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Basic Nonlinear Optical Crystals

If you want to talk to a nonlinear optics person, you need to speak his
language; that is, you should understand the jargon in this field.
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This chapter contains information on the four most widely used nonlinear optical crys-
tals: beta-barium borate (BBO), lithium triborate (LBO), lithium niobate (LN), and
potassium titanyl phosphate (KTP). Together with their periodically poled derivatives,
periodically poled lithium niobate (PPLN) and periodically poled potassium titanyl
phosphate (PPKTP), these materials are employed in at least 75% of all today’s prac-
tical applications.

All the values of the angular, temperature and spectral acceptances, given in this and
in the following chapters, correspond to a 1cm length of the considered nonlinear
crystal.

2.1 #-BaB20y, Beta-Barium Borate (BBO)

Negative uniaxial crystal: n, = n,
Molecular mass: 222.950

Specific gravity: 3.84 g/cm® [1]; 3.849 glem® [2]; 3.85 g/em® at T = 293K [3]
Point group: 3m

Lattice constants:

a = 12.532A [4]; 12.532 £ 0.001 A [2]; 12.547 A [5]

c=12.71TA [4]: 12.726 = 0.001 A [2]; 12.736A [5]

Mohs hardness: 4 [6], [7]: 4.5 [2]

Melting point: 1368 K [2], [8]

Linear thermal expansion coefficient o [3]
T [K] o, x 10° [K~1], Jle o x 10° [K~1], Le
293 0.36 —2.54

Mean value of linear thermal expansion coefficient [5]
T [K] o % 100 [K7', e @ x 100 K717, Le
208-1173 36 4.0

David N. Nikogosyan, Nonlinear optical crystals: a complete survey (2005)




6 2 Basic Nonlinear Optical Crystals

Specific heat capacity cp at P = 0.101325 MPa

T [K] ¢p [1/kgK] Ref.
208 490 (2]
496 [9]

Thermal conductivity coefficient

Kk [WimK], || Kk [W/mK], Lc Ref.
0.8 0.08 [5]
1.6 1.2 [10]

Direct band-gap energy at room temperature: E; = 6.2eV [11], 6.43eV [12]
Transparency range:

at 0.5 level: 0.198-2.6 um for 0.8-cm-long crystal [13]; 0.196-2.2pm for
0.3-cm-long crystal [2]

at “0” transmittance level: 0.189-3.5 um [8]. [14]

at 0.5 transmittance level: 0.198-2.6 pm [1]

Linear absorption coefficient o

A [pm] alem™ 1] Ref. Note
0.1934 1.39 [15] T=295K
0.29 [15] T =91K
0.213 <0.21 [1] best crystals
0.264 0.04 £ 0.01 [16] lle
0.06 £ 0.003 [16] Le, o-wave
0.10 £ 0.003 [16] Lec, e-wave
0.2661 <0.17 [1] best crystals
0.04-0.15 [2]
0.5321 0.01 [17]
<0.01 [9]
1.0 0.001-0.002 [2]
1.0642  <0.001 [9]
2.09 0.0085 [2] e-wave
0.07 [2] o-wave
2.55 0.5 [18]

Two-photon absorption coefficient g

A B B x10''  Ref. Note
[lwm] [ns] [em/W]
0.211 0.0009 243 + 85 [19] g =730°¢ =07

0.264  0.0008 93+£33  [19] =30, =0°
0.00022  68+6  [20] e

2.1 f-BaB,0y, Beta-Barium Borate (BBO)

A o B x 10!! Ref. Note
[pm] [ns] [cm/W]
66+7 [20] Le, o-wave
475 [20] le, e-wave
0.0002 61 [21] O = 48°
0.2661 0.015 90+ 10 [11] lle

0.3547 0.017

1.0£0.2 [11]

lle

Experimental valueg of refractive indices [5]

