Ultrafast Optical Physics II (SoSe 2019) Lecture 5, May 10 Part I

(1) Kerr nonlinearity and self-phase modulation

(2) Nonlinear Schrödinger equation and soliton solution

(3) Soliton perturbation theory

Interaction between EM waves and materials

Light wave perturbs material

Perturbed material alters the light wave

$$\longrightarrow P = \mathcal{E}_0 \chi E$$

$$\longrightarrow (\nabla^2 - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}) E = \mu_0 \frac{\partial^2 P}{\partial t^2}$$

 $\sim \Gamma$

Examples of changes to light wave: Frequency, amplitude, phase, polarization state, direction of propagation, transverse profile

Output of a linear optical system with multiple inputs is simply the field summation of the outputs for each individual input.

Intensity dependent nonlinear refractive index

In general, a medium responses nonlinearly to an optical field. Here we are interested in intensity dependent nonlinear refractive index arising from the third-order nonlinearity:

$$P = \varepsilon_0 \left[\chi^{(1)} E + \chi^{(3)} |E|^2 E \right] = \varepsilon_0 \left[\chi^{(1)} + \chi^{(3)} |E|^2 \right] E$$

Substituting the polarization into the wave equation

So the

$$\frac{\partial^{2} E}{\partial z^{2}} - \frac{1}{c_{0}^{2}} \frac{\partial^{2} E}{\partial t^{2}} = \mu_{0} \varepsilon_{0} \left[\chi^{(1)} + \chi^{(3)} \left| E \right|^{2} \right] \frac{\partial^{2} E}{\partial t^{2}}$$

$$\frac{\partial^{2} E}{\partial z^{2}} - \frac{\left[1 + \chi^{(1)} + \chi^{(3)} \left| E \right|^{2} \right]}{c_{0}^{2}} \frac{\partial^{2} E}{\partial t^{2}} = 0 \quad \text{since} \quad \mu_{0} \varepsilon_{0} = 1/c_{0}^{2}$$
refractive index is:
$$n = \sqrt{1 + \chi^{(1)} + \chi^{(3)} \left| E \right|^{2}}$$

Intensity dependent nonlinear refractive index

The refractive index in the presence of linear and nonlinear polarizations:

$$n = \sqrt{1 + \chi^{(1)} + \chi^{(3)} |E|^2}$$

Now, the usual refractive index (which we'll call n_0) is: $n_0 = \sqrt{1 + \chi^{(1)}}$

So:

$$n = \sqrt{n_0^2 + \chi^{(3)} |E|^2} = n_0 \sqrt{1 + \chi^{(3)} |E|^2 / n_0^2}$$

Assume that the nonlinear term << n₀:

So:

$$n \approx n_0 \left[1 + \chi^{(3)} |E|^2 / 2n_0^2 \right]$$

$$n \approx n_0 + \chi^{(3)} |E|^2 / 2n_0$$

Usually we define a "nonlinear refractive index", $n_{2,L}$:

since:
$$I \propto |E|^2$$

 $n = n_0 + n_{2,L}I$

Kerr effect: refractive index linearly dependent on light intensity.

Who is Kerr?

John Kerr (1824-1907) was a Scottish physicist. He was a student in Glasgow from 1841 to 1846, and at the Theological College of the Free Church of Scotland, in Edinburgh, in 1849. Starting in 1857 he was mathematical lecturer at the Free Church Training College in Glasgow.

He is best known for the discovery in 1875 of what is now called Kerr effect—the first nonlinear optical effect to be observed. In the Kerr effect, a change in refractive index is proportional to the square of the electric field. The Kerr effect is exploited in the *Kerr cell*, which is used in applications such as shutters in high-speed photography, with shutter-speeds as fast as 100 ns.

