IMPRS: Ultrafast Source Technologies

Franz X. Kartner & Thorsten Uphues, Bldg. 99, 03.097 & Room 62/322
Email & phone: franz.kaertner@cfel.de, 040 8998 6350
Thorsten.Uphues@cfel.de, 040 8998 2706

Lectures: Tuesday 09.00-11.00 Geb 99, Sem Raum |V (1.0G)
Thursday 09.00-11.00 Geb 99, Sem Raum IV (1.0G)

Start: 18.02.2014

Course Secretary: Christine Berber
03.095, phone x-6351, E-mail: christine.berber@cfel.de.

Class website: http://desy.cfel.de/ultrafast_optics and_x_rays_division/
teaching/ imprs_summer_semester_2014/lecture_notes
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General Information

Prerequisites: Basic course in electrodynamics
Text: Class notes will be distributed in class.

Grade: None

Recommended Texts:

Fundamentals of Photonics, B.E.A. Saleh and M.C. Teich, Wiley, 1991.
Ultrafast Optics, A. M. Weiner, Hoboken, NJ, Wiley 2009.

Ultrashort Laser Pulse Phenomena, Diels and Rudolph,
Elsevier/Academic Press, 2006

Optics, Hecht and Zajac, Addison and Wesley Publishing Co., 1979.
Principles of Lasers, O. Svelto, Plenum Press, NY, 1998.

Waves and Fields in Optoelectronics, H. A. Haus, Prentice Hall, NJ, 1984.

Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron Radiation
Sources,

W. B. Peatman, Gordon and Breach Science Publishers, 1997.

Soft X-ray and Extreme Ultraviolet Radiation, David Attwood, Cambridge University
Press, 1999
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Classical Optics

2 Classical Optics
2.1 Maxwell’s Equations and Helmholtz Equation
2.1.1 Helmholtz Equation
2.1.2 Plane-Wave Solutions (TEM-Waves) and Complex Notation
2.1.3 Poynting Vectors, Energy Density and Intensity
2.2 Paraxial Wave Equation
2.3 Gaussian Beams
2.4 Ray Propagation
2.5 Gaussian Beam Propagation
2.6 Optical Resonators
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2. Classical Optics

2.1 Maxwell’s Equations of Isotropic Media

Maxwell’s Equations: Differential Form

. Current due to free charges
aD / |
(EJ_ (2.1:‘3)

Ampere’s Law WV x

dB

Faraday’s Law -
ot

(2.1h)

V x
Gauss’s Law V- p. <—Free charge density (2.1¢)
V. 0 (2.1d)

No magnetic charge

Material Equations: Bring Life into Maxwell’s Equations

Polarization (2.2a)
Magnetization (2.2b)

CFEL

SCIENCE



Classical Optics

Vector Identity: v« (Wg) _ v (‘F . Ef) _AE.

Vx(VxE =—Vx§=—i(Vx§)
ot ot

V x MOE+Z\7))=—§(MOV><H+V><M)
t

£, E+£+3 +VxM

"ot ot

%Txﬂ—l—? (V-E) (23

" %wﬁ—v (v - E’) O (24)

1
- - _ Ill
Vacuum speed of light: co = V e
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Classical Optics

No free charges, No currents from free charges, Non magnetic

1 9%\ = 3_7 9 -\ 8 / _ /4
A— — | — 4 — L NAM-VIVLE)
(‘\ c? atﬂ) E= o ( t O P) ot ! ( ) (24)

Every field can be written as the sum of tansverse and longitudinal fields:

ﬁ}{E‘}L:UHHdﬁ'ET:U

Only free charges create a longitudinal electric field:

E =E7 Pure radiation field

Simplified wave equation:

182 =
(253 -

Wave in vacuum Source term




2.1.1 Helmholtz Equation

+oo
E(Fw) = / E(F t)e—i*tdt. (2.13)

— D0

Linear, local medium  P(7 w) = ex(w)E(F,w), (2.14)

T

dielectric susceptibility

(2.16)

Medium speed of light: c(w) = ¢/n(w) with 1+X(w)= ﬁth:a-'Jzz

Refractive Index




2.1.2 Plane-Wave Solutions (TEM-Waves) and Compl. Notation

Into wave equation (2.16):

Dispersion relation:

—

k =k

Co

ke =2m/A  Wavelength

_.|.

LE J_E';




TEM-Waves




TEM-Waves

What about the magnetic field?

— J_ — —
He(7t) = 5 | He(7 ) + Hy(7.1)']

Bt

H(7.t) = Hz &« j(k).