A [pm] Mo fe

0.40466 1.60267 1.56796
0.43583 1.68679 1.56376
0.46782 1.68198 1.56024
0.47999 1.68044 1.55914
0.50858 1.67722 1.55691
0.54607 1.67376 1.55465
0.57907 1.67131 1.55208
0.58930 1.67049 1.55247
0.64385 1.66736 1.55012
0.81890 1.66066 1.54589
0.85212 1.65969 1.54542
0.89435 1.65862 1.54469
1.01400 1.65608 1.54333

Temperature derivative of refractive indices for temperature range 293-353 K [5]

A [pm] dng/dT

% 10° [K™1] dne/dT =% 10° [K™']

0.4-1.0 —16.6

—9.3

Best set of dispersion relations (A in pm, T = 293K) [13]:

nl =2.7359 + B

n2 =12.3753+ =

0.01878 2
———————— — 0.013545"°
- —0.01822
0.01224 2
——————— —0.01516 A~
—0.01667

7

Sellmeier equations with better accuracy near infrared absorption edge (A in pm,

T =293K) [22]:

nt=2.7359+ ¥

nt =2.3753 + P

Other sets of Sellmeier equations are given in [1], [5]. [8]. [23]. [24]. [25]. [26].

—0.01822

—0.01667

0.01878

0.01224

— 0.01471 2% + 0.0006081 1* — 0.00006740 1

—0.01627 22 + 0.0005716 2* — 0.00006305 1.5

David N. Nikogosyan, Nonlinear optical crystals: a complete survey (2005)




8 2 Basic Nonlinear Optical Crystals 2.1 B-BaB,0y, Beta-Barium Borate (BBO) 11

Nonlinear refractive index y Experimental values of internal angular, temperature, and spectral bandwidths at
— T =293K
A [pem] y % 10'° [em=/W] Ref. Note - n
Interacting Opm Ag™ AT Av
0.2661 0.025 + 0.008 [11] lle wavelengths [pm] [deg] [deg] [°C] [em™'] Ref.
0.3547 0.36 £ 0.08 [11] lle ————
0.5321 0.55£0.10 [11] lle :
0.780 0.40 £ 0.05 [27] [100] direction 1.0642 = 0.5321 i?g ggi; 37 o7 %:]3]
oo | 020 | o | pmls
. ' : [28] =22%¢= 0.5321 = 0.26605 47.3 0.010 4 [5]
1.0642 0.29 + 0.05 (1] lle 0.53 = 0.265 476 298Kp [0.006 [80]
. . ) ) ) SFG,o+o0o=¢
Linear electrooptic coefficients measured at low frequencies (well below the acoustic 1.0641 +0.53205 = 0.3547| | 31.3 0.011 [77]
resonances of BBO crystal, i.e., for the “free” crystal) at room temperature 1.0642 + 0.532] = 0354?3' 31.1 00151 16 [5]
A [pm] !".}T', [pm/V] ;,;l—l [pm/V] Ref. Note 2.44702 + 0.5712 = 0.4631 22.1 0.026 [25]
== 3 2.68823 +0.5712 = 04711 f21.8 0.028 [25]
0.5145 2.5+0.1 [29] T =1296K SHG. e+ 0 = ¢
0.6328 2.5 <0.04 [30] 1.0642 = 0.5321 327 0.034 8.8 [4]
2.2£0.1 [31] 324 0.046 | 37 [5]
SFG.e+o=¢
Linear electrooptic coefficient measured at high frequencies (well above the acoustic 1.0642 +0.5321 = 0.35473] | 38.4 0020l 13 [5]
resonances of BBO crystal, i.e., for the “clamped™ crystal) SFG,0+e = ¢
Alum] 75 [pm/V]  Ref.  Note 1.0642 + 0.5321 = 0.35473 | 58.4 0.050 | 12 (51
0.5145 2,103 [29] T =296K
0.6328 2.1%+0.1 [31] Temperature variation of phase-matching angle at T = 293K [5]
e - o - —— Interacting wavelengths [pLm pm [de dbpm /dT [deg/K
Expressions for the effective second-order nonlinear coefficient in general case g gths [pm] om [deg] pm/dT [deg/K]
(Kleinman symmetry conditions are valid, ds; = d\15) [32]: SHG,0+o0= ¢
0.5321 = 0.26605 47.3 0.00250
dope = day sin(6 + o) — dyr cos(9 + p) sin 3¢ 1.0642 = 0.5321 22.7 0.00057
2 ) SFG,ot+o=¢
deoe = doce = dp2 0S™(6 + p) cos 3¢ 1.0642 +0.5321 = 0.35473  31.1 0.00099
Simplified expressions for the effective second-order nonlinear coefficient SHG.eto=e
(approximation of small birefringence angle, Kleinman symmetry conditions are 1.0642 = 0.5321 324 0.00120
: _ . SFG,e+o=¢
valid, d3; = dy5) [33]:
1.0642 4+ 0.5321 = 0.35473 38.4 0.00150
dooe = d3) sin @ — dyy cos B sin 3¢ SFG.o+e=¢
1.0642 4+ 0.5321 = 0.35473 58.4 0.00421

