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Interaction between EM waves and materials

Light wave perturbs material —> P = 507(E
| | , 1 0° o°P
Perturbed material alters the light wave — (V° ———)E = 1, —;
Cc, Ot ot

Examples of changes to light wave:

— Frequency

— Amplitude and phase

— Polarization state

— Direction of propagation
— Transverse profile




Response to a monochromatic field: forced
electron harmonic oscillator

d?x dx
m +2My —+ M X = —eE(t) — force

dt? dt
/ / T \electron charge

mass damping frequency of undamped oscillator

E(t) =Ee! — x(t)=xe’” — p(t) =ex(t) = pe’”

—e/m Ne?/m

X = —E P = Nex = E
. —w° +2joy S —w° +2joy
Ne® /(me,)
() =———F—F
W) —o° +2 oy ;




Note on complex notation

We live in the “real” world; that is, a real world signal has components of
positive frequency and negative frequency.

E(t) = 2Ecoswt = Ee'” + E*e™ ' = Ee!** +c.c.

Normally it is safe in calculation to only keep the complex, positive-

frequency component. Of course, you may also calculate the susceptibility
for the negative-frequency:

E(t) — E*e—ja)t_> X(t) _ Xe—ja)t _>p(t) _ —eX(t) _ pe—ja)t
e’/m

_ =
P . —w° —2jwy




In linear optics, susceptibility is independent of
the input light field

x () =

Ne’ /(me,)

2

. —w° +2jwy

P(@) = &y x (0) E(w)

Linear optical system

E,, () &N A
Linear
E,(w,) =) Optical
System

Ei.(0)+E,(@,) / )

Eou (@)
‘ Eout (C‘)z)
Eo (o) +E (@,)
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Potential energy function

A
? dx v
M——-+2my —+ ma; X = —eE(t)
dt dt ~~ parabola
Potential energy function for this harmonic oscillator is / parabola
actual
1 potential
U(x)= —_[ M xdx :—Ema)sz
This is a good parabola approximation when the Potential energy function for a non-

amplitude of E-field is weak. As E-field becomes large centrosymmetric medium. (Adapted
enough, the electron oscillation amplitude from Nonlinear optics. Boyd)
proportionally increases to the level that higher-order
correction term needs to include:

2

dt?

m +2my%+ma)§x+m77x2 = —eE(t)

/ —

Higher order correction —_—

This equation describes an anharmonic electron
oscillator. That is, the oscillation response to a
sinusoidal wave is NOT a sinusoidal wave anymore.

Color code—blue: linear response; green:
frequency doubled; red: DC

http://physics.stackexchange.com/questions/12753
1/lack-of-inversion-symmetry-in-crystal 6




Linear interaction is an approximation for weak field

P . o P fi |
X Excited polarization N Modified output that contains
at the same frequenc DC, and harmonic waves
PRV P
e T,
y ) t
t ,’/ 1
- g_ma” amplitude ——| Large amplitude
. EF Sine wave input E(t) == Sine wave input
In general, P is a nonlinear function of E (Vz 1 52 ) 52 P
PP Y Al o P
P= go[;(<1>E+ g2 4 <3>E3+ DE* 4] c; ot’ ot
Llnear 31 order _
susceptibility susceptibilin New frequencies are generated due
2"d order 4™ order to nonlinear light-matter interaction.

susceptibility susceptibility



Response to an intense field:
forced electron anharmonic oscillator

2
X X
d +2m7/d—+ma)§x+m77x2 = —eE()

m
dt? dt

\ Nonlinear response

For X << 0)5 we can use perturbation theory to solve the equation
by expressing the solution in the form of a power series expansion in the
strength of 77

X(t) = xP () +x¥9 () +°x® () +...

Plugging X(t) into the oscillator equation, we require that the terms proportional to

7 ' n° each satisfy the equation separately.

d?x® dx® —eE
a a P g T = &30
m
L 2.,(2) (2)
n - ddft(z + 2y d)c(lt + i x? = —n[xP]?
- 2@ (3)
n . d 2y ax= ;X = -2nxPx® 8

_|_
dt? dt



Perturbation theory
dZx® dx®

—eE(t)
+2 +ax® =Z°
dt? EFTERR m

XM () = xP(w,)e'™ + xP(w,)e! +c.c.