Faraday’s Law:




Characteristic Impedance

' Ho 1 -
ZF:PL[]’:: N — _ZF[I €r=1+}((60) (229}
| €06, N

Vacuum Impedance:

(2.30)

e, h and k form an orthogonal trihedral,

elh klé klh (2.31)
Example: EM-Wave polarized along x-axis and propagation along z-direction:

__|.
—

} Tk
E(r.t) = Egcos(wt — kz) €.

0 )
cos(wt — kz) €y,
A




Backwards Traveling Wave

Backwards
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2.1.3 Poynting Vector, Energy Density and Intensity

relative permittivity: & =1+y

Quantity Real fields Complex fields

2

. ; ; foy \ — 1 | *
Electric and W, . 1 . (we) = €06 | £

[ . - 2
magnetic energy

fapy & — 1 7
\ u‘mf — 4#’[]1‘&'1-" E
f

density

’ y J— "'l. ¥ IlI. "'I. ¥ I".
':'l. LUJ.:' — II._lbif'e_l." —|_ ll'«.?'bmu"l

Poynting vector

Poynting theorem

Intensity

Table 2.1: Povnting vector and energy density in ENM-fields

o 1
Example: Plane Wave:  (w) = =¢,¢|E|?,

?:: ) = EE_'IN.J:t—F:L:- '-:r I

1 2

_ _ Lz mpe
= 5B = 52 |HP"

CFEL

SCIENCE



2.2 Paraxial Wave Equation

A plane wave is described by:
E(x,y.2) =8 Eyexpl- jk x— jk,y— jk.z]
kg = kf + ki + kzz free space wavenumber

Although a plane wave is a useful model, strictly speaking it cannot be
realized in practice, because it fills whole space and carries infinite energy.

Maxwell’s equations are linear, so a sum of solutions is also a solution.
An arbitrary beam can be can be formed as a superposition of multiple plane
waves:

E.y.2)=[" [ E el jkx— jk,y- ijzLdkxdky

there is no integral over k, because once k, and k
i | | ispersi on . kE=k2+k2+k?
are fixed, k, is constrained by dispersion relation 0~y THy, TR,
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Paraxial Beam

Consider a beam which consists of plane waves propagating at small angles
with z axis

>

such a beam
k. <<k, :
is called a
ky <<k, paraxial beam

<

Figure 2.2. Construction of paraxial beam by superimposing
many plane waves with a dominant k-component in z-direction

k, can be approximated as

k., = 1\!,-"';33 — k2 — fﬂg, (paraxial approximation)

R
.'!En (L_Tk%)
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Paraxial Diffraction Integral

The beam

Eoy,2)= [ [T Ey(kok,yexpl- jkx— jk,y— jk.z|dk dk,

can then be expressed as
ki +k. | |
z— jkx— jk,y |dk.dk,
2k,
N—_ _
—— —
quickly varying slowly varying envelope
carrier wave (changing slowly along z)

~ _ g (OO0~ _
E(x,y,z)=e 7o J.oo‘[wEo(kxaky)eXP{J(

Allows to find field distribution at any point in space.

The beam profile is changing as it propagates in free space.
This is called diffraction.
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Paraxial Diffraction Integral — Finding Field at Arbitrary z

Given the field at some plane (e.g. z=0), how to find the field at any z?

From the previous slide

k+#
2k,

E(x,y,2)=e 7 [ [ " Ey(k,.k,) exp{— j[

Jz Jk x— ]kyy} dk.dk,
At z=0

~ 00 (400 ~ . .

E()C, VsZ = O) = j_OOJ‘_OOEO(kxaky)eXp [_]kxx_]kyy]dkxdky
This is Fourier integral. Using Fourier transforms:

E, (k. ky}z)—m T E(x,y,2=0)exp| jk x+ jk ] ddy

Knowing E(x,y,z=0) can find Eo(kx,ky) and then E(x,y,z) atany z.
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SCIENCE



2.3 Gaussian Beam

Choose transverse Gaussian distribution of plane wave amplitudes:

k§+k§] |

2%2.

(Via Fourier transforms, this is equivalent to choosing Gaussian transversal
field distribution at z=0)

E{.[kx: ky,) ~ exp {—

Substitution into paraxial diffraction integral gives

oo ptoo K2+ ;bz , | | |
(2, y, z) ~ / f exp T (z 4+ jzr) — Jkzx — jkyy| dkydky.

with IR = kg;‘xk% called Rayleigh range.