Aope = doee = d12 0052 9 cos 3¢

Absolute values of second-order nonlinear coefficients [32]:

(d22(0.532 um)| = 2.6 pmy/V Calculated values of inverse group-velocity mismatch for SHG process in BBO
22(0.532 pm)| = 2.6 pm

Interacting wavelengths [jum] fpm [deg] B [fs/mm]
|d72(0.852 pm)| = 2.3 pm/V SHG otom e
|d22(1.064 pm)| = 2.2 pm/V 1.2=0.6 21.18 54
1.1 = 0.55 22.28 76
ld22(1.313 pm)| = 1.9 pm/V 1.0= 0.5 2385 104
|d15(1.064 wm)| = 0.03 pm/V 0.9 = 045 26.07 141

David N. Nikogosyan, Nonlinear optical crystals: a complete survey (2005)




A timeline of classical (linear) optics

Willibrord Snell (1591-1626), Snell’s law

Johannes Kepler (1571-1630), Total internal reflection
Pierre de Fermat (1601-1665), Fermat principle

Christiaan Huygens (1629-1695), Wave theory of optics
Isaac Newton (1642-1727), Particle theory of light
Thomas Young (1773-1829), Interference of optical waves
Augustin Fresnel (1788-1827), Fresnel coefficients

James Clerk Maxwell (1831-1879), Maxwell’s equations



Operators used in Maxwell’s Equations

The “Del” operator: V= g : : , 0
OX o0y 0z

The “Gradient” of a scalar function: VT E[@f or of )

ox oy oz

The “Divergence” of a vector oG, 8Gy oG,

function: V-G= +
unction 8x aX 5X

The “Laplacian” operator:




Operators used in Maxwell’s Equations

The “Laplacian” of a scalar function:

sz EVVf :V(ﬁf ’8f ’5f
OX oy oz

o°f o°f oO°f
=+ —+
ox>  oy* oz°

)

The “Laplacian” of a vector function is the same, but for each
component:

0°G, 0°G, 9°G, 0°G, 0°G, 0°G, #’G, 0°G, &°G,
+ + + + )

VG = + + , ;
(8x2 oy> oz ox*  oy*  or*  ox* oyt ot




Operators used in Maxwell’s Equations

The “Curl” of a vector function;

0G 0G
Vsz(aGZ— y,aGX_aGZ, y_aGX)
oy 07 07 OXx oOx oy

The curl can be computed from a
matrix determinant: — _

X Y z
V xG =det 0o 9 9
OX oy 0z
G, G, G,



Maxwell’'s Equations of differential form in a
medium without free current and free charge

Ampere’s law: Faraday’s law:
vxH =P vxE=_%8
ot ot
Gauss’s law: Gauss'’s law of magnetism:
V-D=0 V.-B=0

Constitutive relations for a nonmagnetic material:
D = gOE +®—> Polarization. It takes into B— , H
light-matter interaction. = Hy
&y Electric permittivity in vacuum