E(t)=E.e'™ +E, e +c.c.

—e/m —e/m
XP () = 2_ 2. i El:D E, 3
Wy — @ +< ]y () 29 (@) = N(e“/m)
. : O D(w.
D(w)=aw; - +2joy =12 £oD(@)
d*x* dX_(Z) 24(2) _ _ D72 @) _v® joout (1) jot
dt? +2y R n[x=1 x7 () =x"(w)e’™ + X7 (w,)e’™ +cC.C.

—17[x™7]? contains the frequencies *+ 2w, +2w,, + (v, + @,), + (@, — ®,), and 0.

Take frequency (w, + w,) for example: x(2) (t) = x (2 (a)l 4 a)z)ei(wﬁwz)t

—2n(e/ m)°E,E,
D(w, + w,)D(w,) D(w,) )

X (o, + @,) =



Perturbation theory

Follow the similar procedure, we get the amplitudes of the response at the other
frequencies:

2 =2 B 2 =2
X (20,) = —77(e/m)2 E; X (2a,) 77(e/m)2 ES
D(20,)D* (o) D(20,)D"(w,)
2
X (@, + @,) —2n(e/m)“EE,
D(w, + @,)D (@) D(w,)
—2n(e/ m)*E,E;

x (o, - w,) =
D(w, — ®,)D(@,) D(-w,)

—2n(e/ m)*E,E; L _—2n(e! m)°E,E;

X% (0) = 5
(0)D(,)D(~w,) D(0)D(w,)D(~w,)
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Second-order susceptibility
2) 2) Degeneracy factor:
P (o, + w,) = —Nex'” (o, + w,) } F-1 o=
P® (w0, +@,) = Fe, 72 (o, + @,)E,(0,)E, (,) 7 F—2 o+,

Sum-frequency generation (SFG) 3 2
@ (g5, + ) = N(e”/m”)n
)( a)l Cz)2 , a)l, 602 =

50D(a)1 +,)D(w,) D(w,)

_ &€ ’m
=02 2@+ @) 2V (@) 7 (@)

Follow the similar procedure, we get the 2"9-order susceptibility at the other frequencies :

Difference-frequency generation (DFG) m n
7((2) (0, —0,,0,~w,) = N 5.3 Z(l) (o, — a)z)?((l) (wl)l(l) (—w,)

Second-harmonic generation (DFG) 5
EyMn

Z(Z)(za)l’a)l’a)l)_ N2 3 Z(l)(za)l)[z(l)(a)l)]z

Optical rectification (OR)

gm
72 00-m) =05 e O Al Y Pl )




Even-order nonlinear effects vanish for centrosymmetric
optical crystals

N I . System/Class No. Symmetry code Inversion sym. Examples
On Inear Biaxial crystals
1 1 Triclinic system
polarization ; ]
2 1 yes Copper sulphate
Monoclinic system
3 2 no
4 m no
5 2/m yes

Orithorhombic system

E fIEld E f|e|d 6 222 no

T mm 2 no LBO, KTP. KTA
8 2/m 2/m 2/m yes
Uniaxial crystals

N O n | i n ear ;"e!?‘agrmaf system - .
polarization = o o o
1 5 2 3 3 4 4 12 422 no Nickel sulphate
P=g[yVE+y?E*+ y"E*+ yE*+..] & - -
15 4/m 2/m 2/m yes
. . . Trigonal system
For centrosymmetric optical crystals, if we 16 3 Sodium periodate
. 17 3 es
replace E by —E, according to the symmetry, 18 32 o e
H 19 3m no BBO, Lithium niobate
P should become —P. This means 2 - ves catcte ‘
Hexagonal system
21 & no
(2 N ) 2 N — (2 N ) 2 N ) (2 N ) - 22 62m no Gallium selenide
Z (_ E) - _Z E Z - O 23 3 no Lithium iodate
24 622 no B-quartz
25 6/m yes
26 6mm no Cadmium selenide
For example, glass is centrosymmetric and oteaty imtropic oo yes
therefore the lowest-order nonlinearity arises Clubic sysiem . .
. . o epe H no ium chlorate
from the third-order nonlinear susceptibility. 29 432
30 3m=2/m3 es Pyrite
31 43m 3:0 G}E'I”Zil.l.m arsenide, zinc blende