John Kerr, c. 1860, photograph by Thomas Annan

Magnitude of nonlinear refractive index

Material	Refractive index n	$n_{2,L}[cm^2/W]$
Sapphire (Al_2O_3)	1.76 @ 850 nm	$3 \cdot 10^{-16}$
Fused Quarz	1.45 @ 1064 nm	$2.46 \cdot 10^{-16}$
Glass (LG-760)	1.5 @ 1064 nm	$2.9 \cdot 10^{-16}$
$YAG (Y_3Al_5O_{12})$	1.82 @ 1064 nm	$6.2 \cdot 10^{-16}$
YLF (LiYF ₄), n_e	1.47 @ 1047 nm	$1.72 \cdot 10^{-16}$
Si	3.3 @ 1550 nm	$4 \cdot 10^{-14}$

- 1) A variety of effects give rise to a nonlinear refractive index.
- 2) Those that yield a large n_2 typically have a slow response.
- 3) Nonlinear coefficient can be negative.

Kerr effect for an optical beam: self focusing

Focusing an optical beam at three different powers red: low power green: near critical power blue: above critical power Due to diffraction, a lens can only focus a beam to a finite size

$$r = \frac{0.61}{\sin \theta_0} \lambda$$

For $n_2 > 0$, Kerr effect in a medium acts as a positive lens for a Gaussian beam—the beam's center experiences larger refractive index than the edge. If the peak power exceeds a critical power, self focusing overtakes diffraction and the beam converges rapidly leading to material damage.

$$P_{cr} = \frac{\pi (0.61)^2 \lambda_0^2}{8n_0 n_2}$$

Example: self focusing critical power in fused silica

$$\lambda_0 = 1.03 \,\mu m$$
 $n_0 = 1.45$ $n_2 = 2.7 \times 10^{-20} \,m^2 \,/W$
 $P_{cr} = 4 M W$

7

Kerr effect for an optical pulse: self-phase modulation

In a purely one dimensional propagation problem, the intensity dependent refractive index imposes an additional self-phase shift on the pulse envelope during propagation, which is proportional to the instantaneous intensity of the pulse:

Note that here the pulse profile has been re-normalized so that its square gives intensity:

Pulse shape does not change, but the pulse acquires nonlinear phase:

Nonlinear phase modulation of a pulse, caused by its own intensity via the Kerr effect.

$$A(z,t) = A(0,t)e^{j\varphi_{NL}}$$
$$= A(0,t)e^{-j\delta|A(z,t)|^2 z}$$

$$|A(z,t)| = |A(0,t)|$$
$$\varphi_{NL} = -\delta |A(z,t)|^2 z$$

SPM induces positive chirp

SPM modifies spectrum

Spectral bandwidth is proportional to the amount of nonlinear phase accumulated inside the fiber.

 $\phi_{NL} \approx (M - \frac{1}{2}) \times \pi$

M is the number of spectral peaks.

Input: Gaussian pulse, Pulse duration = 100 fs, Peak power = 1 kW

Pulse propagation: pure dispersion Vs pure SPM

• Pure dispersion $j\frac{\partial A(z,t)}{\partial z} = -D_2 \frac{\partial^2 A}{\partial t^2}$ $D_2 = \frac{\beta_2}{2} \xrightarrow{} \text{GVD}$

(1) Pulse's spectrum acquires phase.

(2) Spectrum profile does not change.

- (3) In the time domain, pulse may be stretched or compressed depending on its initial chirp .
- Pure SPM $j\frac{\partial A(z,t)}{\partial z} = \delta |A|^2 A$

(1) Pulse acquires phase in the time domain.

- (2) Pulse profile does not change.
- (3) In the frequency domain, pulse's spectrum may be broadened or narrowed depending on its initial chirp.

Nonlinear Schrödinger Equation (NLSE)

$$j\frac{\partial A(z,t)}{\partial z} = -D_2\frac{\partial^2 A}{\partial t^2} + \delta|A|^2 A \qquad D_2 = \frac{\beta_2}{2}$$

Positive GVD (normal dispersion) + SPM:

GVD and SPM both act to shift the red frequency to the front of the pulse. Therefore the pulse will spread faster than it would in the purely linear case.

Negative GVD (anomalous dispersion) + SPM:

GVD and SPM shift frequency in the opposite direction. At a certain condition, the dispersive spreading of the pulse is exactly balanced by the compression due to the opposite chirp induced by SPM. A steady-state pulse can propagate without changing its shape. (i.e. soliton regime)

NLSE has soliton solution.

