
  

 

Nonlinear optics: a back-to-basics primer  
Guoqing (Noah) Chang, October 09, 2015 
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Lecture 1: linear optics 



Suggested references 

Robert W. Boyd, Nonlinear optics (2008) 
 

Geoffrey New, Introduction to nonlinear optics (2011) 
 

 

George Stegeman and Robert Stegeman, Nonlinear optics: 
phenomena, materials, and devices (2012) 
 

David N. Nikogosyan, Nonlinear optical crystals: a complete 
survey (2005) 
 

Rick Trebino’s course slides on optics 
(http://frog.gatech.edu/lectures.html) 
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David N. Nikogosyan, Nonlinear optical crystals: a complete survey (2005) 

If you want to talk to a nonlinear optics person, you need to speak his 
language; that is, you should understand the jargon in this field.  
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David N. Nikogosyan, Nonlinear optical crystals: a complete survey (2005) 
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David N. Nikogosyan, Nonlinear optical crystals: a complete survey (2005) 



A timeline of classical (linear) optics  

Willibrord Snell (1591-1626), Snell’s law  
 
Johannes Kepler (1571-1630), Total internal reflection  
 
Pierre de Fermat (1601-1665), Fermat principle 
 
Christiaan Huygens (1629-1695), Wave theory of optics 
 
Isaac Newton (1642-1727), Particle theory of light 
 
Thomas Young (1773-1829), Interference of optical waves 
 
Augustin Fresnel (1788-1827), Fresnel coefficients 
 
James Clerk Maxwell (1831-1879), Maxwell’s equations 
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Operators used in Maxwell’s Equations 
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2

2 2 2x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

The “Del” operator:  , ,
x y z

 ∂ ∂ ∂
∇ ≡  ∂ ∂ ∂ 

The “Gradient” of a scalar function:  , ,f f ff
x y z

 ∂ ∂ ∂
∇ ≡  ∂ ∂ ∂ 

The “Divergence” of a vector 
function:  

yx z
GG GG

x x x
∂∂ ∂

∇ ⋅ ≡ + +
∂ ∂ ∂

The “Laplacian” operator:  
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Operators used in Maxwell’s Equations 

The “Laplacian” of a scalar function: 

2 ( , , )f f ff f
x y z

∂ ∂ ∂
∇ ≡ ∇ ⋅∇ = ∇ ⋅

∂ ∂ ∂
2 2 2

2 2 2

f f f
x y z

∂ ∂ ∂
= + +

∂ ∂ ∂

The “Laplacian” of a vector function is the same, but for each 
component: 

2 2 22 2 2 2 2 2
2

2 2 2 2 2 2 2 2 2( , , )y y yx x x z z z
G G GG G G G G GG

x y z x y z x y z
∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

∇ ≡ + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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Operators used in Maxwell’s Equations 

The “Curl” of a vector function: 

( , , )y yx xz z
G GG GG GG

y z z x x y
∂ ∂∂ ∂∂ ∂

∇× ≡ − − −
∂ ∂ ∂ ∂ ∂ ∂

The curl can be computed from a 
matrix determinant: 

 

det

x y z

x y z

G
x y z

G G G

 
 

∂ ∂ ∂ ∇× =  ∂ ∂ ∂
 
  





Maxwell’s Equations of differential form in a 
medium without free current and free charge 

Constitutive relations for a nonmagnetic material:  

Ampere’s law: Faraday’s law: 

Gauss’s law: Gauss’s law of magnetism: 

Polarization. It takes into 
light-matter interaction. 