32 4/m 3 2/m = m3m yes Sodium chloride, diamond



Linear susceptibility is a matrix for optically
anisotropic media
— p@) _ (1)
I:)x o EOZ Ex
Only true for
PO _ gOZ(l)E — py(l) _ goZ(l)Ey optigally isotropic
media

— p@ _ (1)
PY =¢,7"E,

Z

For optically anisotropic media, linear susceptibility is a 3X3
matrix (a 2"9-rank tensor):

PY =&y Ex+ 2w E, + 25 E, ]—

X y Z ~1 P(l) :gozﬂ(-(-l)E-
Dy(l) =g, Z;%()E +}((1)E ‘|‘Z(1)E - j J J
Dz(l) =&, Zz>1<)E +;(zl)E +;((1)E _ (1) =(xy,2)

13



2"d-order susceptibility is a 3'9-rank tensor

Take sum frequency generation(SFG) @, + @, = (U5 as an example:
I:)x(Z) (03, 0, ,) = &, [Zifi E, (0)E,(®@,)+ Z(Z) E (@) E, (@,) + Z(Z) E, (0,)E,(®,)

XXy XXZ
T Z>(<§>2 E, (@) E, (@,) + Zg; E, (@) E, (@,)+ Z>(<§z) E, (@0,)E,(@,)
T Z>((22>2 Ez (a)l) Ex (COZ) + Z)((zz)? Ez (a)l) Ey (0)2) + Z)Ezzz) Ez ((01) Ez (a)z )]
We can represent the lengthy expression using tensor notation:

I:)i(Z) (05,0, 0,) = 502)(5? (0, + 0, @, wz)Ej (0,)E (@,)
i K

) @ (i, j,k)=(x,y,2)
R @5, 0, ) = EOZZikJ' (0 + @,, 0, &)E, (@,)E; ()
K, ]

(2) is a 3"d-order tensor with 27 (3X3X3) elements. Accordin
Xk (0, + @, 0, ;) ( ) J
to the crystal symmetry, most of them are zeros.

Zéi) (0, + 0, 0, 0,) = Zi(k? (0, +®,,w,,0) Due tointrinsic permutation symmetry

PP (w,) = 2P (w,, 0, ®,) = ZEOZ)QS? (0, + 0,0, 0,)E (@) Ey (@,) 14
i




Susceptibility is a tensor

Tensor describes linear relations between geometric vectors, scalars, or other tensors. --Wiki
Tensor rank 0 (scalar) | 1 (vector) 2 (matrix) 3 4
# of components | 3°=1 | 3t_3 3°=9 3 =27 3*=81
= ., @) on 2nd-order 31 -order
Ex A xx ny Xxa nonlinear nonlinear
Examples a Ey Zigl) _ z)(/i) Z}(;) Z)%) susceptibility | susceptibility
© L0 L0 ) 7
E, I Xy i | ik ik
Linear (the 1st-order) susceptibility is a 2" -order tensor (i.e., 3 by 3 matrix):
PO = £, Y 4 OE,
l 0 LAy —] A more convenient notation: repeated P(l) — ¢ (l)E
J indices imply summation. i oLij &j

(,1)=(xY.2)

2"d-order susceptibility is a 3" -order tensor
with 27 elements:

3" -order susceptibility is a 4" -order
tensor with 81 elements:

(3) _ (3)
By, 0, @y, w;) = Eo Xijul

I:)i(z) (05, 0, 0,) = 50%53 E, (@,)E, (@,)

E;(@)E, (@,)E, (,)

15




Kleinmann symmetry reduces n

umber of tensor elements

If all the frequencies involved are far away from the resonance frequencies of the medium,

the nonlinear susceptibilities are independent of frequency and ijk indices become equal:

@ _.,_,_,_,2_,(@2)
nyz _szy _)(yxz _Zyzx _szy _Zzyx

27 elements are reduced to 10.

