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Dielectric susceptibility and Helmholtz equation

Medium speed of light 
(dependent on frequency):

Refractive Index

2

Can be complex

In a linear medium, dielectric susceptibility is independent of optical field 
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Figure 2.1: Transverse electromagnetic wave (TEM) [2]
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Susceptibility calculated using Lorentz model

2/1

00

2

)(
m
Ne

p e
w =

Plasma frequency



4

Real and imaginary part of the susceptibility

Real part (dashed line) and imaginary part (solid line) of the susceptibility of the 
classical oscillator model for the dielectric polarizability

Q=10
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Real and Imaginary Part of the Susceptibility
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Example:  EM-Wave polarized along x-axis and propagation along z-direction:
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In a Metal 
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In general: 

Free electrons between background ions
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2.5  Sellmeier Equations and Kramers-Kroenig Relations

( ) 0, for 0t tc = <Causality of medium impulse response: 

Leads to relationship between real and imaginary part of susceptibility

Approximation for absorption spectrum in a medium:

( )rc W
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Absorption
and refractive
index Vs. 
wavelength

In a Dielectric
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Example: Sellmeier Coefficients for Fused Quartz and Sapphire



Figure 2.16: Transparency range of some materials 
according to Saleh and Teich, Photonics p. 175.
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2.1.5  Optical Pulses ( propagating along z-axis) 

: Wave amplitude and phase

: Wave number

0( )
( )
cc
n

W =
W

: Phase velocity of wave



12

At z=0

Figure 2.4: Spectrum of an optical wave packet described in 
absolute and relative frequencies

For Example: 
Optical Communication; 10Gb/s
Pulse length: 20 ps 
Center wavelength : λ=1550 nm.
Spectral width: ~ 50 GHz, 
Center frequency: 200 THz,
w0 = 2p x 200 x 10-12 s-1

Carrier Frequency
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Carrier and Envelope

Carrier Frequency

Envelope:



Figure 2.5: Electric field and envelope of an optical pulse
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Pulse width: Full Width at Half Maximum of |A(t)|2

Spectral width : Full Width at Half Maximum of |A(w)|2~
_
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2.4 Pulse Propagation 

Envelope + Carrier Wave



Figure 2.8: Electric field and pulse envelope in time domain
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Linear pulse propagation

Figure 2.9: Taylor expansion of dispersion relation at the 
center frequency of the wave packet



In the frequency domain:

2.4.1 Dispersion

Taylor expansion of dispersion relation:

Equation of motion in frequency domain:

Equation of motion in time domain:
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i) Keep only linear term:

Time domain:

Group velocity:

Compare with phase velocity:
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Retarded time:

Or start from (2.63)

Substitute:
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ii) Keep up to second order term:

Figure 2.10: Decomposition of a pulse into wave packets with different center 
frequency. In a medium with dispersion the wave packets move at different 
relative group velocity
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Unrealistic Unrealistic

In vacuum

Most 
common 
case

Unrealistic

Possible

Adapted from Rick Trebino’s course slides

Group velocity Vs phase velocity
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Calculating group velocity vs. wavelength
We more often think of the refractive index in terms of wavelength,
so let's write the group velocity in terms of the vacuum wavelength l0.
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Gaussian Pulse:

Substitute:

Gaussian Integral:
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Pulse width

Effect of GVD on pulse propagation



Initial pulse width:

Exponent Real and Imaginary Part:

FWHM Pulse width:

determines 
pulse width

temporal 
quadratic phase

z-dependent phase 
shift, independent 

on time
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Propagation of z distance:



After propagation over a distance z=L:
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Initial pulse width:

For large distances: 

Magnitude of the complex 
envelope of a Gaussian pulse, 
|A(z, t’ )|, in a dispersive medium



Decomposition of a pulse into wave packets with different center frequency. 
In a medium with dispersion the wave packets move at different relative 
group velocity

Ã( )w

Di
sp

er
sio

n 
Re

lat
io

n

w0 w1-w1

k”w21
2

Sp
ec

tru
m

1 2 3

~Dvg1 ~Dvg3
~Dvg2

28



determines 
pulse width

temporal 
quadratic phase

z-dependent phase 
shift, independent 

on time
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Instantaneous frequency and chirp
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Linearly chirped Gaussian pulse: positive chirp

Time t

For positive GVD, i.e., k”>0, lower frequency travels faster, and the 
instantaneous frequency linearly INCREASES with time.