General properties of soliton

In mathematics and physics, a **soliton** is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. ---Wiki

- When two solitons get closer, they gradually collide and merge into a single wave packet.
- This packet soon splits into two solitons with the same shape and velocity before "collision".

Who discovered soliton?

John Scott Russell (1808 – 1882) was a Scottish civil engineer, naval architect and shipbuilder.

In 1834, while conducting experiments to determine the most efficient design for canal boats, John Scott Russell made a remarkable scientific discovery, leading to a conference paper— Report on Waves.

<u>Report of the fourteenth meeting of the</u> <u>British Association for the Advancement of</u> <u>Science, York, September 1844 (London</u> <u>1845), pp 311-390, Plates XLVII-LVII).</u>

John Scott Russell (1808-1882)

Russell's report

- "I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its the course along channel apparently without change of form or diminution of speed."
- "I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation."

<u>Report of the fourteenth meeting of the British Association for the Advancement of Science.</u> York, September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).

Water wave soliton in Scott Russell Aqueduct

89.3m long, 4.13m wide, 1.52m deep, On the union Canal, Near Heroit-Watt Univ.

www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt

Water wave soliton in Scott Russell Aqueduct

www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt

A brief history (mainly for optical soliton)

- 1838 soliton observed in water
- 1895 KdV equation: mathematical description of waves on shallow water surfaces.
- 1972 optical solitons arising from NLSE
- 1980 experimental demonstration in optical fibers
- 1990's development of techniques to control soliton
- 2000's understanding soliton in the context of supercontinuum generation

Soliton solution of NLSE: fundamental soliton

$$j\frac{\partial A(z,t)}{\partial z} = -D_2 \frac{\partial^2 A(z,t)}{\partial t^2} + \delta |A(z,t)|^2 A(z,t)$$

The NLSE possesses the following genereral fundamental soliton solution:

$$A_{S}(z,t) = A_{0} \operatorname{sech}(x(z,t)) e^{-j\theta(z,t)}$$

$$A_{S}(z,t) = A_{0} \operatorname{sech}\left(\frac{t}{\tau}\right) e^{-j\theta(z,t)}$$

$$A_{S}(z,t) = A_{0} \operatorname{sech}\left(\frac{t}{\tau}\right) e^{-j\theta(z,t)}$$

$$A_{S}(z,t) = A_{0} \operatorname{sech}\left(\frac{t}{\tau}\right) e^{-j\theta(z,t)}$$

$$A \text{ phase linearly proportional to propagation distance:}$$

$$\theta = \frac{1}{2} \delta A_{0}^{2} z = \frac{|D_{2}|}{\tau^{2}} z$$

$$\frac{1}{2} \delta A_{0}^{2} = \frac{|D_{2}|}{\tau^{2}} dispersion$$

$$Soliton \text{ is the result of balance between nonlinearity and dispersion.}}$$

Propagation of fundamental soliton

Input: 1ps soliton centered at 1.55 um; medium: single-mode fiber

Important Relations

Balance between dispersion and nonlinearity

$$\frac{1}{2}\delta A_0^2 = \frac{|D_2|}{\tau^2} \qquad \longrightarrow \qquad A_0 = \frac{1}{\tau}\sqrt{\frac{2|D_2|}{\delta}}$$

Phase acquired during soliton propagation

$$\theta = \frac{1}{2}\delta A_0^2 z = \frac{|D_2|}{\tau^2} z$$

Soliton pulse area

Pulse Area =
$$\int_{-\infty}^{\infty} |A_S(z,t)| dt = \int_{-\infty}^{\infty} A_0 \operatorname{sech}\left(\frac{t}{\tau}\right) dt = \pi A_0 \tau = \pi \sqrt{\frac{2|D_2|}{\delta}}$$

Soliton energy

$$w = \int_{-\infty}^{\infty} |A_S(z,t)|^2 dt = \int_{-\infty}^{\infty} A_0^2 \operatorname{sech}^2\left(\frac{t}{\tau}\right) dt = 2A_0^2 \tau$$

Pulse width $\tau = \frac{4|D_2|}{\delta w}$

Higher-order Solitons: periodical evolution in both the time and the frequency domain

$$A_0 \tau = N \sqrt{\frac{2|D_2|}{\delta}}, N = 1, 2, 3... \qquad A_s(z, t) = N A_0 \operatorname{sech}(\frac{t}{\tau}) e^{-j\theta}$$

G. P. Agrawal, Nonlinear fiber optics (2001)

Interaction between solitons (soliton collision)

Figure 3.4: A soliton with high carrier frequency collides with a soliton of lower carrier frequency.