Ho Magnetic permeability in vacuum



Derivation of wave equation

Vector Identity: V x (V v, E) _ V(V . E) —VZE

V x(V x E)——an—B——g(Vx B)
ot ot

— -2 (V% (4t H) == (o X

ok 8P
(,Uo( &g ot 8’[ )
0°E 82P

VFEE-V(V-E)= (s, )

ot* at2



Derivation of wave equation

O°E  0°P
2 + 2 )
ot> ot

In the linear optics of isotropic source-free media:

VZE-V(V-E)= pu,(g,

V.D=0 —— V.E=0

In the nonlinear optics, normally we have: ~ V(V-E) << V°E

Vacuum speed of light: co = /1
\ Ho€o
1 0 o°P
Simplified wave equation: (Vz ——2—2)E = Hy—
Cc, Ot ot

Wave in vacuum Source term



Interaction between EM waves and materials

ULTRANMIILET
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Wavelength of green light is about 500 nm. So the optical wave experiences
an effective homogeneous medium, which is characterized by

Electric permittivity &  and Magnetic permeability ,Ll

For a nonmagnetic material | P =g, yE &= &y (1-|— }() H = U,

X is the electric susceptibility. The velocity of light is different from the
vacuum speed by a factor called the refractive index

n=J(eu)  (go11) =1+ %

13




Lorentz model of light-atom interaction

Important assumptions

The atomic core iIs

-- positively charged

-- static (heavy, fixed within the crystal
lattice)

-- with the center of charge at x = 0.

The electrons are

-- light weight

-- elastically bound by a massless spring
with spring constant with equilibrium position
atx=0

-- carrying out a damped movement; that is,
after removing the force, the movement
decreases and finally ends.

-- the electron and atomic core form an
oscillator with a resonant frequency w,

E(t)

H. A. Lorentz
(1853-1928)

14
Juergen Popp et al., Handbook of biophotonics (2012).




L orentz model: forced electron harmonic oscillator

Dipole moment is defined as the product
of magnitude of charges and the distance
of separation between the charges.

Without an applied field, the centers of the
negative and the positive charges
coincide. The dipole moment is zero.

(+
If a field constant in time is applied, B N
the electrons are displaced relative to their
position in the absence of an external field. ©
The centers of the positive and negative x(t)
charges no longer coincide and a static
dipole moment is induced.

If a time-dependent electric field interacts with the atom, then the electron
starts to oscillate around its equilibrium position with the same frequency of the

electric field. Such an gscillating dipole moment will emit a new electromagnetic

wave at the same frequency as well.

Electric field, E

N

15
Juergen Popp et al., Handbook of biophotonics (2012).




Lorentz model of light-atom interaction

When light of frequency w excites an atom with resonant frequency w:

Electric field Emitted
at atom Electron field . .
t t t \/ i\ / Incident light
= Vi = o+
<= %0 < (O)f= U\ Emitted light

Transmitted light
On resonance (@ = @)

Incident Light excites electron oscillation - electron oscillation
emits new light at the same frequency - incident light interferes
with the new light leading to the transmitted light.

The crucial issue is the relative phase of the incident light and this
emitted light. For example, if these two waves are ~180° out of
phase, the beam will be attenuated. We call this absorption.

Adapted from Rick Trebino’s course slides

16



Forced oscillator and resonance

When we apply a periodic force to a natural oscillator (such as a
pendulum, spring, swing, or atom), the result is a forced oscillator.

Examples:

Child on a swing being pushed

Periodically pushed pendulum

Bridge in wind or an earthquake

Electron in a light wave

Nucleus in a light wave

I

Tacoma Narrows Bridge oscillating and
collapsing because oscillatory winds
blew at its resonance frequency.
(collapsed under 64 km/h wind
conditions the morning of November 7,
1940)

The forced oscillator is one of the most important problems in
physics. It is the concept of resonance.

