,047 1.8-1071 | 450 0.390 H 1.82
Nd**:YVO, 1.064 2.5-107* | 50 0.300 H 2.19
Nd*":glass 1,054 4-10720 | 350 3 H/T |15
Er’T:glass 1,55 6-10~2t | 10,000 4 H/T | 1.46
Ruby 694.3 2.10~% 1,000 0.06 H 1.76
Ti3T:Al,O5 660-1180 3-1071° 3 100 H 1.76
Cr3T:LiSAF 760-960 4.8-107%" | 67 80 H 1.4
Crot:LiCAF 710-840 1.3-107%" | 170 65 H |[14
Cr3T:LiSGAF 740-930 3.3-107%Y | 88 80 H 1.4
He-Ne 632.8 1-1071 0.7 0.0015 I ~1
Art 515 3-107*  10.07 0.0035 I ~1
COy 10,600 3-1071 2,900,000 0.000060 H ~1
Rhodamin-6G | 560-640 3-1071° 0.0033 5 H 1.33
semiconductors | 450-30.000 | ~ 10~ ~ 0.002 25 H/T|3-4
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