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Ultrafast Optical Physics II (SoSe 2019) 
Lecture 5, May 10

Part I

(1) Kerr nonlinearity and self-phase modulation

(2) Nonlinear Schrödinger equation and soliton 
solution

(3) Soliton perturbation theory
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Interaction between EM waves and materials

Light wave perturbs material

Perturbed material alters the 
light wave

Examples of changes to light wave: Frequency�amplitude, phase, 
polarization state, direction of propagation, transverse profile

Output of a linear optical system with multiple inputs is simply the
field summation of the outputs for each individual input.

Linear 
Optical 
System
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Intensity dependent nonlinear refractive index

So the refractive index is:

P = e0 c (1)E + c (3) E 2 E[ ]

In general, a medium responses nonlinearly to an optical field. Here we
are interested in intensity dependent nonlinear refractive index arising from
the third-order nonlinearity:  

= e0 c (1) + c (3) E 2[ ]E
Substituting the polarization into the wave equation
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n = 1+ c (1) + c (3) E 2
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Usually we define a “nonlinear refractive index”, n2,L:

The refractive index in the presence of linear and nonlinear polarizations:

Assume that the nonlinear term << n0:

Now, the usual refractive index (which we’ll call n0) is:

So:

n = 1+ c (1) + c (3) E 2

n0 = 1+ c (1)

n = n0
2 + c(3) E 2

= n0 1 + c (3) E 2 / n0
2So:

n » n0 1+ c (3) E 2 / 2n0
2[ ]

n » n0 + c(3) E 2 / 2n0 since:
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Intensity dependent nonlinear refractive index
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Kerr effect: refractive index linearly dependent on light intensity.
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Who is Kerr?

John Kerr (1824-1907) was a Scottish physicist. 
He was a student in Glasgow from 1841 to 
1846, and at the Theological College of the Free 
Church of Scotland, in Edinburgh, in 1849. 
Starting in 1857 he was mathematical lecturer at 
the Free Church Training College in Glasgow. 

He is best known for the discovery in 1875 of 
what is now called Kerr effect—the first 
nonlinear optical effect to be observed. In the 
Kerr effect, a change in refractive index is 
proportional to the square of the electric field. 
The Kerr effect is exploited in the Kerr cell, 
which is used in applications such as shutters in 
high-speed photography, with shutter-speeds as 
fast as 100 ns. 

John Kerr, c. 1860, 
photograph by Thomas Annan



Magnitude of nonlinear refractive index

1) A variety of effects give rise to a nonlinear refractive index.
2) Those that yield a large n2 typically have a slow response.
3) Nonlinear coefficient can be negative.
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Kerr effect for an optical beam: self focusing

Due to diffraction, a lens can only focus a 
beam to a finite size
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For           , Kerr effect in a medium acts as a 
positive lens for a Gaussian beam—the 
beam’s center experiences larger refractive 
index than the edge. If the peak power 
exceeds a critical power, self focusing 
overtakes diffraction and the beam converges 
rapidly leading to material damage.
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Example: self focusing critical power in 
fused silica
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Focusing an optical beam at three different powers 
red: low power green: near critical power 
blue: above critical power
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Pulse shape does not change, 
but the pulse acquires nonlinear 
phase:  

Note that here the pulse profile 
has been re-normalized so that 
its square gives intensity:
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Kerr effect for an optical pulse: self-phase modulation
In a purely one dimensional propagation problem, the intensity dependent 
refractive  index imposes an additional self-phase shift on the pulse envelope 
during propagation, which is proportional to the instantaneous intensity of the 
pulse: 
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Self-phase modulation (SPM): 
Nonlinear phase modulation of a pulse, caused by its own intensity  
via the Kerr effect.
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SPM induces positive chirp
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SPM modifies spectrum
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fNL = 0

fNL = 1.5 p
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fNL = 0

fNL = 5.5 p

Spectral bandwidth is proportional to the amount of nonlinear phase accumulated 
inside the fiber.

pf ´-» )
2
1(MNL is the number of spectral peaks.M



Input: Gaussian pulse, Pulse duration = 100 fs, Peak power = 1 kW
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Pulse propagation: pure dispersion Vs pure SPM

• Pure dispersion
(1) Pulse’s spectrum acquires phase.
(2) Spectrum profile does not change.
(3) In the time domain, pulse may be stretched or compressed 

depending on its initial chirp .