17

Adapted from Rick Trebino’s course slides




One more example: child on a swing

=
P e

\ g i
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Low TREQUENLY AT RESoNANLE NiGh HREGWVENLY

If you give the swing a push it will swing back and forward. If you
just give it one push it will swing back and forth a few times and
then come to rest. (That's because of friction and damping.) To
keep the swing moving you have to push again each time the
swing reaches the closest point to you. You have to match the
frequency of the swing to make it swing high.

Course note, MIT 6.007 & http://www.lifeinresonance.com/?page id=47

18



Electric field
at nucleus Nucleus

The forced oscillator

Below
The amplitude and relative resonance = ¢
phase of the oscillator @ << @,
motion with respect to the
input force depend on the
frequencies.
On

resonance - o
Let the oscillator’s reso- 0 = w,
nant frequency be ,, and
the forcing frequency be w.
Let the forcing function be
a light electric field and the Above
oscillator a (positively resonance - ®
charged) nucleus in a » S>> o
molecule. 0

Adapted from Rick Trebino’s course slides

Weak
vibration.
In phase.

Strong
vibration.
90° out
of phase.

Weak
vibration.
180°

out of

phase.
19



Electric field

The forced oscillator at electron  Electron
Below

The amplitude and relative resonance -

phase of the oscillator @ << @,

motion with respect to the
input force depend on the
frequencies.

On
resonance -
w =

The electron charge is

negative, so there’s a

180° phase shift in all

cases (compared to the Above

previous slide’s plots). resonance -
@ >>

Adapted from Rick Trebino’s course slides

Weak
vibration.
180°

out of
phase.

Strong

vibration.
-90° out
of phase.

Weak
vibration.
In phase.

20



Electric field

The forced oscillator tatem  Electron

Below
resonance -

The amplitude and relative @ << @y
phase of the oscillator
motion with respect to the
iInput force depend on the
frequencies. On
resonance -
» = @y

Maxwell's Equations
will yield emitted light
that's 90° phase-

shifted with respect Above _
to the atom’s motion. resonance
w >> Wy

Adapted from Rick Trebino’s course slides

Emitted
field

Weak
emission.
90° out
of phase.

Strong
emission.
180°

out of
phase.

Weak

emission.
-90° out
of phase.

21



Interference depends on relative phase

When two waves add together with the same complex exponentials,
we add the complex amplitudes, E, + E;".

Constructive Destructive Quadrature phase:
Interference; Interference; +90° interference:

time time

Laser Absorption Slower phase velocity

(when accumulated over

Adapted from Rick Trebino’s course slides distance) 22




Dielectric Permittivity: Lorentz model

Sinol , ,— Density (# of atoms per unit volume)
ipole momen

P(t)= ——— =N:p(t) =& rE()
N

Elementary Dipole

— _ N-p(t)
AT EE)

Lorentz Model:

[f— xt)—]

O o pt)=-ex)

Pos. Neg.
Charge Charge

X(t) is much smaller than the wavelength of electric field. Therefore we can
neglect the spatial variation of the E field during the motion of the charge.

E(F.t) = E(Fa.t) = E(t)é, 23



Response to a monochromatic field: forced
electron harmonic oscillator

d?x dx
m +2My —+ M X = —eE(t) — force

dt? dt
/ / T \electron charge

mass damping frequency of undamped oscillator

E(t)=Ee! — x(t) =xe™ — p(t) = —ex(t) = pe'

e’/m
P=—7 2 : E
W) —w° +2 oy

@) = 2Ne /(mg,)

2 -
W) —o° +2 oy y




Sellmeier equation to model refractive index

: . 2
If the frequency is far away from the absorption resonance ‘COO

x(w) =

2
Cf)

(5 —@°)

= Ne? /(mg,)

—a)z‘ >> 20y

Normally there are multiple resonant frequencies for the electronic oscillators.
It means in general the refractive index will have the form

