
1

Ultrafast Optical Physics II (SoSe 2019) 
Lecture 9, June 7

9  Pulse Characterization

9.1 Intensity Autocorrelation

9.2 Interferometric Autocorrelation (IAC)

9.3 Frequency Resolved Optical Gating (FROG)

9.4 Spectral Shearing Interferometry for Direct 
Electric Field Reconstruction (SPIDER)
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Ultrafast laser: the 4th element—mode locker
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Measurement of pulse quantities using ‘meters’

Physical 
quantity

Measuring 
device

Average power Power meter
Repetition rate RF spectrum 

analyzer
Optical spectrum Optical spectrum 

analyzer (OSA)
Optical pulse Pulse meter (?)
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Optical Metrology: Autocorrelation methods
The laser pulse

carrier frequency w0

Temporal phase of the pulse

Instantaneous frequency

For a gaussian pulse



The laser pulse

Transform-limited pulse Chirped pulse

Temporal phase of the pulse

Instantaneous frequency

Optical Metrology: Autocorrelation methods



The laser pulse
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Optical Metrology: Autocorrelation methods



Measure pulse in time domain using photo-detectors

Examples:  Photo-diodes, Photo-multipliers

Photo-detectors are devices that emit electrons in response to photons.

Detectors have very slow rise and fall times:  ~ 1 nanosecond.

The detector output voltage is proportional to the pulse energy.
By themselves, detectors tell us little about a pulse.
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As far as we’re concerned, detectors have infinitely slow responses.
They measure the time integral of the pulse intensity from –¥ to +¥:
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Field autocorrelation measurement is equivalent to measuring the spectrum.

Pulse measurement by field autocorrelation
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Comments on field correlation measurement
The information obtained from
measuring electric field 

correlation and measuring the 
optical power spectrum is 
identical.

The correlation time is roughly 
the inverse of the optical 
bandwidth.

Field correlation measurement 
gives no information about the 
spectral phase.

Field correlation measurement 
cannot distinguish a transform-limited pulse from a longer chirped pulse with the 
same bandwidth. 

Coherent ultrashort pulse and continuous-wave incoherent light (i.e., noise) with 
the same optical spectra give the same result.
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How to measure both pulse intensity profile and the 
phase?

V. Wong & I. A. Walmsley, Opt. Lett. 19, 287-289 (1994)
I. A. Walmsley & V. Wong, J. Opt. Soc. Am B, 13, 2453-2463 (1996) 

Result: Using only time-independent, linear filters, complete 
characterization of a pulse is NOT possible with a slow detector.

Translation:  If you don't have a detector or modulator that is fast 
compared to the pulse width, you CANNOT measure the pulse 
intensity and phase with only linear measurements, such as a 
detector, interferometer, or a spectrometer.

We need a shorter event, and we don’t have one.
But we do have the pulse itself, which is a start.  
And we can devise methods for the pulse to gate itself using 
optical nonlinearities.
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Background-free intensity autocorrelation
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Crossing beams in an second-harmonic generation (SHG) crystal, 
varying the delay between them, and measuring the second-harmonic 
(SH) pulse energy vs. delay yields the Intensity Autocorrelation: 

ESH(t,t ) µ E(t)E(t - t )

The Intensity Autocorrelation:
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Square pulse and its autocorrelation
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Gaussian pulse and its autocorrelation

Pulse Autocorrelation
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Pulse Autocorrelation
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Sech2 pulse and its autocorrelation
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Theoretical models for passively mode-locked lasers often predict sech2

pulse shapes.
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Lorentzian Pulse and Its Autocorrelation

Pulse Autocorrelation
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t

I t( ) = I0(t) + I0 (t +t sep)

tsep

Pulse

A 2( ) t( ) = A0
2( ) t +t sep( )+

2A0
2( ) t( ) + A0

2( ) t - tsep( )

A0
(2) t( ) = I0(t) I0(t -t )ò dtwhere:

t

tsep

Autocorrelation

Double pulse and Its Autocorrelation



16130 fs^2
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20740 fs^2 8725 fs^2

4550 fs^2 -3840 fs^2
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(4) (5) (6)

Optimizing the amplifier system using intensity 
autocorrelation measurement 

W. Liu, et al. �Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulse� Opt. 
Lett. 40, 151 (2015). 17



Caution: Autocorrelation is not un-ambiguous!
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These complex intensities have nearly Gaussian autocorrelations !