Interaction of two solitons at the same center frequency

Interactions of two fundamental solitons

From Gaussian pulse to fundamental soliton

Gaussian pulse to 3-order soliton

Evolution of a super-Gaussian pulse to soliton

Soliton perturbation theory: a very brief introduction

What happens to the soliton in the presence of perturbations? Will it fall apart?

Is it just kicked around? If yes, can we understand how it is kicked around?

Soliton perturbation theory: a very brief introduction

$$\frac{\partial A(z,t)}{\partial z} = -j \left[|D_2| \frac{\partial^2 A}{\partial t^2} + \delta |A|^2 A \right] + F(A, A^*, z)$$

Ansatz: Solution of perturbed equation is a soliton + a small component:

$$A(z,t) = \left[a(\frac{t}{\tau}) + \Delta A(z,t)\right] e^{-jk_s z} \quad \text{with:} \quad a(\frac{t}{\tau}) = A_0 \operatorname{sech}(\frac{t}{\tau}) \quad k_s = \frac{1}{2}\delta A_0^2$$

Any deviation ΔA can be decomposed into a contribution that leads to a soliton with a shift in the four soliton parameters and a continuum contribution:

Soliton instabilities by periodic perturbations

Amplification every roundtrip in the oscillator results in a periodic perturbation leading to the appearance of sidebands in the soliton spectrum

Rogue wave

Find more information from New York times: <u>http://www.nytimes.com/2006/07/11/science/11wave.html</u>

One more Rogue wave

Ultrafast Optical Physics II (SoSe 2019) Lecture 5, May 10

Part II

(1) Pulse compression: general idea

(2) Dispersion compensation

Examples of ultrafast solid-state laser media

Broader gain bandwidth produces shorter laser pulses.

Laser	Absorption	Average	Band	Pulse
Materials	Wavelength	Emission λ	Width	Width
Nd:YAG	808 nm	1064 nm	0.45 nm	$\sim 6~{ m ps}$
Nd:YLF	797 nm	1047 nm	1.3 nm	$\sim 3~{ m ps}$
Nd:LSB	808 nm	1062 nm	4 nm	$\sim 1.6~{ m ps}$
Nd:YVO ₄	808 nm	1064 nm	2 nm	$\sim 4.6~\mathrm{ps}$
Nd:fiber	804 nm	1053 nm	22-28 nm	$\sim 33~{ m fs}$
Nd:glass	804 nm	1053 nm	22-28 nm	$\sim 60~{ m fs}$
Yb:YAG	940, 968 nm	1030 nm	6 nm	$\sim 300~{ m fs}$
Yb:glass	975 nm	1030 nm	30 nm	$\sim 90~{ m fs}$
$Ti:Al_2O_3$	480-540 nm	796 nm	200 nm	$\sim 5~{ m fs}$
$Cr^{4+}:Mg_2SiO_4:$	900-1100 nm	1260 nm	200 nm	$\sim 14~{ m fs}$
Cr ⁴⁺ :YAG	900-1100 nm	1430 nm	180 nm	$\sim 19~{ m fs}$

Transform-limited pulse

$$\widetilde{E}(\omega) = \int_{-\infty}^{\infty} E(t) \exp(-j\omega t) dt \qquad E(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{E}(\omega) \exp(j\omega t) d\omega$$
$$\left| \widetilde{E}(\omega) \right|^{2} \text{ has a spectrum bandwidth of } \Delta \nu \qquad \text{Both are measured} \\ \left| E(t) \right|^{2} \text{ has a pulse duration of } \Delta t \qquad \text{Both are measured} \\ \text{at full-width at half-maximum (FWHM).} \end{aligned}$$
Uncertainty principle:
$$\Delta \nu \Delta t \geq K$$
Time Bandwidth Product (TBP) \checkmark A number depending only on pulse shape

For a given optical spectrum, there exist a lower limit for the pulse duration. If the equality is reached, we say the pulse is a transform-limited pulse.