Performing the integration (i.e. taking Fourier transforms of a Gaussian)

. 2 +3,3
. J D ' u
. .'|.- i __.. (el — ’Ir: i y )
Eol2z,y, 2) 7+ i7g . [ J o (ELE —|—Jfﬁ})}




Gaussian Beam

: 2 2
~ . J _ re+y

Eolx.y. z) ~ — XD | — 7k | — _ _
o, 2) 7+ J2g p[ g ”(ZLEHEH}H

The quantity 1/(z+ jzp) can be expressed as

1 z—jzp 1 iy A
Z+ jzp 22+Z]2e R(z)

7w (2)

where R(z) and w(z) are introduced according to

1 z A Zp

2

= 2 -
R(z) z"+zp 72'w2(z) 22+zR
The pre-factor j/(z+ jzp) can be expressed as

j _ew(@)_ [ 1

Z+ jzpg z° +z5 7 zg W(2)

exp(j&(z)) with tand(z)=z/z,

~ 2 2
We get Ey(r,z)~ w(lz) exp {— wz(z) — jk, > IZ ) +j¢(2)
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Final Expression for Gaussian Beam Field

Finally, the field is normalized, giving

~ 47 . P 1 2 7 Field of a
E,\(r,z)= il exp| — — jk + -
o( ) T w(z) { wz(z) JKo 2R(z) ]é’( )} Gaussian beam

Normalization means that the total power carried by the beam is P:

'3 ‘ 2
I(r 2) 2P exp {_ 2 }

Tw- {H w Lf)

Le. P / f I(r,z) rdr dp.




Gaussian Beams: Spot Size and Rayleigh Range
We derived

E,(r,z)=

47 - P 1 e , e , :
FO exp| —— _Jko +E(2) Flel_d of a
T wW(z) w(z2) 2R(z2) Gaussian beam

\ J
Y

Defines transversal I(r,2) ~ exp {_ 2r° } w(z)

intensity distribution e (2) spot size

A Zp

A
We have = W i(z )=z 114+ =
7w (2) 22+z}2a a (=) z ~ [

Spot size at A
i wo-Lasi P w2

ZR

Rayleigh spot size as a
range function of z




Gaussian Beams: Phase Distribution
We derived

2 2
r r :
_ — ik L il(z Field of a
w”(z2) al 2R(2) se( )} Gaussian beam
I\ J
N
defines phase

distribution

We have

1 z

wavefront

jz Radius of
curvature

R(Z)Ezerz2 = R(z)=z 1+(Z_R

R Z

Phase fronts (surfaces of constant phase) are parabolic, can be approximated
as spherical for small r. R(z) turns out to be the radius of the sphere.

Guoy phase
§(z)= arctan(Z/ZR) shift

Defines extra phase shift as compared to plane wave
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Gaussian Beams: All Equations in One Slide

E,(r,z)= 4ZpoP 1 exp| — r° — jk r’ +E(2) Gaussian Beam
o T w) w2 (z) 7 C2R(z) Field

2
] Spot size W, min spot size (z=0)  (2.54)

2
j } Radius of wavefront curvature (2.55)

((z)= arctan[zj Guoy phase shift (2.65)
ZR

ol
Zp = Rayleigh range (2.96)

R
A




Intensity Distribution

)
2r=

o
i

] . with I
w=(2)

Figure 2.3: The normalized beam intensity I/l as a function of the radial
distance r at different axial distances: (a) z=0, (b) z=z; (c) z=2z;.
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Spot Size as a Function of z

Spot size W(z)=w, \/1 + (— Atz=z; W(Z;)= WO\/E

Waist: minimum radius Rayleigh range Z: distance from the
waist at which the spot area doubles

| l w(z) WTSt /

iwo 1w0\/§

-3z, =2z,




Divergence Angle and Confocal Parameter

z : w(z) w,
Forlargez  w(2)=wy,|1+| — Divergence g_ ( ~ 0
Zp angle z Zp

Smaller spot size —

Beam Divergence: g — __ _
TW, larger divergence

Confocal parameter and depth of focus:

2w

Figure 2.5: Gaussian beam and its characteristics

CFEL

SCIENCE



Axial Intensity Distribution

Intensity distribution along Z
axis (r=0)

Zy

Figure 2.4: Normalized beam intensity I(r=0)/l, on the beam axis as a tunction of
propagation distance z.




Power Confinement

Which fraction of the total power is confined within radius r, from the axis?