Autocorrelation contains only partial phase information, 
- must be applied carefully
- fails for complex pulses containing higher order phase terms...

Properties of intensity autocorrelation



Properties of intensity autocorrelation

)()( tt -= ACAC II

1) It is always symmetric, and assumes its maximum value at τ = 0.

2) Width of the correlation peak gives information about the pulse width.

3) Pulse phase information is missing from the background-free Intensity 
autocorrelation.

4) Intensity autocorrelation trace is broader than the pulse itself. To get the pulse 
duration, it is necessary to assume a pulse shape, and to use the 
corresponding deconvolution factor.

4) For short pulses, very thin crystals must be used to guarantee enough phase-
matching bandwidth. This reduces the efficiency and hence the sensitivity of 
the device.

5) Conversion efficiency must be kept low, or distortions due to “depletion” of 
input light fields will occur.

6) The Intensity autocorrelation is not sufficient to determine the intensity profile.
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An alternative approach is to use a collinear beam geometry, and allow the 
autocorrelator signal light to interfere with the SHG from each individual beam

Autocorrelation termNew terms

Interferometric autocorrelation



Where:

Interferometric autocorrelation



From the math we can extract 4 terms:

= Iback

= Iint

= Iω

= I2ω

Background

Intensity 
autocorrelation

Interferogram
of E(t), 
oscillating at ω

Interferogram of the 
SH oscillating at 2ω

IA(2)(t = 0) = 8 IA(2)(τà ∞ ) = 1

Interferometric autocorrelation



IAC of 10 fs Sech-shaped pulse

The interferometric autocorrelation simply combines several measures
of the pulse into one (admittedly complex) trace. Conveniently, however,
they occur with different oscillation frequencies:  0, w, and 2w.

3:1, Intensity 
autocorrelation
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Effects of second-order dispersion

Indication 
of strong 
chirp
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Effects of third-order dispersion
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Effects of self-phase modulation

26



Interferometric autocorrelation also have ambiguities

Interferometric autocorrelation



• It is always symmetric and the peak-to-background ratio should be 8.
• This device is difficult to align; there are several sensitive degrees of 

freedom in aligning two collinear pulses.
• Dispersion in each arm must be the same, so it is necessary to

insert a compensator plate in one arm.
• Using optical spectrum and background-free intensity autocorrelator

can determine the presence or absence of strong chirp. The 
interferometric autocorrelation serves as a clear visual indication of 
moderate to large chirp.

• It is difficult to distinguish between different pulse shapes and, 
especially, different phases from interferometric autocorrelations.

• Like the intensity autocorrelation, it must be curve-fit to an assumed 
pulse shape and so should only be used for rough estimates.

Properties of interferometric autocorrelation



1) A pulse can be represented by two arrays of data with length N, one for 
the amplitude/intensity and the other for the phase. Totally we have 2N 
degrees of freedom (corresponding to the real and imaginary parts for 
the electric field).

2) Intensity autocorrelator provides only one array of data with length N. 
Optical spectrum measurement can provide another array of data with 
length N. However some information, especially about phase, is missing 
from both measurements. 

3) Need to have more data, providing enough redundancy to recover the 
both the amplitude and phase. 

How to generate more data (information) from intensity autocorrelation 
measurement?

How to measure both pulse intensity profile and the 
phase?
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Pulse gating in background-free intensity autocorrelation

Varying the delay yields varying overlap between the two replicas of the pulse.

The intensity autocorrelation is only nonzero when the pulses overlap.

How about measuring the spectrum of the autocorrelation pulse at each delay?
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Frequency-Resolved Optical Gating (FROG): SHG-FROG

2
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FROG
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Background-free intensity autocorrelator + optical spectrum analyzer 

ESH(t,t ) µ E(t)E(t - t )

Now we have N X N data points. Iterative algorithm can retrieve both the 
amplitude and phase of the measured optical pulse.
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SHG FROG traces are symmetrical with respect to 
delay
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SHG FROG has an ambiguity in the direction of time, but it can be 
removed.

1

0
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SHG FROG measurements of a 4.5-fs pulse

Baltuska, 
Pshenichnikov, 
and Weirsma,
J. Quant. Electron., 
35, 459 (1999).

Agreement 
between the 
experimental 
and 
reconstructed 
FROG traces 
provides a 
nice check on 
the 
measurement.
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The spectrogram tells the color and intensity of E(t) at the time, t.