DH
t

∂
∇× =

∂
BE
t

∂
∇× = −

∂

0D∇ ⋅ = 0B∇ ⋅ =

0D E Pε= +
0B Hµ=

Electric permittivity in vacuum 

Magnetic permeability in vacuum 

0ε

0µ



Vector Identity:   

Derivation of wave equation 

2( ) ( )E E E∇× ∇× = ∇ ∇ ⋅ − ∇

( ) ( )BE B
t t

∂ ∂
∇× ∇× = −∇× = − ∇×

∂ ∂

0 0( ( H)) ( H)
t t

µ µ∂ ∂
= − ∇× = − ∇×

∂ ∂

0 0( ( ))E P
t t t

µ ε∂ ∂ ∂
= − +

∂ ∂ ∂

2 2
2

0 0 2 2( ) ( )E PE E
t t

µ ε ∂ ∂
∇ − ∇ ∇ ⋅ = − +

∂ ∂



Simplified wave equation: 

Wave in vacuum Source term 

Derivation of wave equation 

Vacuum speed of light: 

2 2
2

02 2 2
0

1( ) PE
c t t

µ∂ ∂
∇ − =

∂ ∂

In the linear optics of isotropic source-free media: 

0D∇ ⋅ = 0E∇ ⋅ =

In the nonlinear optics, normally we have: 2( )E E∇ ∇ ⋅ << ∇

2 2
2

0 0 2 2( ) ( )E PE E
t t

µ ε ∂ ∂
∇ − ∇ ∇ ⋅ = − +

∂ ∂



Interaction between EM waves and materials 

0.5 nm 

Wavelength of green light is about 500 nm. So the optical wave experiences 
an effective homogeneous medium, which is characterized by 

and           Magnetic permeability Electric permittivity 

       is the electric susceptibility. The velocity of light is different from the  
 

vacuum speed by a factor called the refractive index 
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0P Eε χ=

ε µ
For a nonmagnetic material 0 (1 )ε ε χ= + 0µ µ=

0 0( ) / ( ) 1n εµ ε µ χ= = +

χ



Lorentz model of light-atom interaction 

Important assumptions 
 

The atomic core is 
 

-- positively charged 
-- static (heavy, fixed within the crystal 
lattice) 
-- with the center of charge at x = 0. 
 

The electrons are  
 

-- light weight  
-- elastically bound by a massless spring 
with spring constant with equilibrium position 
at x = 0 
-- carrying out a damped movement; that is, 
after removing the force, the movement 
decreases and finally ends. 
-- the electron and atomic core form an 
oscillator with a resonant frequency w0. 

H. A. Lorentz 
(1853-1928) 

Juergen Popp et al., Handbook of biophotonics (2012). 
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Lorentz model: forced electron harmonic oscillator 

Without an applied field, the centers of the 
negative and the positive charges 
coincide. The dipole moment is zero.  
 

If a field constant in time is applied, 
the electrons are displaced relative to their 
position in the absence of an external field. 
The centers of the positive and negative 
charges no longer coincide and a static 
dipole moment is induced. 

Dipole moment is defined as the product 
of magnitude of charges and the distance 
of separation between the charges. 

If a time-dependent electric field interacts with the atom, then the electron 
starts to oscillate around its equilibrium position with the same frequency of the 
electric field. Such an oscillating dipole moment will emit a new electromagnetic 
wave at the same frequency as well.   

Juergen Popp et al., Handbook of biophotonics (2012). 
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Lorentz model of light-atom interaction 

When light of frequency w excites an atom with resonant frequency w0: 

The crucial issue is the relative phase of the incident light and this 
emitted light.  For example, if these two waves are ~180° out of 
phase, the beam will be attenuated. We call this absorption. 

Electric field  
at atom Electron 

Emitted 
field 

On resonance (ω  = ω0) 

( )ex t( )t


E ( )t′


E + 

= 

Incident light 

Emitted light 

Transmitted light 

Incident Light excites electron oscillation  electron oscillation 
emits new light at the same frequency  incident light interferes 
with the new light leading to the transmitted light. 

Adapted from Rick Trebino’s course slides 
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Adapted from Rick Trebino’s course slides 



Forced oscillator and resonance 

When we apply a periodic force to a natural oscillator (such as a 
pendulum, spring, swing, or atom), the result is a forced oscillator.  

