
Chapter 13

High Harmonic Generation

High harmonic generation (HHG) is a technique for producing spatially and
temporally coherent extreme-ultraviolet (EUV) light, as well as light pulses
as short as hundred attoseconds (1 attosecond = 10−18 seconds). To sup-
port pulses at such short duration light with a frequency higher than the
inverse pulse duration is required corresponding to EUV wavlength of tenth
of nanometers and shorter. Construction of lasers at these wavelengths is
challenging and other means of producing significant EUV radiation, such as
synchrotrons and Free-Electron Lasers (FELs) are rather expensive. HHG
has the potential for generating significant coherent EUV radiation, even in
the form of ultrashort pulses with attosecond duration opening up the new
field of ultrafast x-ray spectroscopy.

HHG occurs when an intense pulsed laser beam is focused into a (noble)
gas jet or solid. The intensity of the laser light is chosen such that its elec-
tric field amplitude is comparable to the electric field in atoms. Such fields
are able to detach electrons from atoms by tunnel ionization, as opposed to
photo-ionization by a weak field with high enough photon energy. The de-
tached electron is accelerated in the field and under certain conditions has
significant probability to hit the ion left behind upon return. The "collision"
results in the emission of high energy photons. This description is called
three step model and depicted in Figure 13.1
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Figure 13.1: Three step model of High Order Harmonic Generation.

13.1 Atomic units

The dynamics of electrons in electric fields of atomic strength is most con-
veniently described in atomic units. Then typically atomic magnitudes are
numbers of order one, which is very convenient. Atomic units are used in
the vast majority of atomic physics literature, and in particular in the HHG
literature.
In atomic units Planck’s constant ~, the electron mass, m, and the elec-

tron charge, q, are set to one. Mass, charge and angular momentum are
therefore measured relative to these magnitudes, and once three of them are
given, the atomic unit for every other physical magnitude can be defined.
In order to gain some intuition about atomic units, it is instructive to think
about the Bohr hydrogen atom, with the electron moving around the proton
in a circular orbit whose radius is the Bohr radius (see Fig. 13.2). Table 13.1
lists the definitions of some atomic units and conversion ratios to SI units:
For example, the hydrogen ionization energy is 1

2
au, and that of helium

is about 0.9au. Another example is the dielectric susceptibility of matter.
Ignoring for the moment tensorial and non-instantaneous effects we can write
for the polarization of a medium

P = �0
¡
χ(1)E + χ(2)E2 + χ(3)E3 + ...

¢
(13.1)

The nonlinear susceptibilities in SI units are of the order of 10−12 for χ(2)
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Figure 13.2: Definitions of atomic units through the Bohr model of the hydrogen
atom.

and 10−23 for χ(3). When P and E are expressed in atomic units, all the χ-s
are of order one, because the electric field is then expressed in units of the
electric field in an atom. We can argue that once the electric field reaches
atomic fields, all harmonics of the fundamental laser wave will be observed,
with intensities of similar orders of magnitude. Indeed HHG occurs only
when such intensities are reached.
A typical field amplitude for HHG in helium is 0.3 au ≈ 1.7× 109V/cm.

The corresponding intensity is 0.5 · E2/377Ω ≈ 4 × 1015W/cm2. For a
Ti:sapphire beam (800 nm wavelength) focused to a 25μm2 spot and for
a pulse duration of 10 fs we find that the pulses should carry about 0.1 mJ
of energy.

13.2 The three step model

HHG photon energies achieved today reach up to 1.3 keV, which is about
50au. This high photon energy was achieved in helium. If we adopt the
familiar picture (see Fig. 13.1), according to which a photon at certain energy
is emitted when an electron “falls" from an excited state to the ground state,
we see that the electron must “fall" from a very highly excited free state
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Atomic unit of... Definition In SI units

Electric charge The electron charge 1.602× 10−19 C
Mass The electron mass 9.109× 10−31kg
Length The Bohr radius 5.2917× 10−11m
Time 1/2π of the first Bohr orbit period 24.189 asec

Energy The potential energy of the elec-
tron in the first Bohr orbit

27.21eV=
= 4.359× 10−18J

Electric field The electric field at the first Bohr
orbit

5.142× 1011V/m

Table 13.1: Definitions of atomic units for some often used quantities and con-
version to the SI system.