We must compute the spectrum of the product:  E(t) g(t-t)

Esig(t,t)

g(t-t)

g(t-t) gates out a 
piece of E(t), 
centered at t.

Example:
Linearly 
chirped 
Gaussian
pulse
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Spectrogram of a pulse in general
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If E(t) is the waveform of interest, its spectrogram is:

2

( , ) ( ) ( ) exp( )E E t g t i t dtw t t w
¥

-¥
S º - -ò
where g(t-t) is a variable-delay gate function and t is the delay.

Without g(t-t), SE(w,t) would simply be the spectrum.

The spectrogram is a function of w and t. 
It is the set of spectra of all temporal slices of E(t).

Mathematical form of a spectrogram
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The spectrogram resolves the dilemma!  It doesn’t need the shorter 

event! It temporally resolves the slow components and spectrally 

resolves the fast components.

1) Algorithms exist to retrieve E(t) from its spectrogram.

2) The spectrogram essentially uniquely determines the waveform 

intensity, I(t), and phase, f(t).
There are a few ambiguities, but they’re “trivial.”

3) The gate need not be—and should not be—much shorter than E(t).
Suppose we use a delta-function gate pulse:

2
2( ) ( ) exp( ) ( ) exp( )E t t i t dt E id t w t wt

¥
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2( )E t= = The Intensity.
No phase information!

Properties of spectrogram
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FROG using arbitrary nonlinear-optical interactions
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FROG is simply a frequency-resolved nonlinear-optical signal that’s a 
function of time and delay (or another variable)

Pulse to be 
measured

Nonlinear process 
in which a beam(s) 
is (are) delayed or 
varied in some way.

( , )sigE t t =
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Spectrometer

Camera

SHG
PG
SD
THG

Use any nonlinear-optical 
process that is fast 
enough

FROG provides N X N data points. With an iterative multi-dimensional algorithm 
it is possible to retrieve both the amplitude and phase of the measured optical 
pulse.

Frequency-Resolved Optical Gating (FROG)
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Measure the spectrum of the sum of a known and unknown pulse

Retrieve the unknown pulse from the spectral fringes

Beam splitter

T

Frequency

1/T 
T = time delay
(to generate 

spectral fringes)

Unknown 
pulse

Known 
reference 
pulse Spec-

trometer

Camera

( ) ( ) 2 ( ) cos[ ( ) ]( )( ) ( )unk unk unSI ref ref refkS SS S TSw w w j wj ww w w= + + - +

General concept of spectral interferometry



w0 Frequency

IFFT
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0 “Time”
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&
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0 “Time”

“AC” terms:
phase information

This retrieval algorithm is quick, direct, and reliable 
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Intensity
Phase
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in the 
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A reference pulse is usually not available!

General concept of spectral interferometry



Spectral Phase Interferometry for Direct Electric-Field Reconstruction 
(SPIDER)

If we perform spectral interferometry between a pulse and itself, the spectral 
phase cancels out.  Perfect sinusoidal fringes always occur:

( ) ( ) ( ) 2 ( ) ( ) cos[ ( ) ( ) ]SI unk unk unk unk unk unkS S S S S Tw w w w w j w j w w= + + - +

This measures the derivative of the spectral phase (the group delay)

( ) ( ) ( ) 2 ( ) ( ) cos[ ( ) ( ) ]SIS S S S S Tw w w dw w w dw j w dw j w w= + + + + + - +

( ) ( )SPIDER
dT T
d
jf j w dw j w w dw w
w

= + - + = +

group delay vs. w
frequency shear

Time delay

SPIDER approach:

Spectral interferometry
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2) Create two replicas 
of the pulse

Input/output pulses

SFG

T

1) Make a very chirped 
pulse

Pulses 
before 
crystal
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after 
crystal

Frequency
shear
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3) Frequency shift the 
2 replicas by SFG with 
the broadband pulse 
and perform SI

Spectral Phase Interferometry for Direct Electric-Field Reconstruction 
(SPIDER)

Spectral interferometry



• Complex 
experimental setup

• T and δω must be 
carefully calibrated!

Spectral Phase Interferometry for Direct Electric-Field Reconstruction 
(SPIDER)

Spectral interferometry



Extraction of the spectral phase

Measurement of 
the interferogram

Extraction of their spectral 
phase difference using 
spectral interferometry

j (w + dw)-j(w) )(wj

Integration of the phase

Frequency domain Time domain

Spectral interferometry