2o [T
— Iir. zird
5 ﬁ |7, 2 )rar

4 21
wﬂ{z}ﬁ exp [_w3[3}] rdr (2.283)

] —exp {—

2'3"3 Dependence is
w?(z) ] exponential

Plr < w(z))
P
P(r < 1.5w(z))
P

0.86, (2.984)

0.99. (2.285)

99% of the power is within radius of 1.5 w(z) from the axis




beam

1an

Wavefronts of Gauss

i
-
o

—
)
=

s

Figure 2.8
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Wavefront and Radius of Curvature

Wavefront radius of curvature:

Figure 2.7: Radius of curvature R(z)
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Comparison to Plane and Spherical Waves

Figure 2.9: Wave fronts of (a) a unlform plane wave, (b) a spherical wave;
(c) a Gaussian beam.
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Guoy Phase Shift

Phase delay of Gaussian Beam, Guoy-Phase Shift:
B ) koz — (| / 2
| A zZ) T+ |'!|, ——
) " ! 512/ DEH[:]

arctan | —
iR
$ink

UUBRL i, WAL kbt ST WS S, WA ST, T AT Rany gl e TS A S iy il sy

Figure 2.6: Phase delay of Gaussian bearﬁ, Guoy-Phase-Shift
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Gaussian Beams: Summary

» Solution of wave equation in paraxial approximation

* Wave confined in space and with finite amount of power

* Intensity distribution in any cross-section has the same shape (Gaussian),
only size and magnitude is scaled

» At the waist, the spot size is minimum and wave fronts are flat
» Lasers are usually built to generate Gaussian beams

Planes of const.

3 -:_-_:’4”'*-:*--
S

Beam Waist /

=i
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2.4 Ray Propagation

1

Optical

System

Figure 2.10: Description of optical ray propagation by its distance and
inclination from the optical axis.

A B ™
¢ D mry )
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Ray Matrix: Transition medium 1 to 2
2

Figure 2.11: Snell’s law for paraxial rays.

?n_‘i — tan 91 =2 sIN 91 — 6}1. and ?’:‘_,_ — tan 92 ~Z sIn 92 ~ 92*

Then Snell’s law 1s
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Ray Matrix: Propagation over Distance L

SCIENCE



Prop. in Medium with Index n over Distance L

L




Thin Plano-convex Lens

ny (1 +a) =ny (r5+a)

for o ~ /R

Figure 2.14: Derivation of ABCD-matrix of a thin plano-convex lens.




Biconvex Lens and Focussing

1

2 ni E/?’Lz 1

Biconvex Lens M = (

Iz
[

Me= (o 1) (1) (5 1)

Figure 2.15: Imaging of parallel rays through a lens with focal length f




Concave Mirror with ROC R

Figure 2.16: Derivation of Ray matrix for concave mirror with Radius R.




Table of Ray Matrices
[Optical Flement ] ABCD Natrix |

Propagation 1 Medium with
index n and length L

Thin Lens with

focal length f

Mirror under Angle

f to Axis and Radius R
Sagittal Plane

Mirror under Angle

f to Axis and Radius R
Tangential Plane

Brewster Plate under

Angle # to Axis and Thickness
d, Sagittal Plane

Brewster Plate under

Angle 8 to Axis and Thickness
d, Tangential Plane

Table 2.6: ABCD matrices for commonly used optical elements.

M (50 ) aCHEL

Y
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Application: Gauss’ Lens Formula

d,

Figure 2.17: Gauss’ lens formula.

1 1

Lo
wTnTy (280
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An Image is formed?

)
).

In order that the distance 7o only depends on 71, but not on r}, B must be
0, which is Eq. (2.80). Thus in total we have

f
di—f (2.82)
Distance to focus | do — f = M? (d; — f)

Magnification M, =




Gaussian Beam Propagation

[‘jk(’( 2() )] (254 A +B

42 =
2mj exp [—jq(Z) < (2.85) C di1 T+ D

SCIENCE



Telescope

ZR2

Figure 2.19: Focussing of a Gaussian beam by a lens.

(48)-(7 <1—ff>z_:+d2).

1
f f
The g-parameter of the Gaussian beam at the position of minimum waist is
2
purely imaginary q; = jzp = j— 01 and ¢ = jzps = j=22, where
Aq+B jzmA+ B jzmA+ B

qu—i—D _]leC—I—D _jleCJrD

q2 = = jZRQ. <290)
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Gaussian Beam Optics: Physical Optics

Ray Optics: B=0 Gauss’ lens formula:

Physical Optics: Real partof Eq. (2.90)=0 BD — 2%, AC =0

1 1 di\? 2
Wopa Woq /

Magnification M =M, //1+& with £ = =51 and M, =

Beam waist w2 = M - wo

Confocal parameter | 2zz0 = M~ 22 g0

Distance to focus dy — f = M* (dy — f)

Divergence Boo = Gy /M

CFEL
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2.6 Optical Resonators

Figure 2.20: Fabry-Perot Resonator with finite beam size.