(50 times the binding energy). Since the potential is negative, high energy
necessarily means high kinetic energy i. e. high velocity.
In order that a force of ∼1au accelerates the electron to such high kinetic

energy, it should travel a long distance away from the atom. According to
the three step model, the electron is released from the atom by the laser
field, accelerated in the free field away from the atom, then accelerated back
towards the atom and collides with it. The energy lost in the collision shows
up as a UV photon. The sequence of tunnel ionization, acceleration in the
laser field and recollision is the called the three step model of HHG [2][3].
In order to estimate the energy acquired by the accelerating electron,

we consider a free electron in a harmonic field of amplitude E and angular
frequency ω. The time-averaged kinetic energy equals

Up =

µ
qE

2mω

¶2
=

µ
E

2ω

¶2
, (13.2)

where the first expression is in general units (q is the electron charge) and
the second one in atomic units. Note that this is a purely classical object
since it does not involve ~. Up is commonly referred to as the ponderomotive
energy.
In order to achieve high ponderomotive energy, ω must be a small number,

that is, the optical frequency of the laser pulses must be much slower than
atomic timescales.
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13.2.1 Ionization

There are three regimes of ionization of an atom by an optical field. We
consider here only fields of frequency ω such that ω < Ip (~ω < Ip in general
units. Ip is the ionization potential of the atom). Therefore photoionization
by a single photon is impossible.

1. Multiphoton ionization.

This is the dominant regime for “small" fields, i.e. large Keldysh parameter
γ =

p
2Ip/E > 1. It is characterized by a power law dependence of the ion-

ization rate on the laser intensity, where the exponent is the minimal number
of photons required for ionization (see Fig. 13.3). This regime is of less im-
portance to HHG and we do not further discuss it here. The multiphoton
regime takes place when E ¿ 1au and Up ¿ Ip.

n

Figure 13.3: Ionization by n photons.

2. Tunnelling regime.

Tunnelling is the dominant regime when Up & Ip, i.e. γ < 1, but E is small
enough such that the barrier-suppression regime (the next one) is not yet
reached, see Figure 13.4 and 13.5. The electron is released through tunnelling.
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This regime is characterized by an exponential dependence of the ionization
rate on the instantaneous electric field [4]:

w(E) ∼ exp
µ
−2(2Ip)

3/2

3E

¶
, (13.3)

where the ‘∼’ sign stands for "equal up to a sub-exponential factor in E".

Figure 13.4: Ionization by tunnelling. She shaded area is the barrier, the classi-
cally forbidden region. The rate of tunnel ionization is exponential in the “area"
under the barrier.

3. Barrier-suppression regime.

This regime is reached when the field is strong enough such that the there is
no energy barrier separating the electron from the free space (see Fig. 13.5).
The barrier suppression regime is characterized by a nearly linear dependence
of the ionization rate on the incident electric field.
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Figure 13.5: Ionization in the barrier-suppression regime.

When ω ¿ Ip the two last regimes are well described by the quasi-static
approximation. The reason for this terminology is that the variation of the
laser field is so slow that the instantaneous ionization rate coincides with a
static one. Let then w(E) be the static ionization rate as function of the
electric field. In the tunnelling and the barrier suppression regimes, with
ω ¿ Ip, we therefore have

|a(t)|2 = exp

⎛⎝− tZ
0

w(E(t0))dt0

⎞⎠ , (13.4)

where a(t) is the probability amplitude of finding the atom in the ground
state. Note, that for ωtÀ 1 the ionization rate does not depend on ω. This
is in contrast with the multiphoton regime, where the rate exponentially
decreases as ω → 0.

The static ionization rate w(E) is well described in the tunnelling regime
by the Ammosov-Delone-Krainov formula [4]. For hydrogen and heliumw(E)
has been numerically calculated to high precision, and is shown in Fig. 13.6
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Figure 13.6: Static ionization rate for Hydrogen on a linear and logarithmic
scale.
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Figure 13.7: Static ionization rate for Helium on a linear and logarithmic
scale..

13.2.2 Propagation

According to the correspondence principle, at high energies quantum me-
chanics should resemble classical mechanics. Indeed it turns out that the
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propagation of the freed electron can be very well described classically. Since
the Coulomb force exerted on the electron by the ion is negligible compared
to the laser field during most of the electron excursion, the motion of the
electron is well described by a free electron accelerated in the presence of the
electric field of the laser pulse. Since we expect that the electrons do not
reach relativistic speeds, we can neglect the Lorentz Force. It also turns out
that the right after the tunneling, the velocity of the electron vanishes, i.e.
the electron starts with zero velocity in the external field.