To get a shorter transform-limited pulse, one needs a broader optical spectrum.

How to achieve ultrashort pulse? To compress or not to compress

General idea of pulse compression

Step 1: nonlinear spectral broadening

Step 2: pulse compression by a linear dispersive device

<u>Ideal scenario:</u> $\phi_O(\omega) + \phi_d(\omega) = \phi_0 + \phi_1 \times (\omega - \omega_0)$

This condition guarantees a transform-limited pulse—the shortest ³⁹ pulse allowed by the spectrum.

Pulse travels through a dispersive bulk medium

Positive chirp

Transform-limited pulse

A dispersion compensating device can compensate for the spectral phase and then compress the stretched pulse to its transform-limited duration.

General idea of pulse compression

Ideal scenario:

The broader the spectrum, the more higher-order dispersion should be matched.

Dispersion parameters for various materials

material	λ [nm]	$n(\lambda)$	$\frac{dn}{d\lambda} \cdot 10^{-2} \left[\frac{1}{\mu m} \right]$	$\frac{d^2n}{d\lambda^2} \cdot 10^{-1} \left[\frac{1}{\mu m^2}\right]$	$\frac{dn^3}{d\lambda^3} \left[\frac{1}{\mu m^3} \right]$	$T_g\left[\frac{fs}{mm}\right]$	$GDD\left[\frac{fs^2}{mm}\right]$	$TOD\left[\frac{fs^3}{mm}\right]$
BK7	400	1,5308	-13,17	10,66	-12,21	5282	120,79	40,57
	500	1,5214	-6,58	3,92	-3,46	5185	86,87	32,34
	600	1,5163	-3,91	1,77	-1,29	5136	67,52	29,70
	800	1,5108	-1,97	0,48	-0,29	5092	43,96	31,90
	1000	1,5075	-1,40	0,15	-0,09	5075	26,93	42,88
	1200	1,5049	-1,23	0,03	-0,04	5069	10,43	66,12
		_						
SF10	400	1,7783	-52,02	59,44	-101,56	6626	673,68	548,50
	500	1,7432	-20,89	15,55	-16,81	6163	344,19	219,81
	600	1,7267	-11,00	6,12	-4,98	5980	233,91	140,82
	800	1,7112	-4,55	1,58	-0,91	5830	143,38	97,26
	1000	1,7038	-2,62	0,56	-0,27	5771	99,42	92,79
	1200	1,6992	-1,88	0,22	-0,10	5743	68,59	107,51
Sapphire	400	1,7866	-17,20	13,55	-15,05	6189	153,62	47,03
	500	1,7743	-8,72	5,10	-4,42	6064	112,98	39,98
	600	1,7676	-5,23	2,32	-1,68	6001	88,65	37,97
	800	1,7602	-2,68	0,64	-0,38	5943	58,00	42,19
	1000	1,7557	-1,92	0,20	-0,12	5921	35,33	57,22
	1200	1,7522	-1,70	0,04	-0,05	5913	13,40	87,30
Quartz	300	1,4878	-30,04	34,31	-54,66	5263	164,06	46,49
	400	1,4701	-11,70	9,20	-10,17	5060	104,31	31,49
	500	1,4623	-5,93	3,48	-3,00	4977	77,04	26,88
	600	1,4580	-3,55	1,59	-1,14	4934	60,66	25,59
	800	1,4533	-1,80	0,44	-0,26	4896	40,00	28,43
	1000	1,4504	-1,27	0,14	-0,08	4880	24,71	38,73
	1200	1,4481	-1,12	0,03	-0,03	4875	9,76	60,05

Negative GDD using angular dispersion

The dependence of the refractive index on wavelength has two effects on a pulse, one in time and the other in space.