• Pure SPM
(1) Pulse acquires phase in the time domain.
(2) Pulse profile does not change.
(3) In the frequency domain, pulse’s spectrum may be broadened 

or narrowed depending on its initial chirp.
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Nonlinear Schrödinger Equation (NLSE)

NLSE has soliton solution.
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Positive GVD (normal dispersion) + SPM: 

GVD and SPM both act to shift the red frequency to the front of the 
pulse. Therefore the pulse will spread faster than it would in the purely 
linear case.

Negative GVD (anomalous dispersion) + SPM:

GVD and SPM shift frequency in the opposite 
direction. At a certain condition, the dispersive 
spreading of the pulse is exactly balanced by the 
compression due to the opposite chirp induced by 
SPM. A steady-state pulse can propagate without 
changing its shape. (i.e. soliton regime)



In mathematics and physics, a soliton is a self-reinforcing solitary 
wave (a wave packet or pulse) that maintains its shape while it 
travels at constant speed. Solitons are caused by a cancellation of 
nonlinear and dispersive effects in the medium. ---Wiki

§ When two solitons get 
closer, they gradually 
collide and merge into a 
single wave packet.

§ This packet soon splits into 
two solitons with the same 
shape and velocity before 
"collision".

General properties of soliton

14



Who discovered soliton?

John Scott Russell (1808-1882)

Report of the fourteenth meeting of the 
British Association for the Advancement of 
Science, York, September 1844 (London 
1845), pp 311-390, Plates XLVII-LVII).

John Scott Russell (1808 – 1882) 
was a Scottish civil engineer, naval 
architect and shipbuilder. 

In 1834, while conducting 
experiments to determine the most 
efficient design for canal boats, 
John Scott Russell made a 
remarkable scientific discovery, 
leading to a conference paper—
Report on Waves. 
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Russell’s report

“I was observing the motion of a
boat which was rapidly drawn
along a narrow channel by a pair of
horses, when the boat suddenly
stopped - not so the mass of water
in the channel which it had put in
motion; it accumulated round the
prow of the vessel in a state of
violent agitation, then suddenly
leaving it behind, rolled forward
with great velocity, assuming the
form of a large solitary elevation, a
rounded, smooth and well-defined
heap of water, which continued its
course along the channel
apparently without change of form
or diminution of speed.”

“I followed it on horseback, and
overtook it still rolling on at a rate
of some eight or nine miles an
hour, preserving its original figure
some thirty feet long and a foot to
a foot and a half in height. Its
height gradually diminished, and
after a chase of one or two miles I
lost it in the windings of the
channel. Such, in the month of
August 1834, was my first chance
interview with that singular and
beautiful phenomenon which I
have called the Wave of
Translation.”

Report of the fourteenth meeting of the British Association for the Advancement of Science, 
York, September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).
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Water wave soliton in Scott Russell Aqueduct

89.3m long, 4.13m wide,1.52m deep, On the union Canal, Near 
Heroit-Watt Univ.

www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt
17



Solita
ry wave

Water wave soliton in Scott Russell Aqueduct

www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt
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A brief history (mainly for optical soliton)

§ 1838 – soliton observed in water

§ 1895 – KdV equation: mathematical description 
of waves on shallow water surfaces.

§ 1972 – optical solitons arising from NLSE

§ 1980 – experimental demonstration in optical 
fibers

§ 1990’s – development of techniques to control 
soliton

§ 2000’s – understanding soliton in the context of 
supercontinuum generation 
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Soliton solution of NLSE�fundamental soliton
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The NLSE possesses the following genereral fundamental soliton solution:

A phase linearly proportional to propagation 
distance:
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Sech pulse
Gaussian pulse

Soliton is the result of balance 
between nonlinearity and dispersion.

nonlinearity dispersion



Propagation of fundamental soliton

Input: 1ps soliton centered at 1.55 um; medium: single-mode fiber 21



Balance between dispersion and nonlinearity

Important Relations

22

Phase acquired during soliton propagation

Soliton pulse area

Soliton energy

Pulse width



Higher-order Solitons: periodical evolution in 
both the time and the frequency domain
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G. P. Agrawal, Nonlinear fiber optics (2001) 
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Figure 3.4: A soliton with high carrier frequency collides with a soliton of lower carrier 
frequency.

Interaction between solitons (soliton collision)
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Input to NLSE:

G. P. Agrawal, Nonlinear fiber optics (2001) 

Interaction of two solitons at the same center frequency
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Interactions of two fundamental solitons
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From Gaussian pulse to fundamental soliton
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Gaussian pulse to 3-order soliton
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Evolution of a super-Gaussian pulse to soliton
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Soliton perturbation theory: a very brief introduction

Perfect World
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Four degrees of freedom:

Without perturbations
Galilei transformation to a moving reference frame

Reality: Perturbations

What happens to the soliton in the presence of perturbations? Will it fall apart?