ẍ(t) = E0 cosωt (13.5)

ẋ(t) =
E0
ω
sinωt− E0

ω
sinωt0 (13.6)

x(t) = −E0
ω2
cosωt− (t− t0)

E0
ω
sinωt0 +

E0
ω2
cosωt0, (13.7)

see Figure 13.8. Here, t0 is the time at which the electron was released from
the atom. It is assumed that the electron is released with zero initial velocity.
This assumption can be justified quantum mechanically. Since the electron
is a quantum particle, it is released at all possible times t0 “together". Each
moment there is a probability amplitude to be released, depending (in the
quasi-static approximation) on the electric field at that moment.
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Figure 13.8: The position of the electron as function of time for different “ioniza-
tion times" t0. The “most energetic trajectory” refers ro the solution where the
elctron encounters the nucleus with the maximal kinetic energy.
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According to the three step model, the energy lost by the electron when
it recollides with the nucleus is released as an HHG photon. We therefore
wish to know how much kinetic energy the electron has when it returns. To
this end we need to solve the Eq. (13.5) for x(t) = 0 for some t and compute
the kinetic energy ẋ2(t)/2 at that instant.
The solution cannot be expressed in terms of elementary functions. How-

ever, it can be easily found on a computer. It is easy to see that electrons
re-encounter the nucleus only if they are released when the magnitude of the
field is decreasing (see Fig. 13.8). The kinetic energy upon the first encounter
of the electron with the nucleus is plotted in Fig. 13.9 as function of the ion-
ization time t0. It reaches a maximum for ωt ≈ 0.31, and the maximum
approximately equals 3.17Up, whith the ponderomotive energy Up =

¡
E
2ω

¢2
of an electron in the laser field..
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Figure 13.9: Kinetic energy upon return to the nucleus as function of the “ion-
ization time". The maximum is achieved about 0.31 radians after the peak of the
electric field. For that case, the kinetic energy upon return reaches 3.17Up. The
dashed curve is the electric field.

13.2.3 Recombination

A proper description of the recombination stage requires a quantum mechan-
ical treatment of the rescattering problem and the emission of radiation. We
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need to start from the Schroedinger equation of an electron bound to the
atom, later partially tunneling ionzied and accelerated. This is described by
the Schroedinger equation of a single active electron in dipole approximation

i
d

dt
|ψi = H |ψi−E(t)x (13.8)

with the atomic Hamiltonian

H = −1
2
∇+ V (�r), (13.9)

where, V (�r) is the effective atomic potential confining the electron to the
atom. Due to the interaction with the laser field we expect that the wave-
function of the electon, that is initially in the ground state |0i with energy
eigenvalue −IP , where IP is the ionization potential, evolves into a superpo-
sition state between the ground state with probability amplitude a(t) and a
wavefunction describing the freed electron

|ψ(t)i = a(t) |0i+ |ϕ(t)i . (13.10)

The freed electron together with the remaining ion forms a dipole and the
expected value of the dipole moment is like for a a two level system atom

�d(t) = hψ(t)| �x |ψ(t)i . (13.11)

However, what acts as the source for electromagnetic radiation is not the
dipolmoment but rather the dipole acceleration. With the Ehrenfest The-
orem in Quantum Mechanics, which is simply the Heisenberg equation of
motion for the electrons kinetic momentum

··
�x = −∇V (�r) +E(t).. (13.12)

and neglecting the external field coming from the laser, since it doesn’t con-
tain Harmonics, the dipole acceleration contributing to HHG can be written
as
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··
�dHHG(t) = − hψ(t)|∇V (�r) |ψ(t)i (13.13)

= − |a(t)|2 h0|∇V (�r) |0i− a(t) hϕ(t)|∇V (�r) |0i
−a∗(t) hψ(t)|∇V (�r) |0i− hϕ(t)|∇V (�r) |ϕ(t)i . (13.14)

˜− a∗(t) hϕ(t)|∇V (�r) |0i− a(t) h0|∇V (�r) |ϕ(t)i (13.15)
= ξ̈(t) + ξ̈

∗
(t), with ξ̈(t) = −a∗(t) hϕ(t)|∇V (�r) |0i (13.16)

The first term vanishes, because of inversion symmetry of the atomic ground
state and the last term is neglected, because it is expected to be small.
After some calculations, the result is [5]

ξ̈(t) = 23/2π (2IP )
1/4 eiπ/4

X
n

a(tnb(t)a(t)
p
w(Etnb(t))

E(tnb(t))(t− tnb(t))3/2
�αrece

−iSn(t).