Examples: 

    Child on a swing being pushed 

    Periodically pushed pendulum 

    Bridge in wind or an earthquake 

    Electron in a light wave 

    Nucleus in a light wave 

The forced oscillator is one of the most important problems in 
physics. It is the concept of resonance. 

Tacoma Narrows Bridge oscillating and 
collapsing because oscillatory winds 
blew at its resonance frequency. 
(collapsed under 64 km/h wind 
conditions the morning of November 7, 
1940) 

Adapted from Rick Trebino’s course slides 
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One more example: child on a swing 

Course note, MIT 6.007 & http://www.lifeinresonance.com/?page_id=47 

If you give the swing a push it will swing back and forward.  If you 
just give it one push it will swing back and forth a few times and 
then come to rest. (That’s because of friction and damping.) To 
keep the swing moving you have to push again each time the 
swing reaches the closest point to you.  You have to match the 
frequency of the swing to make it swing high. 
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Electric field 
at nucleus 

Below  
 resonance 

ω  << ω0 
 

Nucleus 

On 
resonance 

ω  = ω0 

Above  
 resonance 

ω  >> ω0 

Let the oscillator’s reso-
nant frequency be ω0, and 
the forcing frequency be ω. 

Let the forcing function be 
a light electric field and the 
oscillator a (positively 
charged) nucleus in a 
molecule. 

Weak 
vibration. 
In phase. 

Strong 
vibration.
90° out 
of phase. 

Weak 
vibration. 
180° 
out of 
phase. 

The amplitude and relative 
phase of the oscillator 
motion with respect to the 
input force depend on the 
frequencies. 

Adapted from Rick Trebino’s course slides 

The forced oscillator 
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Electric field 
at electron Electron 

The electron charge is 
negative, so there’s a 
180° phase shift in all 
cases (compared to the 
previous slide’s plots). 

Weak 
vibration.
180° 
out of 
phase. 

Strong 
vibration. 
-90° out 
of phase. 

Weak 
vibration. 
In phase. 

Below  
 resonance 

ω  << ω0 
 

On 
resonance 

ω  = ω0 

Above  
 resonance 

ω  >> ω0 

Adapted from Rick Trebino’s course slides 

The amplitude and relative 
phase of the oscillator 
motion with respect to the 
input force depend on the 
frequencies. 

The forced oscillator 
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Electric field 
at atom 

 
Electron 

Maxwell’s Equations 
will yield emitted light 
that’s 90° phase-
shifted with respect 
to the atom’s motion. 

Emitted 
field 

Weak 
emission.
90° out 
of phase. 

Strong 
emission. 
180° 
out of 
phase. 

Weak 
emission. 
-90° out 
of phase. 

Below  
 resonance 

ω  << ω0 
 

On 
resonance 

ω  = ω0 

Above  
 resonance 

ω  >> ω0 

Adapted from Rick Trebino’s course slides 

The amplitude and relative 
phase of the oscillator 
motion with respect to the 
input force depend on the 
frequencies. 

The forced oscillator 
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When two waves add together with the same complex exponentials, 
we add the complex amplitudes, E0 + E0'. 

Interference depends on relative phase 

Slower phase velocity 
(when accumulated over 

distance) 

Laser Absorption 

+ 

= 

time 

1.0 
 
 

-0.2 
 
 

0.8 

Destructive 
interference: 

1.0 
 
 

0.2 
 
 

1.2 

+ 

= 

time 

Constructive 
interference: 

+ 

= 

time 

Quadrature phase: 
±90° interference: 

1.0 
 
 

-0.2i 
 
 

1-0.2i 

~ ~ 

Adapted from Rick Trebino’s course slides 22 



Dielectric Permittivity: Lorentz model 

Lorentz Model: 

Density (# of atoms per unit volume) 

Elementary Dipole 

x(t) 

         is much smaller than the wavelength of electric field. Therefore we can  
neglect the spatial variation of the E field during the motion of the charge.  
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( )P t =
Dipole moment 

