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Instruction: Please write your answer to each problem on separate paper sheet. If you 
are using programming language to do numerical simulations, attach the original code 
with your answers. 
 

Problem 4.1: the Nonlinear Schrödinger Equation (NSE) and optical soliton (15 points in 
total) 

The Nonlinear Schrödinger Equation is written as follows, (here we assume 𝐷" < 0) 

𝜕𝐴(𝑧, 𝑡)
𝜕𝑧

= 𝑗𝐷"
𝜕"𝐴(𝑧, 𝑡)
𝜕𝑡"

− 𝑗𝛿|𝐴(𝑧, 𝑡)|"𝐴(𝑧, 𝑡) 

(a) Show by using the following transform 
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 the NSE can be rewritten in to the normalized form 
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− 𝑗|𝑢(𝜉, 𝜏)|"𝑢(𝜉, 𝜏). (5 points) 

(b) Prove that  𝑢(𝜉, 𝜏) = sech	( B
√"
) ∙ exp	(−j ;

"
) is the solution to the normalized NSE.(5 

points) 
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(c) Ultrafast optical solitons have been generated in optical fiber SMF-28 at λ = 1.55	µm. 
Using pulses from mode-locked lasers, hyperbolic-secant pulses with τ5 = 4	ps were 
obtained after 700 m propagation in the optical fiber. The nonlinear index coefficient of 
the fiber is n" = 3 × 10]"5m"/W. Calculate the corresponding peak intensity and the 
corresponding peak power of the soliton. (5 points) 



Hint: the relationship between fiber dispersion 𝐷(𝜆) characterized by fiber communication 
community and group velocity dispersion 𝛽"	𝑜𝑟	𝐷" can be found at RP-Photonics website, 
http://www.rp-photonics.com/group_velocity_dispersion.html . 

Problem 4.2: The Split-Step Fourier method (15 points in total) 

The normalized Nonlinear Schrödinger Equation (NSE) can be numerically solved using the 
Split-Step Fourier transform. Firstly the NSE can be understood in the following way 

𝜕𝑢(𝜉, 𝜏)
𝜕𝜉

= L𝐷d + 𝑁dM𝑢(𝜉, 𝜏) 

as the simultaneous action of a dispersion operator 𝐷d = −𝑗 9
=:(;,<)
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 (assume the dispersion is 
negative), and a nonlinear operator 𝑁d = −𝑗|𝑢(𝜉, 𝜏)|". If the linear and nonlinear changes for the 
pulse evolution are small within a short distance of propagation Δ𝜉, the solution of the NSE can 
be symbolically written as 

𝑢(Δ𝜉, 𝜏) = 𝑒(3dN	id)j;𝑢(0, 𝜏) 

and approximated by 

𝑢(Δ𝜉, 𝜏) = 𝑒
k
=3dj;𝑒idj;𝑒

k
=3dj;𝑢(0, 𝜏). 

One can show that iterative application of this propagation step only leads to an error of order 
∆𝜉Q. Since the linear operator can be easily applied in the Fourier domain and the nonlinear 
operator (self-phase modulation only) in the time domain, one can simulate the NSE over one 
propagation step ∆𝜉 by the following algorithm 

𝑢(ξ + Δ𝜉, 𝜏) = 𝐹]O[𝑒
k
=pq

=j;𝐹[𝑒]p|:(;,<)|=j;𝐹]O[𝑒
k
=pq

=j;𝐹[𝑢(𝜉, 𝜏)]]]]. 

where Ω = 𝜔 −𝜔5 is the difference between the real frequency and the carrier frequency. 

(a) Dispersion effect on pulse evolution. The electric field of an unchirped Gaussian pulse is 
written as 𝐸(0, 𝑡) = A5 ∙ exp(−𝑡"/2𝜏5") ∙ exp	(𝑖𝜔5𝑡), where 𝜏5 = 100	𝑓𝑠 and the center 
wavelength of such pulse locates at 1550 nm. We let the pulse propagate inside optical 
fiber SMF-28 and we do NOT consider the nonlinear effect. Moreover, we ONLY 
consider second order dispersion effect. What is the characteristic dispersion length 𝐿3 
(based on the definition in Problem 2.1)? Plot the intensity distribution of such pulse at 0, 
1𝐿3, 2𝐿3,	3𝐿3 and 4𝐿3 (You can use normalized scale. Indicate proper axis label, i.e. 
𝑡/𝜏5). Is the pulse positively chirped or negatively chirped after propagation? (5 points) 
 

(b) Nonlinear effect on the evolution of the pulse spectrum. Ignore the dispersion effect, the 
nonlinear pulse evolution can be written as 𝑢(Δ𝜉, 𝜏) = 𝑒idj;𝑢(0, 𝜏), where 𝑁d = −𝑗|𝑢(𝜉, 𝜏)|" 
and we have changed the NSE to its normalized form. Plot the spectrum 𝑆(Ω) = |𝑢|(Ω)|" 



as the pulse accumulates different nonlinear phase 𝜙i~ = |𝑢(𝜉, 0)|" = 0, �
"
, 𝜋, Q