2

(@) =1+ z(@) =1+ Y. A—

0

2’2
: :1+Zi:ai Fays

Fused Quartz Sapphire
a; 0.6961663 1.023798
a, 0.4079426 1.058364
az 0.8974794 5.280792
A7 4.679148-10~%  3.77588-1073
NS 1.3512063-1072  1.22544-1072

0.9793400-107

3.213616-107

25



Susceptibility is a tensor

— Dielectric constant

P=¢,/E
ox ]» D=¢,¢E ®:1+Z

D=¢,E+P
0 P E
Polarization and electric field are vectors; P = Py E = Ey
- I:)Z — Ez

Therefore in general, the susceptibility is a 2"
order tensor (i.e., 3 by 3 matrix):

P, | I Xxy X || Ex|
Py — go ZyX Zyy ;(yz Ey
P, ] X Xy Xu |LE.

A more convenient notation:

¥ :go%ijEj

Xij is the linear susceptibility tensor.
Repeated indices imply summation.
D. = &0Sij Ej =& (5” + Zij)Ej é'ij IS the identity matrix. 26



Optical anisotropy

XX

E

ZX

Eyy

gxy

Ezy

&y,

XZ

77

. birefringence

We can always select a (x,y,z) axes (i.e., principal dielectric axes) to
diagonalize the dielectric matrix to the following form:

Dx gxx O O __EX_ _nf O O ] EX
Dy = &) 0 EW 0 Ey = &, 0 n>2/ 0 Ey
D, | 0 0 ¢g,|lE, 0 0 nl|E,

n =N =n Isotropic (“the same in all directions”)

medium (no birefringence)
n,=n,=nN, n, =N, #N, Uniaxial medium {
n,# I’]y N,

N, >N, Positive uniaxial

N, <N, Negative uniaxial
—> biaxial medium 57



Crystal symmetry

A crystal or crystalline solid is a solid
material whose constituents, such as
atoms, molecules or ions, are arranged in
a highly ordered microscopic structure,
forming a crystal lattice that extends in all
directions.

—— From Wikipedia

Every crystal belongs to one of 32
point symmetry classes, which are
categorized into 7 crystal systems.

If an object is invariant under point
reflection through its center, it is said
to possess center symmetry
or inversion symmetry.

The object is centrosymmeric.
Otherwise it is
non-centrosymmetric.

System/Class No.

Symmetry code

Inversion sym.

Examples

Biaxial crystals
Triclinic system

1

2

Monoclinic system
3

4

5

Orthorhombic system

6

7

8

Uniaxial crystals
Tetragonal system
9

10

11

12

13

14

15

Trigonal system
16

17

18

19

20

Hexagonal system
21

22

23

24

25

26

27

Cubic system
28
29
30
31

32

1
1
2
m

T
Z/m

222
mm2
2/m 2/m 2/m

4

4

42 m

422

4/m

4mm

4/m 2/m 2/m

3

3

32
Im
3 2/m

3

62m

6

622

6/m

6mm

6/m 2/m 2/m

Optically isotropic crystals

23

432

3m=2/m 3

43m

4/m 3 2/m = m3m

no
yes

no
no
yes

no
no
yes

no
no
no
no
yes
no
yes

no
yes
no
no
yes

no
no
no
no
yes
no
yes

no
no
yes
no
yes

Copper sulphate

LBO, KTP, KTA

KDP, ADP, CDA
Nickel sulphate

Sodmum periodate

o-quartz

BBO, Lithium niobate

Calcite

Gallium selenide
Lithium iodate
B-quartz

Cadmium selenide

Sodium chlorate

Pyrite

Gallium arsenide, zinc blende
Sodium chlornde, diamond



Maxwell’'s Equations of differential form in a
medium without free current and free charge

Ampere’s law: Faraday’s law:
B
vxH =P vxE=_%8
ot ot
Gauss’s law: Gauss'’s law of magnetism:
V-D=0 V.-B=0

Constitutive relations for a nonmagnetic material:

D=¢E +®—’ Polarization B=uH

& Electric permittivity in vacuum

Ho Magnetic permeability in vacuum



Light propagation in anisotropic media

Consider plane EM waves of angular frequency w propagating in the direction of
the unit vector s, that is

D =D, exp[j(ot—Kk-r)] B =B, exp[j(wt—k-r)]
Gauss'slaw: V-D=0 — k.D:O} k I DI1LB

They form a orthogonal basis.