Volume 0( ) ( )N p t E tε χ= ⋅ =

0

( )
( )

N p t
E t

χ
ε

⋅
=

( )x t

)()( textp −=



Response to a monochromatic field: forced 
electron harmonic oscillator 

mass damping frequency of undamped oscillator 

force 
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( ) E j tE t e ω=
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E
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2
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+−

=
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εωχ

j
mNe

2
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0

0
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+−
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Sellmeier equation to model refractive index 
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Normally there are multiple resonant frequencies for the electronic oscillators. 
It means in general the refractive index will have the form 

If the frequency is far away from the absorption resonance 
2 2
0 2ω ω ωγ− >>

2 2
2

2 2 2 2
0

( ) 1 ( ) 1 1i
i i

i i i

n A aω λω χ ω
ω ω λ λ

= + = + = +
− −∑ ∑

2

2 2
0

( )
( )

pω
χ ω

ω ω
=

− )/( 0
22 εω mNep =
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Susceptibility is a tensor 

0P Eε χ=

Polarization and electric field are vectors: 

x

y

z

P
P P

P

 
 =  
  

x

y

z

E
E E

E

 
 =  
  Therefore in general, the susceptibility is a 2nd 

order tensor (i.e., 3 by 3 matrix):  

0

x xx xy xz x

y yx yy yz y

z zx zy zz z

P E
P E
P E

χ χ χ
ε χ χ χ

χ χ χ

    
    =     
        

0D E Pε= +
0D Eε ε= 1ε χ= +

Dielectric constant 

A more convenient notation:  

0i ij jP Eε χ= ijχ      is the linear susceptibility tensor.  
Repeated indices imply summation. 

0 0 ( )i ij j ij ij jD E Eε ε ε δ χ= = +
ijδ      is the identity matrix. 
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Optical anisotropy: birefringence 

0

x xx xy xz x

y yx yy yz y

z zx zy zz z

D E
D E
D E

ε ε ε
ε ε ε ε

ε ε ε

    
    =     
        

2

2
0 0

2

0 0 0 0
0 0 0 0
0 0 0 0

x xx x x x

y yy y y y

z zz z z z

D E n E
D E n E
D E n E

ε
ε ε ε

ε

        
        = =         
                

We can always select a (x,y,z) axes (i.e., principal dielectric axes) to 
diagonalize the dielectric matrix to the following form: 

Isotropic (“the same in all directions”) 
medium (no birefringence)  x y zn n n= =

x y on n n= = z e on n n= ≠ Uniaxial medium 
e on n> Positive uniaxial  

e on n< Negative uniaxial  
x y zn n n≠ ≠ biaxial medium 
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Crystal symmetry 

Every crystal belongs to one of 32 
point symmetry classes, which are 
categorized into 7 crystal systems.  

If an object is invariant under point 
reflection through its center, it is said 
to possess center symmetry 
or inversion symmetry.  
The object is centrosymmeric. 
Otherwise it is  
non-centrosymmetric.  

A crystal or crystalline solid is a solid 
material whose constituents, such as 
atoms, molecules or ions, are arranged in 
a highly ordered microscopic structure, 
forming a crystal lattice that extends in all 
directions. 

From Wikipedia 



Maxwell’s Equations of differential form in a 
medium without free current and free charge 

Constitutive relations for a nonmagnetic material:  

Ampere’s law: Faraday’s law: 

Gauss’s law: Gauss’s law of magnetism: 

Polarization 

DH
t

∂
∇× =

∂
BE
t

∂
∇× = −

∂

0D∇ ⋅ = 0B∇ ⋅ =

0D E Pε= + 0B Hµ=

Electric permittivity in vacuum 

Magnetic permeability in vacuum 

0ε

0µ
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Light propagation in anisotropic media 

Gauss’s law: 

Gauss’s law  
of magnetism: 

0D∇ ⋅ =

0B∇ ⋅ =

0 exp[j( t )]D D k rω= − ⋅ 0 exp[j( t )]B B k rω= − ⋅

0k D⋅ =

0k B⋅ =

k D B⊥ ⊥

They form a orthogonal basis.   