Is it just kicked around? If yes, can we understand how it is kicked around?



Soliton perturbation theory: a very brief introduction

Ansatz: Solution of perturbed equation is a soliton + a small component:

with:
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Any deviation       can be decomposed into a contribution that leads to a soliton 
with a shift in the four soliton parameters and a continuum contribution:
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Soliton instabilities by periodic perturbations

Long haul opt. communication link Modelocked fiber laser

Fiber Fiber Fiber

AmplifierAmplifier

zA
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Amplification every roundtrip in the oscillator results in a periodic perturbation leading to the 
appearance of sidebands in the soliton spectrum



Rogue wave

Find more information from New York times: 
http://www.nytimes.com/2006/07/11/science/11wave.html 33



One more Rogue wave

34
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(1) Pulse  compression: general idea

(2) Dispersion compensation

Ultrafast Optical Physics II (SoSe 2019) 
Lecture 5, May 10

Part II



Examples of ultrafast solid-state laser media

Broader gain bandwidth produces shorter laser pulses.
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Transform-limited pulse
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has a spectrum bandwidth of nD

has a pulse duration of tD

Both are measured 
at full-width at half-
maximum (FWHM).

Uncertainty principle: Kt ³DDn
Time Bandwidth Product (TBP) A number depending 

only on pulse shape

For a given optical spectrum, there exist a lower limit for the pulse duration. 
If the equality is reached, we say the pulse is a transform-limited pulse.

To get a shorter transform-limited pulse, one needs a broader optical 
spectrum. 
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How to achieve ultrashort pulse?
To compress or not to compress
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General idea of pulse compression

spectral broadening by 
light-matter nonlinear 

interaction
)(
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Step 1: nonlinear spectral broadening

0w 0w

Step 2: pulse compression by a linear dispersive device
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pick up an extra 
spectral phase
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This condition guarantees a transform-limited pulse—the shortest 
pulse allowed by the spectrum.



Pulse travels through a dispersive bulk medium
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time t

Instantaneous 
Frequency

time t

Instantaneous 
Frequency

Transform-limited pulsePositive chirp

A dispersion compensating device can compensate for the spectral phase and 
then compress the stretched pulse to its transform-limited duration.
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General idea of pulse compression

Ideal scenario: 
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The broader the spectrum, the more higher-order dispersion 
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Dispersion parameters for various materials
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The dependence of the refractive index on wavelength has two 
effects on a pulse, one in time and the other in space.

Slide from Rick Trebino’s Ultrafast Optics course

Dispersion also disperses a pulse in time:

Dispersion disperses a pulse in space (angle):

Negative GDD using angular dispersion

Group delay 
dispersion or 
Chirp
d2n/dl2

Angular dispersion
dn/dl



The dependence of the refractive index on wavelength has two 
effects on a pulse, one in space and the other in time.

Both of these effects play major roles in ultrafast optics.
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We’re considering only the GDD due to 
the angular dispersion q(w) and not that 
of the prism material.  Also n = 1 (that of 
the air after the prism).
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Negative GDD using angular dispersion

Slide from Rick Trebino’s Ultrafast Optics course
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A prism pair has 
negative GDD.

How can we use dispersion 
to introduce negative chirp 
conveniently?

Let Lprism be the path through 
each prism and Lsep (z = Lsep) 
be the prism separation.

This term assumes
that the beam grazes 
the tip of each prism
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This term allows the beam 
to pass through an additional
length, Lprism, of prism material.

Vary Lsep or Lprism to tune the GDD!

Always 
negative!

Always 
positive (in 
visible and 
near-IR)

Assume Brewster
angle incidence
and exit angles.

Slide from Rick Trebino’s Ultrafast Optics course
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It’s routine to stretch and then compress ultrashort pulses by factors 
of >1000.

This device, which also puts the pulse back together, has negative
group-delay dispersion and hence can compensate for propagation 
through materials (i.e., for positive chirp).

Angular dispersion yields 
negative GDD.