In analogy to bird sounds, this 
pulse is called a chirped pulse, 
or positively chirped pulse.
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Linearly chirped Gaussian pulse: negative chirp

Time t

For negative GVD, i.e., k”<0, higher frequency travels faster. 
The instantaneous frequency linearly DECREASES with time.
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This pulse is called a negatively 
chirped pulse.



Chirp: 

Figure 2.12: (a) Phase and (b) instantaneous frequency of a Gaussian pulse 
during propagation through a medium with positive or negative dispersion

Instantaneous Frequency:

k”>0: Postive Group Velocity Dispersion (GVD), low frequencies travel faster
and are in front of the pulse
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Pulse travels through a dispersive bulk medium
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Group delay, in fs

Group delay dispersion (GDD), in fs2

3j Third order dispersion (TOD), in fs3

Group delay shift the time origin of the pulse envelope 
while GDD changes its shape.

4j Fourth order dispersion, in fs4

Group Delay & Group Delay Dispersion

GDD > 0, positive dispersion
GDD < 0, negative dispersion
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Effect of absolute phase
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Effect of group delay



Effect of positive 2nd order dispersion



Effect of positive 3rd order dispersion
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Effect of negative 3rd order dispersion



Effect of positive 4th order dispersion
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Dispersion parameters for various materials



Effect of negative GVD

kmps /25 2
2 -=b Input pulse duration:10fsGVD



kmps /25 2
2 =b The output of last slide is taken as the input here.

Effect of positive GVD

GVD
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Real and imaginary part of the susceptibility

Example:  EM-Wave polarized along x-axis and propagation along z-direction:

In general: 
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Refractive index + gain and/or loss

Complex Lorentzian close to resonance :  

Maximum absorption:

Half Width Half Maximum linewidth (HWHM):

2
pw

for: 
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2.4.2 Loss and Gain



Real and imaginary parts:

Complex wave number in lossy medium:

Redefine group velocity: e.g. at line center:

Change in group velocity
can be positive or negative
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Absorption:

For a wavepacket (optical pulse) with carrier frequency 0 0w =W

Parabolic loss or gain approximation:

Gain:

HWHM – gain bandwidth 



Group Velocity and Group Delay Dispersion

Group Delay:
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3. Nonlinear Pulse Propagation
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3.1 The Optical Kerr Effect
Without derivation, there is a nonlinear contribution to the refractive index:

Polarization dependent

1) A variety of effects give rise to a nonlinear refractive index.
2) Those that yield a large n2 typically have a slow response.
3) Nonlinear coefficient can be negative.

Table 3.1: Nonlinear refractive index of some materials



Usually we define a “nonlinear refractive index”, n2,L:

The refractive index in the presence of linear and nonlinear polarizations:

Assume that the nonlinear term << n0:

Now, the usual refractive index (which we’ll call n0) is:

So:

n = 1+ c (1) + c (3) E 2

n0 = 1+ c (1)

n = n0
2 + c(3) E 2

= n0 1 + c (3) E 2 / n0
2So:

n » n0 1+ c (3) E 2 / 2n0
2[ ]

n » n0 + c(3) E 2 / 2n0 since:

 

I µ E
2

Intensity dependent nonlinear refractive index

Innn L,20 +=
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Kerr effect: refractive index linearly dependent on light intensity.
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Who is Kerr?

