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Recommended Texts: 

Fundamentals of Photonics, B.E.A. Saleh and M.C. Teich, Wiley, 1991. 
Ultrafast Optics, A. M. Weiner, Hoboken, NJ, Wiley 2009.
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Prerequisites: Basic course in electrodynamics

Text: Class notes will be distributed in class. 

Grade:  None

Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron 
Radiation Sources,
W. B. Peatman, Gordon and Breach Science Publishers, 1997.
Soft X-ray and Extreme Ultraviolet Radiation, David Attwood, Cambridge 
University Press, 1999
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Raum III, EG

Kärtner Ultrafast Lasers Tuesday
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Uphues High Order 
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Thursday
April 18, 9-11am

Geb. 99
Raum III, EG
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Tuesday
April 23, 9-11am

Geb. 99
Raum III, EG

Uphues Synchrotron 
Radiation

Thursday
April 9, 9-11am
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Raum IV, O1.11
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2.1 Maxwell’s Equations of Isotropic Media

Maxwell’s Equations:  Differential Form

Material Equations: 

Ampere’s Law

Faraday’s Law

Gauss’s Law

No magnetic charge

Polarization
Magnetization

Current due to free charges

Free charge density

Bring Life into Maxwell’s Equations
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2. Classical Optics  



Vector Identity: 

Vacuum speed of light:
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No free charges, No currents from free charges, Non magnetic

Every field can be written as the sum of tansverse and longitudinal fields:

Only free charges create a longitudinal electric field:

TE E
 

Pure radiation field

Simplified wave equation:

Wave in vacuum Source term
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2.1.1 Helmholtz Equation

Linear, local medium

dielectric susceptibility

Medium speed of light: with

Refractive Index
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Real field:

Dispersion relation: 

2.1.2 Plane-Wave Solutions (TEM-Waves) and Complex Notation

Artificial, complex field:

Into wave equation (2.16):

k k


Wavelength
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What about the magnetic field?

Faraday’s Law:
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Characteristic Impedance

Vacuum Impedance:

Example:  EM-Wave polarized along x-axis and propagation along z-direction:
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1 ( )r   
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Backwards Traveling Wave

Backwards
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2.1.3 Poynting Vector, Energy Density and Intensity

1r  relative permittivity:

Example: Plane Wave:
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A plane wave is described by:

 zjkyjkxjkEezyxE zyxx  exp~),,(
~

0


Although a plane wave is a useful model, strictly speaking it cannot be 
realized in practice, because it fills whole space and carries infinite energy.

2222
0 zyx kkkk  free space wavenumber

Maxwell’s equations are linear, so a sum of solutions is also a solution.
An arbitrary beam can be can be formed as a superposition of multiple plane 
waves:

  yxzyx dkdkzjkyjkxjkEzyxE  







 exp~),,(~

0

2222
0 zyx kkkk 

there is no integral over kz because once kx and ky
are fixed, kz is constrained by dispersion relation

2.2 Paraxial Wave Equation
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Figure 2.2: Construction of paraxial beam by superimposing 
many plane waves with a dominant k-component in z-direction

Consider a beam which consists of plane waves propagating at small angles 
with z axis

z
k

y
x

zx kk 

zy kk 

kz can be approximated as

(paraxial approximation)

such a beam
is called a

paraxial beam

Paraxial Beam
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  yxzyxyx dkdkzjkyjkxjkkkEzyxE  
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0 2
exp),(~),,(~ 0

slowly varying envelope
(changing slowly along z)

quickly varying 
phase

Allows to find field distribution at any point in space.

The beam profile is changing as it propagates in free space.
This is called diffraction.

Paraxial Diffraction Integral



17

From the previous slide
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0 2
exp),(~),,(~ 0

At z=0

  yxyxyx dkdkyjkxjkkkEzyxE  







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This is Fourier integral. Using Fourier transforms: 

 dxdyyjkxjkzyxEkkE yxyx  
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20 

Given the field at some plane (e.g. z=0), how to find the field at any z?

)0,,(~ zyxEKnowing can find ),(~
0 yx kkE and then ),,(~ zyxE at any z.

Paraxial Diffraction Integral – Finding Field at Arbitrary z
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Choose transverse Gaussian distribution of plane wave amplitudes:

called  Rayleigh range.

Performing the integration (i.e. taking Fourier transforms of a Gaussian)

with

(Via Fourier transforms, this is equivalent to choosing Gaussian transversal 
field distribution at z=0)

Substitution into paraxial diffraction integral gives

2.3 Gaussian Beam
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The quantity                        can be expressed as
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Finally, the field is normalized, giving
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Field of a 
Gaussian beam

Normalization means that the total power carried by the beam is P:

Final Expression for Gaussian Beam Field
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Gaussian Beams: Spot Size and Rayleigh Range
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Gaussian Beams: Phase Distribution
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Field of a 
Gaussian beam

We derived

defines phase 
distribution

We had

Phase fronts (surfaces of constant phase) are parabolic, can be approximated 
as spherical for small r. R(z) turns out to be the radius of the sphere.