Dispersion also disperses a pulse in time:

Group delay dispersion or Chirp $d^2n/d\lambda^2$

Dispersion disperses a pulse in space (angle):

Angular dispersion $dn/d\lambda$

Slide from Rick Trebino's Ultrafast Optics course

Negative GDD using angular dispersion

Taking the projection of $\vec{k}(\omega)$ onto the optic axis, a given frequency ω sees a phase delay of $\varphi(\omega)$:

$$\varphi(\omega) = \vec{k}(\omega) \cdot \vec{r}_{optic \ axis}^{Z}$$
$$= k(\omega) \ z \ \cos[\theta(\omega)]$$
$$= (\omega/c) \ z \ \cos[\theta(\omega)]$$

We're considering only the GDD due to the angular dispersion $\theta(\omega)$ and not that of the prism material. Also n = 1 (that of the air after the prism).

 $d\varphi/d\omega = (z/c)\cos(\theta) - (\omega/c)z\sin(\theta) d\theta/d\omega$

But $\theta \ll 1$, so the sine terms can be neglected, and $\cos(\theta) \sim 1$. <u>Slide from Rick Trebino's Ultrafast Optics course</u>

A prism pair has negative GDD.

How can we use dispersion to introduce negative chirp conveniently?

Let L_{prism} be the path through each prism and L_{sep} ($z = L_{sep}$) be the prism separation.

$$\frac{d^2\varphi}{d\omega^2}\Big|_{\omega_0} \approx -4L_{sep} \frac{\lambda_0^3}{2\pi c^2} \left(\frac{dn}{d\lambda}\Big|_{\lambda_0}\right)^2 +$$

Always / negative! This term assumes that the beam grazes the tip of each prism

$$L_{prism} \frac{\lambda_0^3}{2\pi c^2} \frac{d^2 n}{d\lambda^2} \bigg|_{\lambda_0}$$

Always positive (in visible and near-IR)

This term allows the beam to pass through an additional length, L_{prism} , of prism material.

Vary L_{sep} or L_{prism} to tune the GDD!

Slide from Rick Trebino's Ultrafast Optics course

Pulse compressor using 4 prisms

This device, which also puts the pulse back together, has **negative** group-delay dispersion and hence can compensate for propagation through materials (i.e., for positive chirp).

It's routine to stretch and then compress ultrashort pulses by factors of >1000.

Slide from Rick Trebino's Ultrafast Optics course

Dispersion compensation using angular dispersion

Prism pair

(1) Small dispersion(2) Negligible loss at Brewster angle

Diffraction grating pair

(1) Large dispersion(2) Losses ~ 25%

Typical dispersion signs for material, grating pair, and prism pair

	Material	gratings	Prisms	
2 nd order dispersion	+	-	-	
3 rd order dispersion	+	+	-	

Grating pair versus prism pair

Device	$\lambda_\ell \; [\mathrm{nm}]$	ϕ " [fs ⁺²]	φ "" [fs ⁺³]
$SQ1 \ (L = 1 \ cm)$	620	550	240
Piece of glass	800	362	280
Brewster prism	620	-760	-1300
pair, SQ1			
$\ell = 50 \mathrm{cm}$	800	-523	-612
grating pair	620	$-8.2\ 10^4$	$1.1 \ 10^5$
$b = 20$ cm; $\beta = 0^{\circ}$			
$d=1.2~\mu{ m m}$	800	$-3 \ 10^{6}$	$6.8 10^6$

Dispersion of mirror structures: quarter-wave stack

High reflecting mirrors can be realized using a stack of thin dielectric films of different refractive indices.

Chirped mirror by chirping the Bragg wavelength

Chirp Bragg wavelength

- ⇒ wavelength-dependent penetration depth
- \Rightarrow engineerable dispersion
- ⇒ compensation of arbitrary material dispersion
- ⇒ increased high-reflection bandwidth

Szipöcs et al., Opt. Lett. 19, 201 (1994)

Interference causes ripples on group delay

- front interface + high reflector form an *effective GTI*
- dispersion oscillations
- magnitude comparable to net mirror dispersion

Double chirped mirrors: eliminate dispersion oscillation

Additional chirp in the coupling between incident and reflected wave ⇔ chirp in the duty-cycle of high and low refractive index material ⇔ apodization of mirror impedance to first-layer impedance

Anti-reflection coating matches first-layer impedance to air

Kärtner et al., Opt. Lett. 22, 831 (1997)

Matuschek et al., IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998)

Comparison for different chirping of the high-index layer

Calculated frequency-dependent reflectivity and group delay for 25-layer pair chirped mirrors with $n_H = 2.5$ and $n_L = 1.5$. The Bragg wavenumber $2\pi/\lambda_B$ is linearly chirped from $2\pi/(600 \text{ nm})$ to $2\pi/(900 \text{ nm})$ over the first 20 layer pairs, then held constant.