John Kerr (1824-1907) was a Scottish physicist. 
He was a student in Glasgow from 1841 to 
1846, and at the Theological College of the Free 
Church of Scotland, in Edinburgh, in 1849. 
Starting in 1857 he was mathematical lecturer at 
the Free Church Training College in Glasgow. 

He is best known for the discovery in 1875 of 
what is now called Kerr effect—the first 
nonlinear optical effect to be observed. In the 
Kerr effect, a change in refractive index is 
proportional to the square of the electric field. 
The Kerr effect is exploited in the Kerr cell, 
which is used in applications such as shutters in 
high-speed photography, with shutter-speeds as 
fast as 100 ns. 

John Kerr, c. 1860, 
photograph by Thomas Annan



Figure 3.1: Intensity spectrum of  a Gaussian pulse subject 
to self-phase modulation

3.2 Self-Phase Modulation (SPM)
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Pulse shape does not change, 
but the pulse acquires nonlinear 
phase:  

Note, here the pulse profile has 
been re-normalized so that its 
square gives intensity:
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Kerr effect for an optical pulse: self-phase modulation
In a purely one dimensional propagation problem, the intensity dependent 
refractive  index imposes an additional self-phase shift on the pulse envelope 
during propagation, which is proportional to the instantaneous intensity of the 
pulse: 
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Self-phase modulation (SPM): 
Nonlinear phase modulation of a pulse, caused by its own intensity  
via the Kerr effect.
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SPM induces positive chirp
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SPM modifies spectrum
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fNL = 0

fNL = 1.5 p
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fNL = 0

fNL = 5.5 p

Spectral bandwidth is proportional to the amount of nonlinear phase accumulated 
inside the fiber.

pf ´-» )
2
1(MNL is the number of spectral peaks.M



Input: Gaussian pulse, Pulse duration = 100 fs, Peak power = 1 kW
57



Pulse propagation: pure dispersion Vs pure SPM

• Pure dispersion
(1) Pulse’s spectrum acquires phase.
(2) Spectrum profile does not change.
(3) In the time domain, pulse may be stretched or compressed 

depending on its initial chirp .

• Pure SPM
(1) Pulse acquires phase in the time domain.
(2) Pulse profile does not change.
(3) In the frequency domain, pulse’s spectrum may be broadened 

or narrowed depending on its initial chirp.
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Nonlinear Schrödinger Equation (NLSE)

NLSE has soliton solution.

2
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Positive GVD (normal dispersion) + SPM: 

GVD and SPM both act to shift the red frequency to the front of the 
pulse. Therefore the pulse will spread faster than it would in the purely 
linear case.

Negative GVD (anomalous dispersion) + SPM:

GVD and SPM shift frequency in the opposite direction. At a certain 
condition, the dispersive spreading of the pulse is exactly balanced by 
the compression due to the opposite chirp induced by SPM. A steady-
state pulse can propagate without changing its shape. (i.e. soliton 
regime)



Figure 3.3: Propagation of a fundamental soliton

3.3.2 The Fundamental Soliton



Area Theorem

Nonlinear phase shift soliton acquires during propagation: 

(Balance between dispersion and nonlinearity)

Soliton Energy: Pulse width:

Important Relations
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In mathematics and physics, a soliton is a self-reinforcing solitary 
wave (a wave packet or pulse) that maintains its shape while it 
travels at constant speed. Solitons are caused by a cancellation of 
nonlinear and dispersive effects in the medium. ---Wiki

§ When two solitons get 
closer, they gradually 
collide and merge into a 
single wave packet.

§ This packet soon splits into 
two solitons with the same 
shape and velocity before 
"collision".

General properties of soliton

62



Who discovered solitons?

John Scott Russell (1808-1882)

Report of the fourteenth meeting of the 
British Association for the Advancement of 
Science, York, September 1844 (London 
1845), pp 311-390, Plates XLVII-LVII).

John Scott Russell (1808 – 1882) 
was a Scottish civil engineer, naval 
architect and shipbuilder. 