Slide from Rick Trebino’s Ultrafast Optics course

Pulse compressor using 4 prisms



Dispersion compensation using angular dispersion
Prism pair

(1) Small dispersion
(2) Negligible loss at Brewster angle

Material gratings Prisms

2nd order dispersion

3rd order dispersion

Typical dispersion signs for material, grating pair, and prism pair

+ - -
-++
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Diffraction grating pair

(1) Large dispersion
(2) Losses ~ 25%



Grating pair versus prism pair
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Dispersion of mirror structures: quarter-wave stack

High reflecting mirrors can be realized using a stack of thin dielectric films of different 
refractive indices.
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Bragg wavelength:

Bandwidth of Bragg mirror:

Typical coating example:



Chirped mirror by chirping the Bragg wavelength

Adapted from U. Keller’s Ultrafast Laser Physics course
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Interference causes ripples on group delay

Adapted from U. Keller’s Ultrafast Laser Physics course
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Double chirped mirrors: eliminate dispersion oscillation

Adapted from U. Keller’s Ultrafast Laser Physics course
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Comparison for different chirping of the 
high-index layer

Calculated frequency-dependent reflectivity and group delay for 25-layer pair chirped 
mirrors with nH = 2.5 and nL = 1.5. The Bragg wavenumber 2π/λB is linearly chirped
from 2π/(600 nm) to 2π/(900 nm) over the first 20 layer pairs, then held constant. 

-- Dotted curve: a standard chirped mirror with dH equal to a quarter-wave for all layers 
-- Dashed curve: DCM with dH linearly chirped over the first six layer pairs 
-- Solid curve: DCM with dH quadratically chirped over the first six layer pairs



Limitations of conventional DCMs

“cannot make arbitrarily low reflectivity and arbitrarily broad bandwidth 
at the same time” J.A. Dobrowolski et al., Appl. Opt. 35, 644 (1996)

Adapted from U. Keller’s Ultrafast Laser Physics course
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Broadband DCM: DCM pair

The DCM M1 can be decomposed in a double-chirped back-mirror matched to a 
medium with the index of the top most layer. 

In M2 a layer with a quarter wave thickness at the center frequency of the mirror 
and an index equivalent to the top most layer of the back-mirror MB is inserted 
between the back-mirror and the AR-coating. 

The new back-
mirror comprising 
the quarter wave 
layer can be re-
optimized to 
achieve the same 
phase as MB with 
an additional π-
phase shift over 
the whole octave 
of bandwidth.
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Thick dash-dotted line with scale to the right: group delay design goal for 
perfect dispersion compensation of a prismless Ti:sapphire laser. 

Thin line: individual group delay of the designed mirrors

Dashed line: average group delay of the two DCMs

Thick line: measured group delay from 600-1100 nm using white light 
interferometry

DCM pair designed for Ti:Sapphire oscillator

The average is almost
identical with the design 
goal over the wavelength 
range form 650-1200 nm.

Beyond 1100nm the 
sensitivity of Si detector
used prevented further 
measurements.

F. X. Kärtner et. al., “Ultrabroadband double-chirped mirror pairs for generation of octave 
spectra”J. of the Opt. Soc. of Am. 18, 882-885 (2001).



Active dispersion compensation: spatial light modulator
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Dispersion Compensation with 4f-Pulse Shaper

Liquid crystal spatial light modulator (LCSLM) can be electronically 
controlled allowing programmable shaping of the pulse on a millisecond 
time scale.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators” Rev. Sci. Instrum. 71, 
1929 (2000).



Acousto-Optic Programmable Dispersive Filter (AOPDF), also known as Dazzler. 

In an AOPDF, travelling acoustic wave induces variations in optical properties thus forming 
a dynamic volume grating.  

It is a programmable spectral filter, which can shape both the spectral phase and amplitude 
of ultrashort laser pulses.
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Active dispersion compensation: AOPDF

Pierre Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group 
delay time dispersion in laser systems,” Optics Communications 140, 245 (1997).



Pulse compression: general idea
Spectral broadening followed by dispersion compensation to compress 
(de-chirp) the pulse
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Spectral broadening 
using fiber-optic 
nonlinearity

Variable dispersion by the grating pair.

Diffraction 
grating pair

“Phase 
modulator”

Compressor



Dispersion matters in spectral broadening
Dispersion negligible using short fiber, SPM dominates

Optimum dispersion and nonlinearity 
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Hollow fiber compression of mili-joule pulses
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Self focusing threshold in fused silica is 4 MW. For ~100 fs pulse, the pulse energy 

allowed in a fused silica fiber is ~400 nJ before fiber breakdown.

The modes of the hollow fiber are leaky modes, i.e. they experience radiation loss. However, 
the EH11mode has considerably less loss than the higher order modes and is used for pulse 

compression. The nonlinear index in the fiber can be controlled with the gas pressure. Typical 

fiber diameters are 100-500 μm and typical gas pressures are in the range of 0.1-3 bar.