Ampere’s law: 

Faraday’s law: 

DH
t

∂
∇× =

∂
BE
t

∂
∇× = −

∂

H D⊥

0 0D E P Eε ε ε= + =
0B Hµ=

Constitutive relations for a nonmagnetic material:  

E B⊥

in an anisotropic medium. 

HEs ×=

k

H B
D E



Light propagation in a uniaxial crystal 
2

2

2

0 0 0 0
0 0 0 0
0 0 0 0

xx x

yy y

zz z

n
n

n

ε
ε

ε

  
   =   
     

2 2 2

2 2 2 1
o o e

x y z
n n n

+ + = Index ellipsoid for 
uniaxial crystal 
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x y on n n= = z en n=

D1 

D2 
2 2

2

0.01878( ) 2.7359 0.01354
0.01822on λ λ

λ
= + −

−

2 2
2

0.01224( ) 2.3753 0.01516
0.01667en λ λ

λ
= + −

−

69.3 10 /odn C
dT

−= − × 

616.6 10 /edn C
dT

−= − × 

Take BBO as an example 



Light propagation in a uniaxial crystal 
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D1 

D2 

(1) Index ellipsoid is used to find the two 
refractive indices and the two 
corresponding directions of D associated 
with the two independent plane waves 
that can propagate along k direction.  
 

(2) The plane through the origin and 
perpendicular to k intersects with the 
index ellipsoid and generates an ellipse.  
 

(3) D1 lies in the x-y plane and is 
perpendicular to the optical axis z. D2 lies 
in the plane of z-k. D1 is called ordinary 
wave and D2 extraordinary wave.  
 

(4) The two axes of the intersection ellipse 
are        and   
 

(5)       is the refractive index for D1.   
                  is the refractive index for D2. 

 
 
  

2 on 2 ( )effn θ
on

( )effn θ
2 2

2 2 2

1 cos ( ) sin ( )
( )eff o en n n

θ θ
θ

= +
0(0 )e on n=

0(90 )e en n=
Two special cases: 



33 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

wavelength [µm]

R
ef

ra
ct

iv
e 

in
de

x

ne

neff (20o)

neff (40o)

neff (60o)

no

Example: BBO at room temperature 

BBO is a negative uniaxial nonlinear crystal. 
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More on ordinary wave and extraordinary wave 
Z (optic axis) 

θ

ED, sk,

}]tan)[({tan)( 21 θθθρ −±= −

e

o

n
n

Z (optic axis) 

θ
D s

E k

ρ

HEs ×= Represents the energy flow.  
For o-wave, D and E are in parallel, and k 
and s are in the same direction. 
For e-wave, D and E are NOT in parallel, 
and the energy flows at the direction 
different from k.  

Index surfaces 
for a positive 

uniaxial medium. 

2 2

2 2 2

1 cos ( ) sin ( )
( )eff o en n n

θ θ
θ

= +

onn =)(θ
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Take-home message 

 Constitutive relations describe light-matter interaction. 
 

 Material polarization can be modeled by harmonic 
electric oscillation. 
 

 In an anisotropic medium, linear susceptibility is a 2nd 
rank tensor.   
 

 Ordinary wave (o wave) and extraordinary wave (e 
wave) experience different refractive indices. The 
refractive index of e wave depends on the incident angle. 
 

 E wave and o wave carry energies, which may flow at 
different direction causing double refraction.   
 



Suggested reading 

Classical harmonic oscillator model 
 

-- Mark Fox, optical properties of solids, chapter 2 
 

-- George Stegemann and Robert Stegemann, Nonlinear optics, 
chapter 1 

 
EM wave propagation in anisotropic media 
 

-- Amnon Yariv and Pochi Yeh, optical waves in crystals, chapter 1 
and 4 
 

-- Geoffrey New, Introduction to nonlinear optics, chapter 3 
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