In 1834, while conducting 
experiments to determine the most 
efficient design for canal boats, 
John Scott Russell made a 
remarkable scientific discovery, 
leading to a conference paper—
Report on Waves. 

63



Russell’s report

“I was observing the motion of a
boat which was rapidly drawn
along a narrow channel by a pair of
horses, when the boat suddenly
stopped - not so the mass of water
in the channel which it had put in
motion; it accumulated round the
prow of the vessel in a state of
violent agitation, then suddenly
leaving it behind, rolled forward
with great velocity, assuming the
form of a large solitary elevation, a
rounded, smooth and well-defined
heap of water, which continued its
course along the channel
apparently without change of form
or diminution of speed.”

“I followed it on horseback, and
overtook it still rolling on at a rate
of some eight or nine miles an
hour, preserving its original figure
some thirty feet long and a foot to
a foot and a half in height. Its
height gradually diminished, and
after a chase of one or two miles I
lost it in the windings of the
channel. Such, in the month of
August 1834, was my first chance
interview with that singular and
beautiful phenomenon which I
have called the Wave of
Translation.”

Report of the fourteenth meeting of the British Association for the Advancement of Science, 
York, September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).
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Water wave soliton in Scott Russell Aqueduct

89.3m long, 4.13m wide,1.52m deep, On the union Canal, Near 
Heroit-Watt Univ.

www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt
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Solita
ry wave

Water wave soliton in Scott Russell Aqueduct

www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt
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A brief history (mainly for optical solitons)

§ 1838 – soliton observed in water

§ 1895 – KdV equation: mathematical description 
of waves on shallow water surfaces.

§ 1972 – optical solitons arising from NLSE and 
Inverse Scattering Theory

§ 1980 – experimental demonstration in optical 
fibers

§ 1990’s – development of techniques to control 
solitons

§ 2000’s – understanding solitons in the context of 
supercontinuum generation 
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Soliton solution of NLSE：fundamental soliton
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The NLSE possesses the following genereral fundamental soliton solution:
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Four degrees of freedom:

These 4 parameters can be arbitrarily chosen, e.g.,  

00 =p 00 =q 00 =ttarbitrary



Soliton solution of NLSE：fundamental soliton
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Soliton is the result of balance 
between nonlinearity and dispersion.

nonlinearity dispersion
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Propagation of fundamental soliton

Input: 1ps soliton centered at 1.55 um; medium: single-mode fiber 70



Higher-order Solitons: periodical evolution in 
both the time and the frequency domain
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Figure 3.5a: Amplitude of higher order soliton composed of 
two fundamental solitons with the same carrier freuqency

3.3.3 Higher Order Soliton (Breather Soliton)



Figure 3.5b: Spectrum of higher order soliton composed of 
two fundamental solitons with the same carrier freuqency

3.3.3 Higher Order Soliton (Breather Soliton)



Figure 3.4: A soliton with high carrier frequency collides with a soliton of lower carrier 
frequency.

Interaction between solitons (soliton collision)
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Interactions of two fundamental solitons
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From Gaussian pulse to fundamental soliton
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Gaussian pulse to 3-order soliton
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Evolution of a super-Gaussian pulse to soliton
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Soliton perturbation theory: a very brief introduction

Perfect World Reality: Perturbations

What happens to the soliton in the presence of perturbations? Will it fall apart?

Is it just kicked around? If yes, can we understand how it is kicked around?
79
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Soliton perturbation theory: a very brief introduction

Ansatz: Solution of perturbed equation is a soliton + a small component:

with:
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Any deviation       can be decomposed into a contribution that leads to a soliton 
with a shift in the four soliton parameters and a continuum contribution:
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Soliton instabilities by periodic perturbations

Long haul opt. communication link Modelocked fiber laser

Fiber Fiber Fiber

AmplifierAmplifier

zA
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Rogue wave

Find more information from New York times: 
http://www.nytimes.com/2006/07/11/science/11wave.html 82



One more Rogue wave

83