- -- Dotted curve: a standard chirped mirror with d_H equal to a quarter-wave for all layers
- -- Dashed curve: DCM with d_H linearly chirped over the first six layer pairs
- -- Solid curve: DCM with d_H quadratically chirped over the first six layer pairs

Limitations of conventional DCMs

reduction of dispersion oscillations requires $R_{AR} < 10^{-4}$ \Rightarrow limits bandwidth of direct approach to ≈ 250 nm

larger bandwidths by computer optimization of whole mirror structure, but...

- ⇒ dispersion oscillations strongly increase with bandwidth
- ⇒ increasing number of layers does not solve problem

"cannot make arbitrarily low reflectivity and arbitrarily broad bandwidth at the same time" J.A. Dobrowolski et al., *Appl. Opt.* **35**, 644 (1996)

Broadband DCM: DCM pair

The DCM M1 can be decomposed in a double-chirped back-mirror matched to a medium with the index of the top most layer.

In M2 a layer with a quarter wave thickness at the center frequency of the mirror and an index equivalent to the top most layer of the back-mirror MB is inserted between the back-mirror and the AR-coating.

The new backmirror comprising the quarter wave layer can be reoptimized to achieve the same phase as MB with an additional π phase shift over the whole octave of bandwidth.

DCM pair designed for Ti:Sapphire oscillator

<u>Thick dash-dotted line with scale to the right</u>: group delay design goal for perfect dispersion compensation of a prismless Ti:sapphire laser.

Thin line: individual group delay of the designed mirrors

Dashed line: average group delay of the two DCMs

Thick line: measured group delay from 600-1100 nm using white light interferometry

The average is almost identical with the design goal over the wavelength range form 650-1200 nm.

Beyond 1100nm the sensitivity of Si detector used prevented further measurements.

<u>F. X. Kärtner et. al., "Ultrabroadband double-chirped mirror pairs for generation of octave spectra" J. of the Opt. Soc. of Am. 18, 882-885 (2001).</u>

Active dispersion compensation: spatial light modulator

Dispersion Compensation with 4f-Pulse Shaper

Liquid crystal spatial light modulator (LCSLM) can be electronically controlled allowing programmable shaping of the pulse on a millisecond time scale.

<u>A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 71, 1929 (2000).</u>

Active dispersion compensation: AOPDF

Acousto-Optic Programmable Dispersive Filter (AOPDF), also known as Dazzler.

In an AOPDF, travelling acoustic wave induces variations in optical properties thus forming a dynamic volume grating.

It is a programmable spectral filter, which can shape both the spectral phase and amplitude of ultrashort laser pulses.

Pierre Tournois, <u>"Acousto-optic programmable dispersive filter for adaptive compensation of group</u> <u>delay time dispersion in laser systems,"</u> Optics Communications **140**, 245 (1997).

Pulse compression: general idea

Spectral broadening followed by dispersion compensation to compress (de-chirp) the pulse

Dispersion matters in spectral broadening

Dispersion negligible using short fiber, SPM dominates

Hollow fiber compression of mili-joule pulses

Self focusing threshold in fused silica is 4 MW. For ~100 fs pulse, the pulse energy allowed in a fused silica fiber is ~400 nJ before fiber breakdown.

The modes of the hollow fiber are leaky modes, i.e. they experience radiation loss. However, the EH_{11} mode has considerably less loss than the higher order modes and is used for pulse compression. The nonlinear index in the fiber can be controlled with the gas pressure. Typical fiber diameters are 100-500 μ m and typical gas pressures are in the range of 0.1-3 bar.