Under Kleinmann symmetry condition,

Take sum frequency generation(SFG) @, + @, = @; as an example:

PX(Z) ((03,(01,0)2) = 50[Z(2)Ex(601)EX(w2)+)((2)E

XXX XXy

T Z_@ Ey (0)E, (@,) + Zi@ Ey (@) Ey (@,) + Z_>(<§z) Ey (0)E, (@,)

2

T ;(_>(<z>z Ez (0)1) Ex (6()2) + }QZZJ Ez (a)l) Ey (0)2) + Z)Ezzz) Ez (a)l) Ez (6()2)]

X (601) Ey ((02) T )E)fz) Ex (601) Ez (602)

Px(Z) (0,0, 0,) = 50{76(02 E,(@,)E,(0,) + )5)(53 Ey (@) Ey (0,) + Z>(<z2z) E,(o)E, (®,)

+ iyl Ex(@)E, (@) + E, (@) E,(0,)]+ 1, [E, (@,)E, (0,) + E, (0,)E, (@,)]

T ;(>(()€z) [Ex (601) Ez (a)Z) T Ez (0)1) Ex (0)2 )]}

16



Contracted suffix notation

Contracted suffix notation is more commonly used in literature:

Zéi) :Zdn (1, J,k)=(x,y,2) |_)n,(Jk)_) D
X y 7
n 1 2 3
IK XX YY | zz | YZ,2ZY | XZ,ZX | XY, YX
p 1 2 3 A 5 .
E,(@)E, (@) |
_PX(C!)3)_ _d11 1 13 " d15 16- Ey(a)l)Ey(a)z)
P (w,)|=4ed, d, d, d, d. d E,(@)E,(®,)
P(w,)]  |dy dyp dy dy dy dy E,()E,(@,)+E,(0)E, (w,)

E,(0)E,(@,) +E,(@)E,
_Ex (601) Ey (602) + Ey (a)l) Ex

(@,)
(o, )_

17



Contracted suffix notation

= Under Kleinmann symmetry condition, ¢ =d._. d..=d., d..=d d.. =d
25 14 =
some of these 18 elements are the o 1 2 . . o
same, and there are actually 10 d,, =d,, d,,=d, d,=d, d,=d,
independent elements.

E,(0)E, (@,)
_Px(ws)_ _311 312 313 314 315 316_ EZEZBE:EZ:))
P(w,)|=4¢
L B P L
z 1 X 2 X 1 z 2
|E(@)E,(@,)+E, (a)E,(®,) |

= Crystal symmetry causes most of the elements to be zero
for most symmetry groups. Take BBO as an example:

0 0 0 0 dg dg] There are only 4 independent elements.
d,=|dg —-dg 0 dg 0 O d,(1.064um) =2.2pm/V  d,5(1.064um) =0.03pm/V
dy; dy; di; 0 0 0| 4, @1.064um)=0.04pm/V d,,(1.064um)=0.04pm/V

18



Example: SHG of o wave in BBO

One special case: assume the k vector in the yz z (optic axis)
plane, and the electrical field is along the x-axis; A
that is, we consider an ordinary wave.
E0)

0
P.(2w) 0 0 0 0 dj dg 0
P,(2w) |=2¢)|dy -dg O dy 0 O 0
P, (2w) d, dy; d,; 0 O O 0

0

P (2w) =0 Py (20) = 25‘0d16E2(a)) P,(2w) = 2€0d31E2(a))

We can project the polarization onto k-direction and the direction normal to k:

P. (20) = 2¢,(d.. sin 6+ d.., c0s O)E*(w) Diople oscillating along k-direction does
k 01™16 31 not radiate into k direction.