Curved - Flat Mirror Resonator

Figure 2.21: Curved-Flat Mirror
Resonator




Curved - Flat Mirror Resonator

For given R,
3 |

w, /sqri(R, A/m)

Mo

T
(T
o
&
©
o,
m

wy/sqrt(RA/m)
I I

0.4 0.6 0.8
L/R,

Figure 2.22: Beam waists of the curved-flat mirror resonator as a

function of L/R,.
UH
CFEL
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Two Curved Mirror Resonator

Figure 2.20: Fabry-Perot Resonator with finite beam size.




Or:

Two Curved Mirror Resonator

L+
L+

L =z

| —

iR

<]

iR

<2

- 9.

s
;

| S—

. L(R; — L)
1T R TR,—2L
by symmetry:
o L(R,— L) .
2 Fiy+ Ry — 2L .
and
s (RO LR+ Ry - L)

(Ry + Ry — 2L)?

L(R,+ Ry —2L)?

(AL (R, — LY(Ry— L)(R, + R, — L)

.* . 2 ; L s L L L L
_ ()ileRg) LE lJ-__JI[J'_H_?JII:R__I_ A Ay H__EJI
)RR ErEEET
DEsy ) L ITEL 52
O SCIENCE
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Figure 2.23: Two curved
mirror resonator.

R; = 10emand A = 1llem Il

B ) 97 1/2
) A
Wy =Wy |1+ | —
IR
B , 27 1/2
. £
wy = w, |1+ ( )
IR

— 06
v 0.4
02

T\

-
-
" e —
= i ——

— 0.8
4 —

— 02

f l

— (0.0

10
Cavity Length, L { cm
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Resonator Stability

R1+R;

Figure 2.75: Stable regions (black) for the two-mirror resonator

UHL_-—H] andﬁ;iﬂiﬁ]—l—ﬂg

Or introduce cavity parameters:
gi=(R;,— L)/R; fori =12
stable: 0 < gy - go = 5 < 1 (2.308)

unstable : g1g2 < 0: or g1g2 = 1. (2.300)




Geometrical Interpretation

g:= (R, — L)/R; = —-5;/R, stable: 0 < —— < 1.

Figure 2.24: Stability Criterion




A resonator is stable if the mirror radii, laid out along the optical axis,

overlap.

A resonator is unstable 1f the radil do not overlap or one lies within the

other.

Stable Unstable

o) e

Figure 2.26: Stable and unstable resonators
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Hermite Gaussian Beams

Other solutions to the paraxial wave equation:

Epn(zy,2) = Am,ﬂ{“’“ Gmﬂ”fﬁ? r[y]

w(z) w(z) w(z)

. x? + 32 .
eX]p [—Jﬁrzn ( ZH{:“E; ) +jlm+n—+ J.JLJ[EJ:|

2

G (1] = Hp [u] exp [—ET] form=0,12 _

Hermite Polynomials: - 1

2u,

du® — 1.
8u” — 12u.




Hermite Gaussian Beams

Figure 2.27: Hermite Gaussians G,(u)

SCIENCE



Hermite Gaussian Beams

TEM.:

" TEMw '

TEMs - TEM»

Figure 2.28: Intensity profile of TEM,_-beams. by ABCD law.
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Axial Mode Structure:

Roundtrip Phase =2 p 7

o, =2pm forp=0 =1 £2

;a

Oy = 2kL —2(m +n+ 1) (((22) — ((=1)),

»

Resonance Frequencies:

Womn = 7 [P+ (m 41+ 1) (C(22) = C(21))

Special Case: Confocal Resonator: L=R 2> J(z,)-4(z) =§




Resonance Frequencies

30p 02p-1  30(-1) 02p 30p 02(p + 1)

03p 200 -1 03@-1 20p 03p 20(p + 1)
01(p - 1) p— 1) 0lp lip Ol(p + 1) L(p + 1)
10(p — 1) 00p 10p 0@+ 1) 10+ 1) 00(p + 2)
; |

|
| I
1 l

- )\ f—

d=L

Figure 2.29: Resonance frequencies of the confocal Fabry-Perot resonator,
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