Here, the probability amplitudes of the ground state enter at the birthtime
tnb(t), and t, if t is the recollision time of the trajectory. The recombination

matrix element �αrec = hk(t)|∇V (�r) |0i and Sn(t) =
1
2

tZ
tnb(t)

k(t0)2dt0 + IP (t−

tnb(t)) is the classical action, the electron picks up during acceleration. The
sum over n is the sum over all trajectories arriving at time t.
It is plausible that the energy released during recombination equals the

kinetic energy the electron acquired plus the ionization potential, since the
electron transitions from the continuum to a state with energy −Ip. In par-
ticular, we can expect the maximal energy released in the collision to be

ωhmax = Ip + 3.17Up. (13.17)

Figure 13.10 shows the Fourier transform of the calculated dipole acceleration
for hydrogen excited by Ti:sapphire (800mn, corresponding to ω = 0.057au)
pulses with an ideal sinusoidal single cycle pulse (E(t) = E0 sinωt). The
field amplitude used is shown near each spectrum. (ωhmax = Ip + 3.17Up in
atomic units). Remarkably Eq. (13.17), which is obtained from very simple
considerations, gives the correct prediction for the cutoff of the spectrum. No
harmonics above ωhmax are observed1, see Fig. 13.10. However, below the

1To be more precise, quantum mechanical analysis reveals that the cutoff formula
ωhmax = 1.28Ip + 3.17Up.
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cutoff energy we observe oscillations in the high harmonic spectrum. This
results from interference of contributions from the long and short trajectories,
which contribute to the same frequency, energy, as can be seen from Fig. 13.8.
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Figure 13.10: Simulated HHG spectra for hydrogen excited by Ti:sapphire
(800mn, corresponding to ω = 0.057au) pulses with an ideal sinusoidal single
cycle pulse (E(t) = E0 sinωt). The field amplitude is denoted near each
spectrum.

Figure 13.11 shows the kinetic energy normailized to the pondermotive
potential that each trajectory contributes as a function of arrival time.

Figure 13.11: Kinetic Energy of long and short trajectories as a function of
arrival time.
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Figure 13.12 shows the Fourier transform of the calculated dipole accel-
eration for hydrogen excited by Ti:sapphire pulses with a secant hyperbolic
pulses hape, 5fs FWHM duration and a maximal field amplitude of 0.12au.
The spectrum is the cummulative effect of several cycles

0 20 40 60 80 100 120

10-14

10-12

10-10

10-8

Harmonic energy (eV)

Ph
ot

on
s p

er
 p

ul
se

 p
er

 a
to

m
 5

%
 B

W

Figure 13.12: Simulated HHG spectra for hydrogen excited by Ti:sapphire
(800mn, corresponding to ω = 0.057au) pulses with a secant hyperbolic pulse
with 5fs FWHM duration and a maximal field amplitude of 0.12au.

The spectrum is the cummulative effect of several cycles, where in each
half cycle a small fraction of the atoms are ionized, see Fig. fch13_multicyclehhg
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Figure 13.13: High harmonic generation dynamics in a multicycle pulse.
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13.3 Attosecond pulses

The electron which acquires the largest amount of kinetic energy leaves the
atom 0.31ω−1 after each peak of the field and hits the nucleus back at time
4.4ω−1 (about 3/4 of a cycle) after that peak (see Figs. 13.8, 13.14). Electrons
that hit the nucleus later (short trajectories) or earlier (long trajectories)
have less kinetic energy upon return. Thus the HHG radiation emitted by
the recolliding electron has two contributions, one from the long and one
from the short trajectories, both of which are down or up chirped (see Fig.
13.15).
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Figure 13.14: A single cycle, with a single recollision, leading to an isolated
attosend pulse. Most energetic trajectory (dash dotted line).
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Figure 13.15: Neighborhood of the most energetic trajectory, which is re-
sponsible for the highest frequency radiation emitted.
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Figure 13.16: The same as Fig. 13.14a, before and after high-pass filtering.