"
𝜋 and 2𝜋 

assuming 𝑢(0, 𝜏) = exp(−𝜏"). (5 points) 
 

(c) Write a program and simulate the normalized NSE for the following initial pulse 

𝑢(0, 𝜏) = 𝑁 ∙ sech	(𝜏/√2) 

for N = 1,2 and 3. Make use of the Fast Fourier Transform (FFT) and use at least 1024 
points. Plot the pulse shape (in the time domain) and corresponding amplitude spectra 
(in the frequency domain) as a function of propagation distance. (5 points) 

  



Problem 4.3: Pulse compression (15 points in total) 

A pulse propagating through an optical fiber becomes frequency modulated due to self-phase 
modulation (SPM). The pulse is chirped and can be represented by 

A(t) = e]�k�= ∙ e]��=�= ∙ e���� = e]��= ∙ e���� 

with Γ = ΓO + iΓ", where ΓO determines the initial pulse width and Γ" determines the 
corresponding chirp due to SPM (in the following context, we assume Γ" is positive). The pulse 
can be compressed by the addition of dispersion generated by a grating pair or prism pair. 

A�(ω) = A(ω) ∙ e��=(�]��)=. 

(a) We assume the input pulse has a Gaussian shape (i.e. ΓO =
O
"<=

) and we take the action 
of self-phase modulation into account by expanding the nonlinear phase shift up to 
second order in time, so that the first equation in this problem can be applied. What 
would be the new value for Γ′ of the new pulse in terms of ΓO, Γ" and 𝐷"? (5 points) 
 

(b) If we reduce the amount of the nonlinear phase shift introduced by self-phase 
modulation, we can compress the initial pulse. What is the peak nonlinear phase shift, 
𝜙5 = −Γ"𝜏", necessary to shorten the pulse by a factor of 2 (in terms of FWHM of the 
intensity)? (5 points) 
 

(c) What is the necessary dispersion to compress the pulse? Express the final answer in 
terms of 𝜏. Can you find the reason why making negative dispersion with an artificial 
structure, such as prism-pair, grating-pair or chirped mirror (which will be shown later in 
this course), is important in pulse compression? (5 points) 
 

  



Problem 4.4: Diffraction Grating Pair (30 points in total) 

 

Figure 1: (Left): Schematic 1, (Right): Schematic 2. 

(a) Derive from simple geometric principles a condition for the angle 𝜃�  of maximum 
diffraction, as a function of wavelength 𝜆, the incident angle 𝜃�, the grating period Λ, and 
the diffraction order 𝑚. Based on your answer, for which diffraction orders can the grating 
pair be used for generation of negative dispersion? (4 points) 
 

(b) In Fig. 1 the x-plane is defined by beginning and end of the optical path 𝑝��� = 𝑃𝐴𝑄𝐵�������� of 
an infinitely thin laser beam that is normal to the plane. Calculate this optical path as a 
function of 𝜆, 𝜃�, 𝜃�, the diffraction order 𝑚 and the grating distance 𝐿�. What is the phase 
delay Φ��� corresponding to this optical path? (4 points) 
 
 

(c) Considering the finite beam cross-section, as indicated in schematic 2, an additional 
phase shift Φ� must be added to account for the phase-matching provided by the grating. 
Schematic 2 shows that this adjustment is necessary, because the planes (𝐶𝐸) and (𝐷𝐸) 
represent planes with constant phase, and the grating must compensate the extra paths 
𝛿� = 𝐶𝐵���� and 𝛿� = 𝐵𝐷���� travelled by the lower part of the beam with an appropriate phase 
shift. Deduce, again from geometric considerations, similar to part (a), this phase shift Φ� 
as a result of phase matching! What is the total phase shift Φ = Φ��� + Φ�? That is, 
calculate the phase shift from the total path difference. (It is essential here to observe the 
correct choice of signs!) (For more details consult the book by H. A. Haus: Waves and 
Fields in Optoelectronics, Chapter 2.6).  (6 points) 
 

(d) Calculate the group delay 𝑇� =
� 
9¡

 and the second-order dispersion 𝐷" =
9¢£
9¡

. What is the 
dispersion relation for a four-grating compressor? For what reason is a second grating 
pair used? (8 points) 



 
(e) Example: Laser pulses with 200	𝑓𝑠 duration at a center wavelength of 800	𝑛𝑚 shall be 

delivered to a medical imaging system through a 1	𝑚  long quartz fiber. To avoid 
broadening of the pulse the second order dispersion of the fiber link shall be 
compensated with grating pairs. Two grating pairs with 600 grooves per mm are given 
and shall be used at an angle of incidence of 50 degrees. What grating distance is 
necessary to compensate the second-order dispersion of the fiber when the grating is 
optimized for the diffraction order 𝑚 = −1 (Blazed grating)? (8 points) 

 