P (20) = ing— 209 = 2(.,) —-> Inthe k-z plane and
o (200) = 2,(dy SN 6y COSO)E" (@) = 2640 B () therefore it radiates e wave
dg =d, Sind—d,cosé

e Seems to suggest choosing @ =0 to maximize

dyy (1.064um)| = 0.04 pm/V —> the nonlinearity. The answer is NO! (we will show
d,¢(1.064um)| = 2.2pm/V why later.)
1 ¢6° 0°P 0°P. 0°P n’(2w) 0° 0°P.(20)
VZ - = E — — L _I_ NL ) VZ __ € E 2 — e 19
( Cé atZ) Ho atZ ’UO( atZ atZ ) ( C2 atZ) e( a)) Hy 8’[2



Early history of lasers

= 1917: on the quantum theory of radiation — Einstein’s paper
= 1954: MASER by Charles Townes (1915—2015) et al.

If vou're a nobel prize winner, and 100 years old, you can
Charles Townes comment other winners using harsh words:

University of California, Berkeley, and 1864 Nobel Prize in Physics reciprent

Jim Gordon was a fine person and a great scientist. He was also brave in doing
research. When he worked for me as a graduate student trying to build the first
maser, the chairman of the physics department and the previous chairman both
told him it would not work and that he should stop, because the project was
wasting the department’s money. Both of them had Nobel Prizes, so presumably
weren't stupid physicists. But Jim proceeded with his work and, about four
months after they told him it wouldn't work, it did. From the maser also came
the laser.

Jim didn't get the Mobel Prize with me, presumably because he was 3 student
when the maser first worked, but | think he deserved it. He went on to do other important work. We should all

celebrate him and his contributions. ) )
Optics & Photonics News, 2014

MASER: Microwave Amplification by Stimulated Emission of Radiation
(Means of Acquiring Support for Expensive Research) 20



First SHG experiment performed 1 year
after laser was invented

VoLruME 7, NUMBER 4 PHYSICAL REVIEW LETTERS Aucust 15, 1961

GENERATION OF OPTICAL HARMONICS*

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich
The Harrison M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan
(Received July 21, 1961)

Input
SHG P
34 as 3
F|r|r|||||IIiH|l-‘irllu‘7ﬁ|nI|||||T:||I|||ar’f|||l||mnin:’|c}| I |4|5' [rlil! F’FI |IJI|II?|5.|I|I|I|!?E|II'F!I|I |I|I||||Tﬁr||?|E.'||?ﬁ|||1'||

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonie. The

wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the
second harmonic. The image of the primary beam at 6943 A is very large due to halation.

The very weak spot due to the second harmonic is missing. It was
removed by an overzealous Physical Review Letters editor, who

thought it was a speck of dirt and didn’t ask the authors first.
21



SHG in daily life: green laser pointer

I

P LD
Battery "E“ﬂﬂ” | DPSS
Laser Module

Nd:YVD, KTP B
1 {

Lm 1 r
LD- —
/ ra
FH*M-.MME
7 i
808nm Pump Expanding
Pump Focusing Lens -'.'.'ﬂ.l'::bn-ilﬂng IR
Diode Lens REZE Fiiter

| Beam Paths: | 808 nm — | 1084+532nm 532 nm — |
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Take-home message

Material polarization at high input E-field can be modeled
by anharmonic electron oscillation.

2"d —order nonlinear susceptibility is a 3" rank tensor
with 27 elements and 3" —order nonlinear susceptibility
is a 4" rank tensor with 81 elements.

Most of these tensor elements are zero rendered by
Kleinmann symmetry and crystal symmetry.

Even-order nonlinear effects vanish for centrosymmetric
optical crystals.

23



Suggested reading

Anharmonic oscillator model

-- Robert Boyd, Nonlinear optics, chapter 1

Nonlinear susceptibility: tensor and symmetry

-- Geoffrey New, Introduction to nonlinear optics, chapter 4
-- George Stegemann and Robert Stegemann, Nonlinear

optics, chapter 2
-- Robert Boyd, Nonlinear optics, chapter 1

24
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