Gauss'slaw  yv.B=(0 —. k-B=0

of magnetism:

Ampere’s law: VxH = %D - HLD
t
oB

Faraday’'s law: VxE =T — E 1B

Constitutive relations for a nonmagnetic materi
B=uH — H/B

D = 80E +P = EogE — [DAZE in an anisotropic medium.
Poynting vector E X H is NOT in the same direction as k.
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Light propagation in a uniaxial crystal

e, 0 0] [n2 0 O] n,=n, =N, n, =n,
2 2 2
0 &, 01=0 n§ O |mmmp| X .|_y _|_Z —1 Index ellipsoid for
0 0 ¢,|] |0 0 n} Zon: o on uniaxial crystal
AZ
k
Take BBO as an example
n2(1) =2.7359 + 20'01878 —0.0135412 2
2% -0.01822 n,; (€) D,
Ny _ 93410/ °C Aot 7,
....... H.o..-.., .:... or no
n2(1) = 2.3753+ 20'01224 ~0.01516.42 i )
A°—0.01667 g

dn,

~16.6x107°/°C
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Light propagation in a uniaxial crystal

(1) Index ellipsoid is used to find the two
refractive indices and the two
corresponding directions of D associated
with the two independent plane waves
that can propagate along k direction.

AZ k

(2) The plane through the origin and n .
perpendicular to k intersects with the <«
iIndex ellipsoid and generates an ellipse.
(3) D, liesinthe x-y plane and is oo - S &
perpendicular to the optical axis z. D, lies 7N ¥
In the plane of z-k. D, is called ordinary ;
wave and D, extraordinary wave. / 7 0)
(4) The two axes of the intersection ellipse \
are 2N, and 2N (6) }/ :
s
i e 32

(5) Ny is the refractive index for D,
N (0) is the refractive index for D,

1 cos’(0) . sin®(0) '”e (0°)=n,

2 — 2 2 Two special cases:
neﬁ (9) no ne P ne (900) = ne




Refractive index

Example: BBO at room temperature

I IANAN

1.68 \\\\\

SR e
oo o O
N b O

=
o))

1.58

1.56

1.54

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
wavelength [um]

BBO is a negative uniaxial nonlinear crystal.
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More on ordinary wave and extraordinary wave

Z (optic axis) Z (optic axis)

D, E ? K,S

Index surfaces
for a positive 1 _cos’(0)  sin*(0)
n(@) =n, uniaxial medium. (@) 0l o,

0(6) = J_r{tan‘l[(%)z tan 6] — 6}

e

s=ExH Represents the energy flow. Calcite Crysta
For o-wave, D and E are in parallel, and k \ s
and s are in the same direction. _

For e-wave, D and E are NOT in parallel,

and the energy flows at the direction J,,/\
different from k. Y
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Take-home message

Constitutive relations describe light-matter interaction.

Material polarization can be modeled by harmonic
electric oscillation.

In an anisotropic medium, linear susceptibility is a 2"
rank tensor.

Ordinary wave (o wave) and extraordinary wave (e
wave) experience different refractive indices. The
refractive index of e wave depends on the incident angle.

E wave and o wave carry energies, which may flow at
different direction causing double refraction.
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Suggested reading

Classical harmonic oscillator model

-- Mark Fox, optical properties of solids, chapter 2

-- George Stegemann and Robert Stegemann, Nonlinear optics,
chapter 1

EM wave propagation in anisotropic media

-- Amnon Yariv and Pochi Yeh, optical waves in crystals, chapter 1
and 4

-- Geoffrey New, Introduction to nonlinear optics, chapter 3
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