There are several possibilities to select attosecond duration pulses, from
this emission. First it was proposed to select isolated attosecond pulses, by
using about two-cycle pulses and using high pass filtering of the emitted HHG



13.3. ATTOSECOND PULSES 469

radiation to select the cut-off spectrum produced by the highest field cycle.
Such a filtering is possible by using a multilayer MoSi-mirrors. Fig. 13.16
shows simulated electric field amplitude of the emitted HHG radiation before
and after high-pass filtering. At the output of the filter we observe isolated
pulses of several hundreds of attoseconds [7][9]. Other possibilities are to use
polarization gating to achieve HHG in a single cycle from a few-cycle pulse
and select the emission from the short or long trajectories and compression of
these chirped emission using material dispersion in thin metal films [8]. The
gating techniques have been further refined over the last years to a scheme
called double-optical gating where both polarization and second harmonic
field is used to further constrain HHG within a multicycle pulse.

13.3.1 The intensity challenge

HHG was discovered in 1987. Due to the progress in short pulse high energy
Ti:sapphire lasers (30fs, 1mJ) it became possible to expose atoms to very
high field strength before complete ionization and in 1997 EUV radiation
down to 2.5 nm wavelength was demonstrated using HHG [6]. The shortest
HHG wavelength demonstrated so far is 1nm (2005), however the efficiencies
are very small at these short wavelengths.

13.3.2 The necessity of short drive pulses

Short pulses are a necessity for HHG in order to avoid depletion of the ground
state during previous pulse maxima.
Fig. 13.17 shows the population of the ground state of Helium calculated

with Eq. (13.4). When the pulses are not short enough (50fs in that particular
example) most of the ground state is already depleted before the peak of the
pulse is reached. Therefore the HHG radiation is released by electric fields
of lower amplitude than the peak of the pulse, and most of the intensity of
the pulse is “wasted".
The shorter the pulses become, the higher will be the ground state pop-

ulation when the atom experiences the peak of the electric field. Therefore
short (few-cycle) pulses are a necessity for HHG, even when sufficient peak
power is available.
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Figure 13.17: Ionization of helium in the presence of a linearly polarized
electric field of a laser pulse with 800nm wavelength and a peak intensity
4 × 1015W/cm2: (a) electric field; (b) fraction of ionized electrons; (c) in-
stantaneous ionization rate. The thin and the thick lines represent pulses of
durations of 50fs and 5fs FWHM, respectively.[1]
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13.3.3 Quantum diffusion

The simple classical picture of the propagation stage gives the correct cutoff
law. However quantum mechanically the electron propagates along many
trajectories at the same time. In particular, there is an uncertainty in the
lateral initial velocity of the electron, and it therefore has returning electron
wave packet has components that miss the nucleus.
The above described behavior is called quantum diffusion: free electron

wavepackets expand as they propagate, just like a light pulse in a disper-
sive medium. The electron wavepacket expands as

√
τ (τ is the time of

propagation between ionization and recombination) in each spatial direction.
Therefore the amplitude in the center of the wavepacket decreases as τ−3/2.
The amplitude of the emitted HHG electric field therefore scales like τ−3/2,
and the intensity — like τ−3. The travel time is about an optical cycle.
The intensity of the HHG radiation therefore cubically decreases with

increasing drive wavelength. However the spectral cutoff energy quadratically
increases with it and the ionization of the atom can be reduced. The question
what is the ideal drive wavelength to achieve maximum HHG for a desired
wavelength range is not yet resolved.

13.3.4 Propagation effects — phase matching

In order to achieve efficient HHG, the contributions from single atoms emit-
ting at different cycles and positions in the medium must interfere construc-
tively with one another. Just like in second harmonic generation or opti-
cal parametric generation, phase matching is required. Phase matching is
achieved, if the refractive index of the generated EUV radiation is equal to
the index experienced by the driver laser pulse in the gas. The EUV radia-
tion only weakly interacts with the gas and therefore propagates at the speed
of light. However, the drive laser pulse experiences the dispersion from the
gas, which increases the refractive index and the negative index of the free
electrons generated (plasma). Chosing the proper ionization level and gas
pressure is therefore important to achieve phase matching of the driver pulse
and the generated EUV radiation.
Because of the phase mismatch and also because the spatial profile of the

driver pulses, the pulse is distorted by the index profile of the free electrons,
i.e. plasma defocusing of the laser beam occurs. Another limitation on the
length comes from absorption: the longer the gas jet, the more it begins to
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absorb the HHG photons. These effects severely limit the HHG conversion
efficiency.
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