Radius of 
wavefront 
curvature

Defines extra phase shift as compared to plane wave
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Gaussian Beams: All Equations in One Slide
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Intensity Distribution

Figure 2.3: The normalized beam intensity I/I₀ as a function of the radial distance 
r at different axial distances: (a) z=0, (b) z=zR (c) z=2zR.

z=0 z=zR z=2zR
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Spot Size as a Function of z
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26Figure 2.5: Gaussian beam and its characterisitics

Beam Divergence:

Confocal parameter and depth of focus:
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Figure 2.4: Normalized beam intensity I(r=0)/I₀ on the beam axis as a function of 
propagation distance z. 
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r=0
Intensity distribution along Z 

axis (r=0)

Axial Intensity Distribution
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Power Confinement

99% of the power is within radius of 1.5w(z) from the axis

Which fraction of the total power is confined within radius r0 from the axis?

Dependence is 
exponential
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Figure 2.8: Wavefronts of Gaussian beam

Wavefronts, i.e. surfaces of constant phase, are parabolic

constant

Wavefront Shape
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Figure 2.7: Radius of curvature R(z)

Wavefront radius of curvature:
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Figure 2.9: Wavefronts of (a) a uniform plane wave, (b) a spherical 
wave; (c) a Gaussian beam.
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Comparison to Plane and Spherical Waves
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Figure 2.6: Phase delay of Gaussian beam, Guoy-Phase-Shift

Phase delay of Gaussian Beam, Guoy-Phase Shift:

Guoy Phase Shift



33

Planes of const.
 Phase

Beam Waist

z/z R

Gaussian Beams: Summary
• Solution of wave equation in paraxial approximation

• Confined in space and contains finite amount of power

• Intensity distribution in any cross-section has the same shape (Gaussian), 
only size and magnitude is scaled

• At the waist, the spot size is smallest and wavefronts are plane

• Lasers are usually built to generate Gaussian beams

Figure 2.66: Gaussian beam and its characterisitics



Figure 2.10: Description of optical ray propagation by its distance 
and inclination from the optical axis.
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2.4 Ray Propagation



Figure 2.11: Snell’s law for paraxial rays.

Z

r’1 r2

r’2
r1

1 2

n1 n2

2

1

35



Figure 2.12: Free space propagation
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Figure 2.13: Ray propagation through a medium with refractive index n.
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Figure 2.14: Derivation of ABCD-matrix of a thin plano-convex lens.
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Figure 2.15: Imaging of parallel rays through a lens with focal length f

f

r1

z
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Figure 2.16: Derivation of Ray matrix for concave mirror with Radius R.
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Figure 2.17: Gauss’ lens formula.
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Figure 2.18: Gaussian beam transformation by ABCD law.
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Figure 2.19: Focussing of a Gaussian beam by a lens.

d1 d2

zR1 zR2
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Figure 2.20: Fabry-Perot Resonator with finite beam size.

z1

w0

L

z2

R1 R2

2.6 Optical Resonators
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Figure 2.21: Curved-Flat Mirror Resonator

z1 L

R1

=

Curved-Flat Mirror Resonator

with
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Figure 2.22: Beam waists of the curved-flat mirror resonator as a 
function of L/R1.

For given R1

48



Figure 2.20: Fabry-Perot Resonator with finite beam size.
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R1 R2

Two Curved Mirror Resonator
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Two Curved Mirror Resonator

by symmetry:

and:

Or:

50



Figure 2.23: 
Two curved mirror resonator.
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Figure 2.75: Stable regions (black) for the two-mirror resonator

L

0 R2 1R  +R  2
R1

Resonator Stability

Or introduce cavity parameters:
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Figure 2.24: Stability Criterion

Geometrical Interpretation
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Figure 2.26: Stable and unstable resonators

R1 R2 R1 R2

Stable Unstable
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Hermite Gaussian Beams
Other solutions to the paraxial wave equation:

Hermite Polynomials:
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Figure 2.27: Hermite Gaussians Gl(u) .

Hermite Gaussian Beams
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Figure 2.28: Intensity profile of TEMlm-beams. by ABCD law.
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Special Case: Confocal Resonator: L = R  

Axial Mode Structure:
Roundtrip Phase = 2 p 

Resonance Frequencies:

2 1( ) ( )
2

z z   
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Figure 2.29: Resonance frequencies of the confocal Fabry-Perot resonator,

d=L
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